
A COMPUTATIONALLY FEASIBLE SPA
ATTACK ON AES VIA OPTIMIZED SEARCH

Joel ~ a n ~ a v e n ' , Mark reh hob^, and Kevin J. compton3
EECS Department
University of Michigan - Ann Arbor
Ann Arbor, MI 481 09-2122, USA
'jvanlav@umich.edu, 2brehob@umich.edu, 3kjc@umich.edu

Abstract: We describe an SPA power attack on an 8-bit implementation of AES. Our
attack uses an optimized search of the key space to improve upon previous
work in terms of speed, flexibility, and handling of data error. We can find a
128-bit cipher key in 16ms on average, with similar results for 192- and 256-
bit cipher keys. The attack almost always produces a unique cipher key and
performs well even in the presence of substantial measurement error.

Keywords: AES, SPA, Rijndael, power attack.

1. Introduction

In 2001 the National Institute of Standards and Technology selected the
block cipher Rijndael as the Advanced Encryption Standard (AES), making
it the standard for private key encryption. A cryptographic attack on AES,
such as linear or differential cryptanalysis, appears intractable at this time.
Therefore, some researchers have investigated side-band attacks, which use
information about the physical manifestation of the hardware or software
implementing the algorithm [I , 2, 61.

Side-band attacks assume access to the hardware performing the
encryption. Timing attacks, proposed in 1996, assume only the ability to
time the encryption (or perhaps sub-portions of the encryption) [4]. Such
attacks are relatively easy to thwart by writing encryption software that uses
a fixed sequence of operations. Power attacks, another style of side-band
attack, are more difficult to thwart. The most common power attacks assume

578 Joel VanLaven, Mark Brehob, and Kevin J. Compton

the ability to observe the power utilization of the processor or ASIC over
time [5].

Power attacks provide both high-level information about the operations
being performed on the chip and low-level information about the data being
operated upon. The high-level information is similar to timing information
and can be dealt with in a similar way. Low-level information about the data
arises from sources such as asymmetry in the efficiency of the n and p
transistors or the flipping of bits on a bus or in a register. Without great care
in the chip design and addition of power inefficiencies, a CMOS chip will
use a slightly different amount of power based on the data being calculated
[8]. Microprocessors operate on a fixed number of bits at a time (usually
words or bytes), so what is actually revealed is the sum of the bits, or the
Hamming weight of the data.

The two main variants of power attacks are differential power analysis
(DPA), which requires the plaintexts or ciphertexts in addition to the power
traces for many encryptions with the same key; and simple power analysis
(SPA), which exposes the secret key solely from power traces [5]. While in
theory most SPA attacks could reveal the key from a single encryption, poor
signal-to-noise ratio forces averaging of the error over many encryptions
with the same key. DPA is applicable to most ciphers and implementing
such an attack is relatively straightforward. SPA is greatly affected by the
design of a cipher and the susceptibility of a cipher to this style of attack
may not be obvious.

This paper details an SPA power attack on an %-bit implementation of
AES. We assume that the Hamming weights of the bytes of the expanded
key can be measured, possibly with some error. Our approach exploits
regularities in the AES key schedule, which could likely be utilized even if
different information more specific to the implementation is exposed. It
improves upon a previously published attack by Mangard [6] in terms of
speed, flexibility, and handling of measurement error. Specifically our
algorithm improves upon this work in four ways.

It runs approximately 20000 times faster.
It nearly always finds a unique solution rather than a handful of
candidate solutions.

It works on cipher-key sizes of 192 and 256 in addition to 128 bits.
It performs well under a more realistic error model.

Table I . Time and Discovery Rate of Cipher Keys
128-bit key 256-bit key 128-bit key with error
no error no error /o = 0.25)

Average time 16ms 20ms 35s
% of attacks with a unique solution 100% 99.97% 96%

A Computationally Feasible SPA Attack on AES via Optimized Search 579

With regard to the second item, the previous work required a ciphertext1
plaintext pair to find the correct solution, thus negating a primary advantage
of an SPA attack. While the algorithm in this paper cannot guarantee a
unique solution, our results show that even with significant errors in the data,
it almost always finds a unique solution. Table 1 provides a summary of our
results.

2. AES

In private-key cryptosystems such as AES, both the sender and receiver
of a message require access to the same secret key. Public-key
cryptosystems allow the sender and receiver to use different keys, only one
of which needs to be secret, but require significantly more computational
power as well as a significantly longer key. AES (like the DES standard that
it replaced) is an iterative block cipher. This means that the data is
manipulated in series of "mini-encryptions," called rounds, each of which
uses its own key. In order to generate these round keys the AES algorithm
expands the 128-, 192-, or 256-bit private key (also called the cipher key)
into the needed number of 128-bit round keys using the key expansion
algorithm described below.

Key Expansion in AES

Our attack exploits the relationships between the round keys resulting
fi-om patterns in the key expansion algorithm. As such, it is necessary to
carefully describe the algorithm found in the AES specification [3]. The key
expansion algorithm is slightly different depending upon the cipher key size.
Though our attack works on all three different key sizes, for simplicity we
will discuss only the 128-bit key expansion (which is the most commonly
used). The 192-bit and 256-bit key expansions are similar, and the results of
attacks on those key sizes are summarized in section 5.

The 128-bit cipher key is expanded into eleven 128-bit round keys, each
of which can be thought of as 16 bytes arranged in a 4-by-4 block. Each
successive round key is simply a transformation of the previous round key.
Define RK[N, R, CJ for N = 0 ,..., 10, R = 0 ,..., 3 and C = 0 ,..., 3, to be the byte
found in the N-th round key at row R and column C. The first round key (i.e.

580 Joel VanLaven, Mark Brehob, and Kevin J. Compton

the round key for N = 0) is a copy of the 128-bit cipher key. When N > 0, the
round key RK[N, R, C] is equal to 24

I RK[N-l,R,C]ORK[N,R,C-l],if C > 0 ;

RK[N - 1, R, C] O SB[RK[N - 1, R - 1,311, if R > 0 and C = 0;

RK[N -1, R, C] O SB[RK[N - 1,3,3] 0 RC[N], if R = 0 and C = 0.

Here O is the XOR function; SB is an invertible function, called the
subbyte function, which maps bytes to bytes; and RC[N] is the N-th round
constant, a fixed value independent of the cipher key. The AES standard
gives the precise definitions of SB and RC[N]. Each byte other than those in
the cipher key is computed from exactly two other bytes. For example, when
N>OandC>O,

but then we also have

That is, the computational relationship between bytes is symmetric in the
sense that each of the bytes is computable from the other two. This is also
true in the cases where N > 0 but C # 0, the only difference being that we
have slightly more complicated expressions involving the SB function and
RC[N] constants. We picture all of these computational relationships in the
hypergraph of Figure 1.

24 The notation here is not the same as the round key function wij] in [3]. The relationship
between the two notations is RK[ArJ,q = W[-R mod 4,4N + C] . Our notation was chosen
to make our description of the key schedule structure clearer.

A Computationally Feasible SPA Attack on AES via Optimized Search 58 1

Figure 1. The Key Schedule Hypergraph for 128-bit Cipher Keys

A hypergraph is a pair (V, E) where V is the vertex set and E c 2' is the
hyperedge set. If we require that all hyperedges contain exactly two vertices,
we have the usual definition of a graph. In our hypergraph, the vertices are
the bytes of the round keys and the hyperedges are the 3-element sets of
computationally related bytes.

The ovals in the diagram represent the vertices of the hypergraph. For
clarity, we have not labeled every vertex in the diagram. In the row labeled
N,O,O, for example, the eleven vertices should be labeled

(o,o,o>,(l , ~ ~ ~) 7 (~ 7 ~ 7 ~) , . . . , (~ ~ 7 ~ , ~ >

respectively. The figure shows a blowup of a small section of the hypergraph
with the vertices labeled. The shaded triangles represent the hyperedges; the
light shaded triangles represent the hyperedges where the subbyte relation is
not used to compute the computational relationship. For example, since

we have a light hyperedge {(1,0,1),(0,0,1),(1 ,O,O)], which is the upper-
leftmost shaded triangle. From

we get a dark shaded hyperedge {(I, 1,0),(0,1 ,O),(O,O,3)).

582 Joel VanLaven, Mavk Bvehob, and Kevin J. Compton

The bytes of the cipher key RK[O,O,O],RK[O,O,1], ..., RK[0,3,3] are
assigned to the vertices along the left edge of the diagram. The slightly fuzzy
row of vertices at the bottom of the diagram is the same as the top row of
vertices; that is, the diagram should "wrap around" and the first and last rows
be identified.

3. Optimizing Search for a Cipher Key

We now give a precise statement of the SPA Key Schedule Problem (in
the case of 128-bit cipher keys). Divide a cipher key of 128 bits into 16 bytes
RK[O,O,O] to RK[0,3,3] and compute bytes RK[N,R,q as described in section
2. Given just the Hamming weights of these bytes, determine the original
128-bit cipher key.

An exhaustive search, cycling through the 2128 possible cipher keys, is
clearly infeasible. Even if we cycle through only those keys where each byte
of the cipher key has the correct Hamming weight, the number of possible
keys could be as large as 298, still far too large to search. We need to utilize
the Hamming weights of the entire expanded key to reduce the search space
to a manageable number of keys.

A naive approach would be to search for the cipher key by sequentially
assigning possible values for the bytes RK[O,O,O] to RK[0,3,3] (i.e., those
bytes for which N = 0) and checking consistency with the Hamming weight
information after each assignment. Inspection of Figure 1 shows that this is
little better than an exhaustive search. After we have assigned values to
RK[O,O,O] and WO,O,l], for example, we have no further information about
Hamming weights of other bytes in the key schedule since they do not
belong to a common hyperedge.

Suppose, instead, that we assign possible values for RK[O,O,O] and
RK[1,0,0] corresponding to vertices in the bottom row of the hypergraph.
We can then compute RK[0,3,3] and check three values (rather than just two
as before) for consistency with the Hamming weight information. This
improves on exhaustive search because it eliminates many possible
assignments. This is the main idea behind our search sequence optimization.

A Computationally Feasible SPA Attack on AES via Optimized Search 583

Figure 2. A Fragment of the Key Schedule Hypergraph

Systematic use of this idea results in a highly optimized search. Consider
the small fragment of the hypergraph in Figure 2. Suppose we have assigned
values consistent with the Hamming weight information for the six shaded
vertices. If we then make an assignment to vertex A, we can compute values
for vertices B, C, and D, then check that these values are consistent with the
Hamming weights. Notice also that if we have values assigned to the six
shaded vertices, assigning a value to any one of the vertices A, B, C or D
allows us to compute values for the other three.

Thus, there are many ways to choose a sequence so that the maximum
number of byte values can be computed after successive assignments to
vertices in the sequence. However, it is not difficult to see that after each
assignment (for at least the first 11 assignments), the pattern of computable
values will be a triangular array of the type shown in Figure 2. That is, we
can find a vertex sequence So,SI, ..., SIS so that after values have been assigned
to So, ..., S,, we can compute (i+l)(i+2)/2 byte values in a triangular array.
When i 2 11 a complete triangular array will not fit horizontally in the
hypergraph shown in Figure 1 so the increase in the number of computable
values is not as great. However, by this stage so many values are determined
that maximizing the number of computable values is not so important
(Figure 4 illustrates this). After assignments to SO, ..., SI5, all 176 bytes can be
computed because of the wrap-around in the hypergraph.

Besides maximizing the number of computable values after each
assignment, speedups can be gained by taking advantage of information
available from the subbyte operation used in the dark hyperedges.
Maximizing the number of dark hyperedges contained within the triangular
array of computable values results in additional pruning in the early stages of
the search. This can give approximately an order of magnitude speedup.
Because the subbyte is applied to the top vertex in any dark hyperedge, it is
possible to easily extract this information without determining the two lower
vertices of such a hyperedge. Maximizmg the number of top vertices of dark

584 Joel VanLaven, Mark Brehob, and Kevin J. Compton

hyperedges determined instead of whole dark hyperedges, allows a further
speedup by a factor of about 2. The search sequence we use is: (9,0,3),
(8,0,3), (7,0,3), (6,0,3), (5,0,3), (4,0,3), (3,0,3), (2,07317 (1,0,3), (0,0,3),
(0,1,0), (0,l ,I), (0,1,2), (0,1,3), (0,2,0), (0,2,1). There are many other optimal
sequences.

We can now give a precise description of the search algorithm. Let
So,S1, ..., SIS be a fixed optimal search sequence of 16 vertices as described
above. Suppose that at some time during the search, values have been
assigned to So, ..., Si and are stored in a global array A. Let consis tent (i)
be a Boolean function that returns true precisely when the values
computed from these i-tl values are consistent with the Hamming weight
information and the information from dark hyperedges mentioned in the
previous paragraph. Thus, when i < 1 1, consist en t checks the
consistency of (i+l)(i+2)/2 values.25

The search algorithm is a standard backtrack algorithm. Pseudocode for a
recursive version of the algorithm is given in Figure 3. (Our implementation
was iterative, to optimize performance, but the recursive version here is a
little more transparent.) Function search (n) cycles through possible
assignments to S,, storing them in an array A at index n. For those bytes that
are consistent with the Hamming weight information, the search goes on to
search (n+l) . For those that are not consistent, it goes on to the next
possible byte. If all the bytes have been checked, it returns to the last calling
search. Whenever n reaches 16, it writes out a possible solution stored in A.

To run the algorithm we initially call search (0) .

void search (n)
{

if (n==16) write A;
else

f oreach byte w
{

A [nl =w;
if (consistent (n))

search (n+l) ;

Figure 3. Pseudocode for the Recursive Search Algorithm

25 In fact, it is really only ,iecessary to check the consistency of the i+l values added since the
last consistency check.

A Computationally Feasible SPA Attack on AES via Optimized Search 585

The Attack in the Presence of Error

While work by Mayer-Sommer has shown that it is possible to determine
Hamming weights in "an unequivocal manner" [7], measurement and data
collection will inevitably have an associated error rate. We model this error
by adding Gaussian noise with a mean of zero for each of the measured
Hamming weights. This model is reasonable, because even if the actual
distribution of noise for a single run is not Gaussian, averaging a number of
independent noise measurements together should yield an overall
distribution that approaches Gaussian. A mean of zero should be obtainable
as part of the method used to calibrate the measurements of the Hamming
weights.

The measured Hamming weights with this error assumption will be real-
valued rather than discrete. Further, it is not possible to search for the exact
key that matches the given Hamming weights: all keys match, but some keys
are more likely than others. Our attack provides all cipher keys (if any exist)
whose round key expansions have Hamming weights differing from the
measured Hamming weights by less than some bound (using a sum of the
squares metric). Given our assumptions about the nature of the error, the
sum of squares difference is a maximum likelihood estimator. This means
that any key not reported is less likely than any key that is reported. The
bound can be chosen to guarantee with some confidence (e.g. 95%), given an
expected amount of error, that the true key will be returned.

Changes to the Algorithm

When dealing with error, the definition of the function consistent
from Figure 3 needs to be modified. Specifically, cons is tent will return
false if the assignment to Sn gives a sum-of-squares difference greater
than a certain bound. Our implementation computes an optimistic estimate of
this value. It is computed as the sum of two values:

The sum of squares difference between the Hamming weights of those
bytes determined by Sn and their measured values.
The minimum sum of squares difference between the measured values of
all those bytes which are not determined by S, and the integer values
closest to those measured values.
The bound is determined by adding a fixed value based on desired

confidence to the minimum sum-of-squares difference between the measured
values and the integer values closest to those values. This method of
determining the bound helps to make the work required by the algorithm
more uniform than using a fixed bound based on desired confidence.

Joel VunLuven, Murk Brehob, and Kevin J. Compton

5. Results

We ran all of our simulations on a 5OOMHz Sun Blade 100 with 5 12MB
of DRAM. A synopsis of our simulation results can be found in Table 2. As
noted in section 4, the bound for the search is determined by the desired
confidence given an expected amount of error. The last four entries in the
table all assume a different amount of error. The expected amount of error is
expressed as a standard deviation of the expected Gaussian noise. For all of
the runs with error we targeted a confidence rate of 95%.

Table 2. Time and Discovery Rate of Cipher Keys
Attack type Average time per attack % of attacks with a unique solution
128-bit no error 16ms 100%
192-bit no error 60ms 100%
256-bit no error 20ms 99.97%
128-bit, o = 0.20 4s 95%
128-bit, o = 0.25 35s 96%
128-bit, o = 0.30 38 min **
128-bit, o = 0.35 15 hours * *
For the entries labeled **, not enough data was collected to provide a meanin&l value

Notice that the run time of our algorithm increases exponentially relative
to the expected amount of noise. This is because a higher expected error rate
forces us to have a looser bound, and that reduces the amount of pruning of
the search space that can be accomplished. Figure 4 graphically shows how
large an impact this has. An implication of Table 2 and Figure 4 is when a
large amount of noise is present our algorithm's runtime will become
untenable.

Another interesting result from Table 2 is that the 192-bit implementation
takes longer than either the 128 or 256 bit implementations. This is because
the 192-bit version of AES has fewer instances of subbyte per expanded key
byte than the 128 or 256 bit versions.

A Computationally Feasible SPA Attack on AES via Optimized Search 587

Figure 4. Average number of calls to search as a function of n

6. Conclusions and Future Work

We have shown that AES is susceptible to very efficient attacks based
solely upon Hamming weights of the bytes of the expanded key. These
Hamming weights would likely be exposed in the case of an 8-bit
implementation, even if a pre-expanded key were used. Further, this
algorithm works well even in the presence of significant Gaussian noise.

This work can be extended in the following ways:

Modifymg the algorithm to work with 16 or 32 bit implementations
without a pre-expanded key.

Proving information theoretic bounds about the feasibility of t h s SPA
attack on 16 and 32 bit implementations with pre-expanded keys.
Significantly improving the algorithm's efficiency in the face of error
to handle larger errors.
Gathering the data and performing the attack on a real system.

REFERENCES

Biham and A. Shamir. Power analysis of the key scheduling of the AES candidates. In
Second Advanced Encvption Standard (AES) Candidate Conference, 1999.

588 Joel VanLaven, Mark Brehob, and Kevin J. Compton

[2] S. Chari, C. Jutla, J.R. Rao, and P. Rohatgi. A cautionary note regarding evaluation of
AES candidates on smart-cards. In Second Advanced Enc~yption Standard (AES)
Candidate Conference, 1999.

[3] Joan Daemen and Vincent Rijmen. The Design ofRijndae1. Springer-Verlag, 2002.
[4] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and

other systems. In CRYPTO, pages 104-1 13,1996.
[5] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In CRYPTO,

pages 388-397,1999.
[6] Stefan Mangard. A simple power-analysis (SPA) attack on implementations of the aes key

expansion. In ICISC, pages 343-358,2002.
[7] Rita Mayer-Sommer. Smartly analyzing the simplicity and the power of simple power

analysis on smartcards. In CHES, pages 78-92,2000.
[8] Jan M. Rabaey. Digital Integrated Cii-cuits: a Design Perspective. Prentice-Hall, Inc.,

second edition, 2002.

