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Abstract: We describe an SPA power attack on an 8-bit implementation of AES. Our 
attack uses an optimized search of the key space to improve upon previous 
work in terms of speed, flexibility, and handling of data error. We can find a 
128-bit cipher key in 16ms on average, with similar results for 192- and 256- 
bit cipher keys. The attack almost always produces a unique cipher key and 
performs well even in the presence of substantial measurement error. 
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1. Introduction 

In 2001 the National Institute of Standards and Technology selected the 
block cipher Rijndael as the Advanced Encryption Standard (AES), making 
it the standard for private key encryption. A cryptographic attack on AES, 
such as linear or differential cryptanalysis, appears intractable at this time. 
Therefore, some researchers have investigated side-band attacks, which use 
information about the physical manifestation of the hardware or software 
implementing the algorithm [I ,  2, 61. 

Side-band attacks assume access to the hardware performing the 
encryption. Timing attacks, proposed in 1996, assume only the ability to 
time the encryption (or perhaps sub-portions of the encryption) [4]. Such 
attacks are relatively easy to thwart by writing encryption software that uses 
a fixed sequence of operations. Power attacks, another style of side-band 
attack, are more difficult to thwart. The most common power attacks assume 
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the ability to observe the power utilization of the processor or ASIC over 
time [5]. 

Power attacks provide both high-level information about the operations 
being performed on the chip and low-level information about the data being 
operated upon. The high-level information is similar to timing information 
and can be dealt with in a similar way. Low-level information about the data 
arises from sources such as asymmetry in the efficiency of the n and p 
transistors or the flipping of bits on a bus or in a register. Without great care 
in the chip design and addition of power inefficiencies, a CMOS chip will 
use a slightly different amount of power based on the data being calculated 
[8]. Microprocessors operate on a fixed number of bits at a time (usually 
words or bytes), so what is actually revealed is the sum of the bits, or the 
Hamming weight of the data. 

The two main variants of power attacks are differential power analysis 
(DPA), which requires the plaintexts or ciphertexts in addition to the power 
traces for many encryptions with the same key; and simple power analysis 
(SPA), which exposes the secret key solely from power traces [5]. While in 
theory most SPA attacks could reveal the key from a single encryption, poor 
signal-to-noise ratio forces averaging of the error over many encryptions 
with the same key. DPA is applicable to most ciphers and implementing 
such an attack is relatively straightforward. SPA is greatly affected by the 
design of a cipher and the susceptibility of a cipher to this style of attack 
may not be obvious. 

This paper details an SPA power attack on an %-bit implementation of 
AES. We assume that the Hamming weights of the bytes of the expanded 
key can be measured, possibly with some error. Our approach exploits 
regularities in the AES key schedule, which could likely be utilized even if 
different information more specific to the implementation is exposed. It 
improves upon a previously published attack by Mangard [6] in terms of 
speed, flexibility, and handling of measurement error. Specifically our 
algorithm improves upon this work in four ways. 

It runs approximately 20000 times faster. 
It nearly always finds a unique solution rather than a handful of 
candidate solutions. 

It works on cipher-key sizes of 192 and 256 in addition to 128 bits. 
It performs well under a more realistic error model. 

Table I .  Time and Discovery Rate of Cipher Keys 
128-bit key 256-bit key 128-bit key with error 
no error no error /o = 0.25) 

Average time 16ms 20ms 35s 
% of attacks with a unique solution 100% 99.97% 96% 
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With regard to the second item, the previous work required a ciphertext1 
plaintext pair to find the correct solution, thus negating a primary advantage 
of an SPA attack. While the algorithm in this paper cannot guarantee a 
unique solution, our results show that even with significant errors in the data, 
it almost always finds a unique solution. Table 1 provides a summary of our 
results. 

2. AES 

In private-key cryptosystems such as AES, both the sender and receiver 
of a message require access to the same secret key. Public-key 
cryptosystems allow the sender and receiver to use different keys, only one 
of which needs to be secret, but require significantly more computational 
power as well as a significantly longer key. AES (like the DES standard that 
it replaced) is an iterative block cipher. This means that the data is 
manipulated in series of "mini-encryptions," called rounds, each of which 
uses its own key. In order to generate these round keys the AES algorithm 
expands the 128-, 192-, or 256-bit private key (also called the cipher key) 
into the needed number of 128-bit round keys using the key expansion 
algorithm described below. 

Key Expansion in AES 

Our attack exploits the relationships between the round keys resulting 
fi-om patterns in the key expansion algorithm. As such, it is necessary to 
carefully describe the algorithm found in the AES specification [3]. The key 
expansion algorithm is slightly different depending upon the cipher key size. 
Though our attack works on all three different key sizes, for simplicity we 
will discuss only the 128-bit key expansion (which is the most commonly 
used). The 192-bit and 256-bit key expansions are similar, and the results of 
attacks on those key sizes are summarized in section 5. 

The 128-bit cipher key is expanded into eleven 128-bit round keys, each 
of which can be thought of as 16 bytes arranged in a 4-by-4 block. Each 
successive round key is simply a transformation of the previous round key. 
Define RK[N, R, CJ for N = 0 ,..., 10, R = 0 ,..., 3 and C = 0 ,..., 3, to be the byte 
found in the N-th round key at row R and column C. The first round key (i.e. 
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the round key for N = 0) is a copy of the 128-bit cipher key. When N > 0, the 
round key RK[N, R, C]  is equal to 24 

I RK[N-l,R,C]ORK[N,R,C-l],if C > 0 ;  

RK[N - 1, R, C] O SB[RK[N - 1, R - 1,311, if R > 0 and C = 0; 

RK[N -1, R, C] O SB[RK[N - 1,3,3] 0 RC[N], if R = 0 and C = 0. 

Here O is the XOR function; SB is an invertible function, called the 
subbyte function, which maps bytes to bytes; and RC[N] is the N-th round 
constant, a fixed value independent of the cipher key. The AES standard 
gives the precise definitions of SB and RC[N]. Each byte other than those in 
the cipher key is computed from exactly two other bytes. For example, when 
N>OandC>O, 

but then we also have 

That is, the computational relationship between bytes is symmetric in the 
sense that each of the bytes is computable from the other two. This is also 
true in the cases where N >  0 but C # 0, the only difference being that we 
have slightly more complicated expressions involving the SB function and 
RC[N] constants. We picture all of these computational relationships in the 
hypergraph of Figure 1. 

24 The notation here is not the same as the round key function wij] in [3]. The relationship 
between the two notations is RK[ArJ,q  = W[-R mod 4,4N + C ] .  Our notation was chosen 
to make our description of the key schedule structure clearer. 
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Figure 1. The Key Schedule Hypergraph for 128-bit Cipher Keys 

A hypergraph is a pair (V, E) where V is the vertex set and E c 2' is the 
hyperedge set. If we require that all hyperedges contain exactly two vertices, 
we have the usual definition of a graph. In our hypergraph, the vertices are 
the bytes of the round keys and the hyperedges are the 3-element sets of 
computationally related bytes. 

The ovals in the diagram represent the vertices of the hypergraph. For 
clarity, we have not labeled every vertex in the diagram. In the row labeled 
N,O,O, for example, the eleven vertices should be labeled 

(o,o,o>,(l , ~ ~ ~ ) 7 ( ~ 7 ~ 7 ~ ) , . . . , ( ~ ~ 7 ~ , ~ >  

respectively. The figure shows a blowup of a small section of the hypergraph 
with the vertices labeled. The shaded triangles represent the hyperedges; the 
light shaded triangles represent the hyperedges where the subbyte relation is 
not used to compute the computational relationship. For example, since 

we have a light hyperedge {(1,0,1),(0,0,1),(1 ,O,O)], which is the upper- 
leftmost shaded triangle. From 

we get a dark shaded hyperedge {(I, 1,0),(0,1 ,O),(O,O,3)). 
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The bytes of the cipher key RK[O,O,O],RK[O,O,1], ..., RK[0,3,3] are 
assigned to the vertices along the left edge of the diagram. The slightly fuzzy 
row of vertices at the bottom of the diagram is the same as the top row of 
vertices; that is, the diagram should "wrap around" and the first and last rows 
be identified. 

3. Optimizing Search for a Cipher Key 

We now give a precise statement of the SPA Key Schedule Problem (in 
the case of 128-bit cipher keys). Divide a cipher key of 128 bits into 16 bytes 
RK[O,O,O] to RK[0,3,3] and compute bytes RK[N,R,q as described in section 
2. Given just the Hamming weights of these bytes, determine the original 
128-bit cipher key. 

An exhaustive search, cycling through the 2128 possible cipher keys, is 
clearly infeasible. Even if we cycle through only those keys where each byte 
of the cipher key has the correct Hamming weight, the number of possible 
keys could be as large as 298, still far too large to search. We need to utilize 
the Hamming weights of the entire expanded key to reduce the search space 
to a manageable number of keys. 

A naive approach would be to search for the cipher key by sequentially 
assigning possible values for the bytes RK[O,O,O] to RK[0,3,3] (i.e., those 
bytes for which N = 0) and checking consistency with the Hamming weight 
information after each assignment. Inspection of Figure 1 shows that this is 
little better than an exhaustive search. After we have assigned values to 
RK[O,O,O] and WO,O,l], for example, we have no further information about 
Hamming weights of other bytes in the key schedule since they do not 
belong to a common hyperedge. 

Suppose, instead, that we assign possible values for RK[O,O,O] and 
RK[1,0,0] corresponding to vertices in the bottom row of the hypergraph. 
We can then compute RK[0,3,3] and check three values (rather than just two 
as before) for consistency with the Hamming weight information. This 
improves on exhaustive search because it eliminates many possible 
assignments. This is the main idea behind our search sequence optimization. 
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Figure 2. A Fragment of the Key Schedule Hypergraph 

Systematic use of this idea results in a highly optimized search. Consider 
the small fragment of the hypergraph in Figure 2. Suppose we have assigned 
values consistent with the Hamming weight information for the six shaded 
vertices. If we then make an assignment to vertex A, we can compute values 
for vertices B, C, and D, then check that these values are consistent with the 
Hamming weights. Notice also that if we have values assigned to the six 
shaded vertices, assigning a value to any one of the vertices A, B, C or D 
allows us to compute values for the other three. 

Thus, there are many ways to choose a sequence so that the maximum 
number of byte values can be computed after successive assignments to 
vertices in the sequence. However, it is not difficult to see that after each 
assignment (for at least the first 11 assignments), the pattern of computable 
values will be a triangular array of the type shown in Figure 2. That is, we 
can find a vertex sequence So,SI, ..., SIS so that after values have been assigned 
to So, ..., S,, we can compute (i+l)(i+2)/2 byte values in a triangular array. 
When i 2 11 a complete triangular array will not fit horizontally in the 
hypergraph shown in Figure 1 so the increase in the number of computable 
values is not as great. However, by this stage so many values are determined 
that maximizing the number of computable values is not so important 
(Figure 4 illustrates this). After assignments to SO, ..., SI5, all 176 bytes can be 
computed because of the wrap-around in the hypergraph. 

Besides maximizing the number of computable values after each 
assignment, speedups can be gained by taking advantage of information 
available from the subbyte operation used in the dark hyperedges. 
Maximizing the number of dark hyperedges contained within the triangular 
array of computable values results in additional pruning in the early stages of 
the search. This can give approximately an order of magnitude speedup. 
Because the subbyte is applied to the top vertex in any dark hyperedge, it is 
possible to easily extract this information without determining the two lower 
vertices of such a hyperedge. Maximizmg the number of top vertices of dark 
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hyperedges determined instead of whole dark hyperedges, allows a further 
speedup by a factor of about 2. The search sequence we use is: (9,0,3), 
(8,0,3), (7,0,3), (6,0,3), (5,0,3), (4,0,3), (3,0,3), (2,07317 (1,0,3), (0,0,3), 
(0,1,0), (0,l ,I), (0,1,2), (0,1,3), (0,2,0), (0,2,1). There are many other optimal 
sequences. 

We can now give a precise description of the search algorithm. Let 
So,S1, ..., SIS be a fixed optimal search sequence of 16 vertices as described 
above. Suppose that at some time during the search, values have been 
assigned to So, ..., Si and are stored in a global array A. Let consis tent ( i ) 
be a Boolean function that returns true precisely when the values 
computed from these i-tl values are consistent with the Hamming weight 
information and the information from dark hyperedges mentioned in the 
previous paragraph. Thus, when i < 1 1, consist en t checks the 
consistency of (i+l)(i+2)/2 values.25 

The search algorithm is a standard backtrack algorithm. Pseudocode for a 
recursive version of the algorithm is given in Figure 3. (Our implementation 
was iterative, to optimize performance, but the recursive version here is a 
little more transparent.) Function search (n) cycles through possible 
assignments to S,, storing them in an array A at index n. For those bytes that 
are consistent with the Hamming weight information, the search goes on to 
search (n+l) . For those that are not consistent, it goes on to the next 
possible byte. If all the bytes have been checked, it returns to the last calling 
search. Whenever n reaches 16, it writes out a possible solution stored in A. 

To run the algorithm we initially call search ( 0 ) . 

void search (n) 
{ 

if (n==16) write A; 
else 

f oreach byte w 
{ 

A [nl =w; 
if (consistent (n) ) 

search (n+l) ; 

Figure 3. Pseudocode for the Recursive Search Algorithm 

25 In fact, it is really only ,iecessary to check the consistency of the i+l values added since the 
last consistency check. 
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The Attack in the Presence of Error 

While work by Mayer-Sommer has shown that it is possible to determine 
Hamming weights in "an unequivocal manner" [7], measurement and data 
collection will inevitably have an associated error rate. We model this error 
by adding Gaussian noise with a mean of zero for each of the measured 
Hamming weights. This model is reasonable, because even if the actual 
distribution of noise for a single run is not Gaussian, averaging a number of 
independent noise measurements together should yield an overall 
distribution that approaches Gaussian. A mean of zero should be obtainable 
as part of the method used to calibrate the measurements of the Hamming 
weights. 

The measured Hamming weights with this error assumption will be real- 
valued rather than discrete. Further, it is not possible to search for the exact 
key that matches the given Hamming weights: all keys match, but some keys 
are more likely than others. Our attack provides all cipher keys (if any exist) 
whose round key expansions have Hamming weights differing from the 
measured Hamming weights by less than some bound (using a sum of the 
squares metric). Given our assumptions about the nature of the error, the 
sum of squares difference is a maximum likelihood estimator. This means 
that any key not reported is less likely than any key that is reported. The 
bound can be chosen to guarantee with some confidence (e.g. 95%), given an 
expected amount of error, that the true key will be returned. 

Changes to the Algorithm 

When dealing with error, the definition of the function consistent 
from Figure 3 needs to be modified. Specifically, cons is tent will return 
false if the assignment to Sn gives a sum-of-squares difference greater 
than a certain bound. Our implementation computes an optimistic estimate of 
this value. It is computed as the sum of two values: 

The sum of squares difference between the Hamming weights of those 
bytes determined by Sn and their measured values. 
The minimum sum of squares difference between the measured values of 
all those bytes which are not determined by S, and the integer values 
closest to those measured values. 
The bound is determined by adding a fixed value based on desired 

confidence to the minimum sum-of-squares difference between the measured 
values and the integer values closest to those values. This method of 
determining the bound helps to make the work required by the algorithm 
more uniform than using a fixed bound based on desired confidence. 
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5. Results 

We ran all of our simulations on a 5OOMHz Sun Blade 100 with 5 12MB 
of DRAM. A synopsis of our simulation results can be found in Table 2. As 
noted in section 4, the bound for the search is determined by the desired 
confidence given an expected amount of error. The last four entries in the 
table all assume a different amount of error. The expected amount of error is 
expressed as a standard deviation of the expected Gaussian noise. For all of 
the runs with error we targeted a confidence rate of 95%. 

Table 2. Time and Discovery Rate of Cipher Keys 
Attack type Average time per attack % of attacks with a unique solution 
128-bit no error 16ms 100% 
192-bit no error 60ms 100% 
256-bit no error 20ms 99.97% 
128-bit, o = 0.20 4s 95% 
128-bit, o = 0.25 35s 96% 
128-bit, o = 0.30 38 min **  
128-bit, o = 0.35 15 hours * * 
For the entries labeled **, not enough data was collected to provide a meanin&l value 

Notice that the run time of our algorithm increases exponentially relative 
to the expected amount of noise. This is because a higher expected error rate 
forces us to have a looser bound, and that reduces the amount of pruning of 
the search space that can be accomplished. Figure 4 graphically shows how 
large an impact this has. An implication of Table 2 and Figure 4 is when a 
large amount of noise is present our algorithm's runtime will become 
untenable. 

Another interesting result from Table 2 is that the 192-bit implementation 
takes longer than either the 128 or 256 bit implementations. This is because 
the 192-bit version of AES has fewer instances of subbyte per expanded key 
byte than the 128 or 256 bit versions. 
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Figure 4. Average number of calls to search as a function of n 

6. Conclusions and Future Work 

We have shown that AES is susceptible to very efficient attacks based 
solely upon Hamming weights of the bytes of the expanded key. These 
Hamming weights would likely be exposed in the case of an 8-bit 
implementation, even if a pre-expanded key were used. Further, this 
algorithm works well even in the presence of significant Gaussian noise. 

This work can be extended in the following ways: 

Modifymg the algorithm to work with 16 or 32 bit implementations 
without a pre-expanded key. 

Proving information theoretic bounds about the feasibility of t h s  SPA 
attack on 16 and 32 bit implementations with pre-expanded keys. 
Significantly improving the algorithm's efficiency in the face of error 
to handle larger errors. 
Gathering the data and performing the attack on a real system. 
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