
ON THE PERFORMANCE OF CERTIFICATE
REVOCATION PROTOCOLS BASED ON A JAVA
CARD CERTIFICATE CLIENT
IMPLEMENTATION

K. Papapanagiotou, K. Markantonakis, Q. Zhang, W.G. Sirett and K. Mayes
The Information Security Group Smart Card Centre (Founded by Vodafone, G&D and the
ZSG) , Royal Holloway, University ofLondon

Abstract: The use of certificates for secure transactions in smart cards requires the
existence of a secure and efficient revocation protocol. There are a number of
existing protocols for online certificate revocation and validation, among
which OCSP and SCVP are the most widely used. However there are not any
real applications testing the efficiency of these protocols when run in a smart
card, even though the advantages of such an inlplementation are promising. In
this paper we examine the details of the implementation of these protocols,
emphasising on the issues arisen from the limitations of the smart cards. We
also discuss the performance results from the implementation of OCSP and
SCVP in a multi-application smart card environment. Results from two
different Java Card platforms are presented and analyzed.

Key words: Certificate Revocation, OCSP, SCVP, Java Card

1 INTRODUCTION

In recent years, X.509 certificates have been used more and more in
smart cards in order to validate users, establish secure channels or perform
secure transactions. One of the most significant problems of Public Key
Infrastructures (PKI) is certificate revocation and validation. Any PKI
deployment, whether it includes smart cards or not, should provide efficient
and secure mechanisms for certificate validation. Until now, protocols, such
as the Online Certificate Status Protocol (OCSP) 1121 and the Simple

552 K. Papapanagiotou, K. Markantonakis, Q. Zhang, KG. Sirett ...

Certificate Validation Protocol (SCVP) [12] have been designed and
successfully implemented in many systems. Their weaknesses and general
issues concerning their use have been discussed extensively in academic
literature [2]. However, none of these protocols have been specifically
designed or tested for smart cards.

In this paper we outline the design of a smart card certificate validation
model and discuss the issues surrounding its implementation. We also
implement OCSP and SCVP in two different Java Card platforms, which
from now on will be referred to as Vendor A and Vendor B, using the Java
Card API Ver. 2.1 [22]. Our goal is to create a transparent, lightweight, and
independent application that will provide certificate validation function to
any other application in a multi-application smart card environment. It will
be completely trusted by all other applications on the card to perform
certificate validation on their behalf. Thus, other applications should not
need to be aware of the specifics of the underlying protocols. Our purpose is,
firstly, to present some performance measurements concerning the
implementation of the most widely used revocation protocols in a smart card.
Secondly, we want to highlight the issues regarding the design and
development of a validation protocol in such a limited processing and
memory environment. Such protocols are an essential part of every PKI. It is
important that we identify the existing limitations in their implementation, as
input into future designs for optimised solutions.

We will briefly describe the certificate validation protocols and then
analyze the issues surrounding certificate validation on a smart card.
Subsequently, we will present the smart card certificate validation model and
the entities involved. Furthermore, we provide the implementation details of
the model along with providing performance results and timings. Finally, we
provide some concluding remarks and discuss directions for further research.

2. THE CONCEPT OF ON-LINE CERTIFICATE
VALIDATION

Certificate revocation and validation using Certificate Revocation Lists
[9] may in some cases be inefficient or indeed inadequate. Protocols for
online certificate validation have been proposed to solve the issues
surrounding certificate revocation. These protocols can in theory be used in a
smart card architecture to validate certificates for card based applications.

On the Performance ofCert2Jicate Revocation Protocols

2.1 Certificate Validation Protocols

Many methods and protocols have been proposed for online certificate
validation [2]. Currently, the most widely used are OCSP [15] and SCVP
[12], which are simple client-server protocols involving requests and
responses that provide the current status of one or more certificates. A client
can send a request to a server (usually called "responder"), asking for the
status of one or more certificates. The server responds with a signed message
containing the status of the certificate(s), the time when the responder last
updated the status information and the time of the creation of the message.
Responses should be signed by the CA, a trusted or an authorized responder.

In OCSP version 1 1151 (OCSPvl), the certificate is referenced using its
serial number along with the issuer's name and public key. Thus, it is
necessary for the client sending the request to construct and validate the full
certificate path from the queried certificate to the root CA. Certificate path
construction can be difficult to implement in environments with limited
processing power, such as smart cards. As a result, other solutions were
proposed, like OCSP version 2 (OCSPv2) [16] and SCVP [12]. OCSPv2
practically added two more possibilities to reference the certificate: the client
can send the entire certificate or a hash of some specific fields from it.
Consequently, OCSP clients do not have to do any certificate path
construction. Nevertheless, the size of the request message is significantly
increased. Even though the draft for OCSPv2 has expired since 2002 [16],
we believe that it may be applicable to smart cards.

SCVP [12] is a protocol that can provide further information than just
revocation status. An SCVP Server can perform certificate path construction
and validation as well as revocation checking. The request message includes
either the entire certificate or a hash of the certificate and can be signed if
needed. The server can be instructed to provide certification path for the
certificate, revocation status or both. SCVP Responses are always signed,
unless an error message is given back. Practically, they contain the same
information with OCSP responses, in terms of time and date values. SCVP
messages are encapsulated in Cryptographic Message Syntax (CMS) [6] data
structures, which results in larger and more complex messages.

2.2 Issues surrounding the Smart card Certificate
validation

Nowadays, there are numerous proposals for smart card applications
exploiting public key cryptography, which implies the handling of
certificates by the smart card. Therefore, an efficient mechanism for
certificate validation is considered essential. However, the implementation

554 K. Papapanagiotou, K. Markantonakis, Q. Zhang, W. G. Sirett ...

of such a mechanism has to address some significant issues, mainly caused
by limitations of the smart card environment.

First of all, it is considered more secure and efficient for a smart card
application to be able to determine the validity of a certificate without
having to rely on an application that doesn't reside on the card. The tamper-
resistant nature of the card makes resident application and data more
trustworthy and secure. On the other hand, an off-card certificate validation
application should be trusted by the card and would require a secure
communication channel with the card.

Most difficulties regarding the implementation of certificate validation
protocols on smart cards are the result of the limited processing power and
memory of the card. The limited processing capability of a smart card makes
the creation of a certification path on the card very time and memory
consuming. Thus, the use of OCSPvl is not recommended, as it requires a
fully validated certification path. Apart from that, it is not very efficient to
implement a fully functional ASN.l [lo] parser and DER [I 11 encoder in
such a limited environment. X.509 Certificates, OCSP and SCVP protocols
are all designed using ASN.1 notation. Thus, the creation and parsing of
messages can be very time consuming. In addition OCSPvl messages
require extraction of fields from the queried certificates, which demands the
presence of an ASN. 1 parser or a package that handles X.509 certificates.

Smart cards have also a very limited memory. An X.509 certificate may
occupy more than 1000 bytes [17] of memory. This is not such a problem for
the card's capacity as it is for the communication channel between the card
and the reader. An APDU data buffer [8] can hold up to 255 bytes of data, so
a series of APDUs is needed for an X.509 certificate to be transmitted to the
card. An OCSPv2 message also contains numerous other fields and a digital
signature, which increase even more the total size of the messages. SCVP
messages can contain only a hash of the certificate, so SCVP is expected to
be more efficient than OCSP. Hashing the certificate is also possible in
OCSPv2, however only a part of the certificate is hashed and thus, a package
handling X.509 certificates would be needed. Nevertheless, a hash function
requires more processing power and thus, is expected to need more time for
execution. SCVP response messages also contain the certificate of the SCVP
server, so they are expected to be as big as OCSP responses. Finally, both
OCSP and SCVP protocols require some time checks to be done to
determine the validity of the responses. Such checks cannot be done on-card
as the card doesn't have a clock and, thus, knowledge of current time or date.
Thus, in order to prevent replay attacks, nonces [12, 151 should be used.

The Open Mobile Alliance has already published a candidate version of
an OCSP profile for mobile environments 1181. Its goal is to enable the use
of OCSP in mobile devices with limited resources that use the Wireless

On the Performance of CertiJicate Revocation Protocols 555

Application Protocol (WAP). This profile sets requirements and constraints
on OCSP in order to have smaller, simpler and more easily processed
messages. Nonetheless, it is not specifically designed for smart cards.

2.3 Motivation

As the need for the use of certificates in transactions with smart cards
increases, the use of an online validation mechanism provided within the
card becomes very attractive. An evaluation of the different online validation
protocols is required in order to determine which one is more efficient for
smart card use. The limitations of smart cards bring about the issues
presented previously, which need to be met in a real world application.

Until now, there is little public infonnation relating to the
implementation of a validation protocol on the card. X.509 certificates can
be relatively large in size, a fact that makes their management and
manipulation in a smart card environment difficult. Nevertheless, X.509 is
currently the most widely used certificate format and most validation
protocols are to be used with such certificates [12, 151. A smart card
application that will implement these protocols can provide significant
feedback concerning the practical and theoretical issues of certificate
validation in smart cards. The implementation of a certificate validation
protocol on a smart card can also facilitate the management of certificates
within the card. The protocol can be implemented in a separate, stand-alone
application which provides a shareable interface to all other applications in a
multi-application smart card. As a result, any application can use the
protocol, without being aware of its details. Many different validation
servers can be registered to the card, which can decide where to send the
validation request.

3. A SMART CARD CERTIFICATE VALIDATION
MODEL

The design of a smart-card software solution can be easily split into three
parts: the card side, the pc-client side and the server side. In our case we
have two applications on the card side: a generic application and a validation
client. The pc-client side acts as a gateway between the validation client on
the card and the validation server. The entities that are involved and the
technology that we used to implement them are described in this section.

556 K. Papapanagiotou, K. Markantonakis, Q. Zhang, W.G. Sirett ...

3.1 The entities involved

The entities that take part in a certificate validation protocol on a smart
card are the following:

Smart card Application (SA): A third party application (applet) which
has an X.509 certificate and wishes to use the card's validation
functionality.
Smart card Validation Client (SVC): It implements the validation
protocol and provides its functionality to other applications through a
shareable interface.
PC-Client Terminal Application (PCAP): It communicates with the card
and forwards Certificate Validation Requests from the card to the server,
and Responses from the Server to the card. It also provides the APDU
commands needed by the SVC to perform the validation.
Server: This can be any server that supports OCSP, SCVP or other online
certificate validation protocols.

PC Client Terminal Application 3 [''ocsPi&i;''l " , - X.509 Certificate 1 . _ . . _ 8
. ,
I Request

Smart Card
Application

- , . , . . , , , . , , , , . , . ,
j X.509 Certificate j2 , . ,

5

-. , . , , . , . . , ..
i Validation Result i , , , . , . . , . . , , , , . , , . , . , , . , .

Smart Card
Validation

Client

Smart Card

Figure I . Message flow during protocol execution

Figure 1 illustrates the message flow during protocol execution. More
specifically, in 1 the SA receives the certificate from the PCAP, and then in
2 invokes the method of SVC to send the certificate to the SVC using the
Shareable Interface Object (SIO). Further on, the SVC formats an OCSP or
SCVP Request and forwards it to the Server (3), which then issues an OCSP
or SCVP Response (4). Finally, the SVC gets the response by the PCAP (4),
verifies it and sends the result back to SA (5).

On the Performance of CertiJicate Revocation Protocols

3.1.1 The Smart card Application

The SA can be any application using X.509 certificates. In our
implementation it receives an X.509 certificate from the PCAP. The typical
size of such a certificate is greater than 255 bytes, which is the size of the
command APDU data buffer. Consequently, data will have to be sent in
blocks and a series of APDUs can be used to send an X.509 Certificate. It
should be noted that the Java Card environment restricts the maximum size
of arrays. As a result, the maximum size of a certificate is not only limited
by the small command APDU data buffer but also by the idiosyncrasies of
the underlying Java Card platform.

Once receiving a command APDU containing a part of a certificate (Send
CertzJicate), the SA calls a shareable interface method of the SVC which
stores the certificate. Java Card SIOs [14] only allow passing of primitive
types as parameters. Thus, for passing the certificate to the SVC, a global
array, in our case the APDU buffer, had to be used [14]. The overall security
of this approach is discussed and evaluated in [14]. A different command
APDU (Get Result) returns the result of the validation protocol to the SA.
The SA must be aware of the SVC's Shareable Interface methods.

In our implementation for the two smart card components, we used Java
Card 2.1.1 [22], which is supported by our smart card application
development tools. Java card is one of the most widely recognised and used
smart card multi-application environments.

3.1.2 The Smart card Validation Client

This entity performs all the functions required by the validation protocol.
First, it receives the certificate fi-om the SA. The certificate is stored in a
byte array throughout the execution of the protocol, as it is needed for the
verification of the Server's response. A command APDU (Create Request)
triggers the function that constructs a validation request, which is later sent
to the PCAP (Send Request), broken into data blocks. The PCAP also
forwards the validation response to the SVC (Get Response) where it is
processed and verified (Process Response) so that the result can be returned
to the SA. The SVC holds the Server's public key so that it can verify the
digital signature in the response message. Finally, the SVC provides
shareable interface methods to the SA, which are needed for passing the
certificate and the result of its validation.

558 K. Papapanagiotou, K. Markantonakis, Q. Zhang, W.G. Sirett ...

3.1.3 The PC-Client Terminal Application

The terminal application was implemented using PCISC [19]. PCISC is
currently one of the most widely used and supported card terminal
programming environments. PCISC architecture is widely accepted and
implemented by large and established companies such as Microsoft, Apple
and Philips. Some of the supported programming languages include Visual
Basic and C++. Most smart card manufacturers provide drivers for PCISC.

The terminal application receives validation requests from the smart card
in the form of multiple APDUs. Its role is to combine APDUs and send the
validation request to the given validation server, as instructed by the card
application. Then, it receives validation responses, breaks them into APDUs
and sends them back to the card. The PCISC terminal application is a
completely passive component which simply facilitates the communication
between the server and the card application, by selecting the applets of SA
and SVC, and transmitting the appropriate command APDUs.

The programming language we used to implement the terminal
application was Visual Basic 6. Microsoft's Visual Basic is currently very
widely used and also directly supports PCISC. For the purposes of this paper
the terminal application was also configured to send an X.509 certificate to
the card application. As Visual Basic does not support X.509 certificate
handling and digital signatures, CAPICOM [13], a cryptographic library
developed by Microsoft, was used to manipulate certificates.

3.1.4 The Server

A dummy OCSP and SCVP responder was implemented to handle OCSP
and SCVP requests. The validation server checks the syntax of request
messages and then issues digitally signed OCSP and SCVP responses as
required. For the purposes of this paper the server was directly integrated
with the PCAP. The language used for the implementation was Visual Basic
v6 for compatibility and integration with the PCAP. For testing purposes the
sever was configured to always send responses with either valid, invalid or
unknown certificate status, regardless of the actual status of the certificate.
CAPICOM was used to create digital signatures.

3.2 Implementation Details

The SVC was implemented to handle OCSP requests and responses. The
implementation was based on OCSPv2. In order for no certificate
manipulation to be required the entire certificate was included in the OCSP
request. For maximum efficiency, a specific ASN. 1 parser and DER encoder

On the Performance of CertiJicate Revocation Protocols 559

and decoder were implemented, which can only handle such messages.
Moreover, only a few of the OCSP Response acceptance requirements
specified in [16] were implemented: the certificate was compared with the
original queried certificate and then its status was retrieved. The SVC was
implemented to only accept messages from a specific trusted responder.

The verification of the digital signature in the validation response
messages may be essential for the protocols, but is also a time-consuming
function when performed on the card [20]. The purpose of this paper is to
evaluate the performance of revocation protocols and not of the signature
algorithms. As a result, and for testing and evaluation purposes, digital
signatures were not verified on the card so as not to influence our results.
However, smart cards running the SVC should support the most known
algorithms for digital signatures and hash functions, as digital signature
verification is required for correct execution of both OCSP and SCVP.

4. RESULTS AND PERFORMANCE EVALUATION

In this section we present and evaluate the results and timings we took
for each of the two protocols, using two different smart cards.

We have generated a set of results for OCSP and SCVP, using a specified,
573 byte, X.509 certificate. Two different high end Java cards were used
provided by Vendor A and Vendor B. The smart card application
development tools were also different respectively. Due to Java Card's
interoperability, there are only minor changes to the implementation for each
card, that don't affect the overall performance. Each protocol was executed 5
times for each card. Timings, expressed in milliseconds, are presented in
table 1. They were taken using an APDU monitoring tool attached to a P4
Windows machine. Commands marked with * only involve data 110. The
functionality of each command is explained in section 3. We also include for
reference timings required for sending the certificate to the card.

The timing results presented in Table 1 are coherent. Even though
execution times for most commands differ between the two cards, we can
reach into the same conclusions for the protocols we implemented. It should
be noted, that the differences in each card's timings is attributed to the
different nature of each card. The statistical analysis of the results that we
presented leads us to the remarks that we analyze in this section.

First of all, we observe that for OCSP the Create Request command is the
least time consuming of all. The OCSP protocol doesn't require any special
functions for creating request messages, and thus, an OCSP request is
created really fast. On the other hand, for SCVP it appears to be the most
time consuming command, excluding commands that handle 110, as a hash

560 K. Papapanagiotou, K. Markantonakis, Q. Zhang, W.G. Sirett ...

function has to be computed. The processing of an OCSP response (Process
Response) is the most time-consuming command for the OCSP protocol,
excluding the ones regarding VO. The comparison of the certificate in the
response with the original queried certificate is what makes this command
more time-consuming than any other. SCVP responses in contrast, require
the comparison of a much smaller byte array and thus demand less time, as a
hash of a certificate is, of course, smaller than the certificate itself.

Table I . Performance results

Create Request

I Vendor A
Command I Metrics (clk) / OCSP 1 SCVP

Send Request*

Vendor B
OCSP 1 SCVP

Get Response*

Send Certificate * (Average 13978,48 37614,04

Process Response

Get Result

Furthermore, the most time-consuming functions of all are the ones that
have to do with the input of the certificate (Send certificate), OCSP and
SCVP responses (Get Response) to the card and the output of OCSP requests
(Send Request). Concerning the transmission of the certificate to the card, it
is obvious that even for a cut-off version of an X.509 certificate a significant
amount of time is required. As a result, we have to consider the use of other
certificate formats. The transmission of the response messages for both
protocols requires the same amount of time, as their size is almost the same.
On the other hand, a SCVP request is significantly smaller than an OCSP
request. Thus, only a very small fraction of the time needed to send the
OCSP request, is required to send a SCVP request message. Consequently,

Average
Median

14,47 A 121,03
14,50 114,88

On the Performance of CertrJicate Revocation Protocols 56 1

any decrease in the size of the messages will have a significant impact on the
total time in which the protocol is executed. The Get Result command only
involves changing the value of some variables, and thus, it doesn't interfere
with the protocol run. Dring protocol runs it was observed that the cards
quickly ran out of memory and the applets needed to be reinstalled. This was
attributed to the fact that many large arrays are used. Thus, special care has
to be taken for memory allocation and garbage collection.

Overall, SCVP runs faster than OCSP in both cards. This is mostly
because a SCVP request is much smaller and thus can be sent much faster
than an OCSP request. Even though the creation of a SCVP request is more
time consuming, the fact that it can be transmitted in a single APDU makes
SCVP more efficient. As we already mentioned, the commands that involve
data 110 are the most time consuming and any alteration of the size of the
messages has more impact on the time required for a complete protocol run
than an improvement of any other command might have.

5. CONCLUSIONS

OCSP and SCVP protocols were implemented on two different Java Card
platforms. Despite the issues that came up and the compromises regarding
the certificate size, we have shown that it is feasible to implement and run
known and widely used certificate validation protocols on a smart card. Even
though the memory size of modem smart cards has significantly increased,
an X.509 certificate is still quite large to be used in such a limited
environment. The time that is required for a certificate to be loaded onto the
card is clearly a major factor. However in future work there may be scope to
reduce delays by exploiting faster card VO options.

Furthermore OCSP is not very efficient for use in a smart card
environment. OCSPvl cannot be used at all, as certificate manipulation and
path construction adds a significant overhead. We have shown that an
implementation of OCSPv2 is feasible, even though the messages involved
are quite large in size. Additionally, checks regarding time cannot be
performed on a smart card, even though corresponding fields add up to the
total size of the messages. SCVP, which is recommended for use in limited
environments, uses a hash of the certificate, significantly reducing the
overall size of all messages. This reduces the time required for 110, but also
increases the time required for a construction of a SCVP request.
Nevertheless, in total, SCVP runs faster than OCSP.

Currently, we are experimenting with alterations to existing validation
protocols as well as system architectures in order to have a more efficient
protocol, specifically designed for smart cards. The suggestions of OMA

562 K. Papapanagiotou, K. Markantonakis, Q. Zhang, W. G. Sirett . . .

[18] are also considered, as so far there has not been any known
implementation of their protocol. Moreover, recently a new IETF draft on
OCSP was submitted [3], describing a lightweight implementation of OSCP,
but it is not specifically designed for smart cards. The design of a smart card-
specific certificate validation protocol is also examined, as well as the
support of other certificate formats [I , 21, 231 that can facilitate certificate
revocation and validation. In particular, we need to focus on formats that
provide a more compact and efficient way of storing and managing
certificates [17] and key pairs [4]. These will enable us to provide more
accurate figures and comments on the performance of these protocols in a
multi-application smart card environment.

REFERENCES

ANSI. X9.68 - 2001: Digital Certificates for Mobile/Wireless and High Transaction
Volume Financial Systems: Part 2: Domain Certificate Syntax. 2001
A. Ames. Public Key Certificate Revocation Schemes. PhD thesis. Norwegian
University of Science and Technology, 2000
A. Deacon and R. Hurst. Lightweight OCSP Profile for High Volume Environments,
IETF, 2004
N. Feyt and M. Joye. A Better Use of Smart Cards in PKls. Gemplus Developer
Conference, Singapore. Springer Verlag, 2002
P. Hoffman. RFC 2634 - Enhanced Security Services for SIMJME. IETF, 1999
R. Housley. RFC 2630 - Cryptographic Message Syntax. IETF, 1999.
R. Housley, W. Polk, W. Ford and D. Solo. RFC 3280 - Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile. IETF, 2002
ISO. ISOIIEC 7816-4, Information technology - Identification cards - Integrated
Circuit(s) cards with contacts - Interindustry Commands for Interchange. ISO, 1995
ITU-T Recommendation X.509. Information Technology - Open Systems
Interconnection - The Directory: Public-key and attribute certificate frameworks. 1997
ITU-T Recommendation X.681. Information technology - Abstract Syntax Notation One
(ASN. 1): Information object specification. 1997
ITU-T Recommendation X.690. Information Technology - ASN.1 Encoding Rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER). 2002
A. Malpani, R. Housley and T. Freeman. Simple Certificate Validation Protocol (SCVP).
IETF, 2003
Microsoft. CAPICOM Reference. http://msdn.microsoft.comilibrary/en-us/security/
Security/capicom\-reference.asp
M. Montgomery and K. Krishn. Secure Object Sharing in Java Card. USENIX, 1999
M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams. RFC 2560 - X.509 Internet
Public Key Infrastructure Online Certificate Status Protocol - OCSP. IETF, 1999
M.Myers, A. Malpani, D.Pinkas. X.509 Internet Public Key Infrastructure Online
Certificate Status Protocol version 2. IETF, 2002
M. NystrGm and J. Brainard. An X.509-Compatible Syntax for Compact Certificates. In
Proc. Int. Exhibition and Congress on Secure Networking '99, Springer-Verlag, 1999

On the Performunce of Cert2Jicate Revocation Protocols 563

18. Open Mobile Alliance. OCSP Protocol Mobile Profile Candidate Vl .O, 2004
19. PCISC Workgroup. Interoperability Specification for ICCs and Personal Computer

Systems. http://www.pcscworkgroup.com/, 1997
20. J-J. Quisquater and M. De Soete. Speeding up smart card RSA computations with

insecure coprocessors. in Smart Card 2000. Amsterdam, 1991
2 1. RSA Labs. PKCS #15 v l . 1: Cryptographic Token Information Syntax Standard, 2000
22. Sun Microsystems. Java Card 2.1.1 Application Programming Interface, Rev. 1 .O. 2000
23. WAP Forum. WAP Certificate and CRL Profiles Specification, 2001

