Architecture Description Languages 117

HOW ADLS CAN HELP IN ADAPTING THE
CORBA COMPONENT MODEL TO REAL-TIME
EMBEDDED SOFTWARE DESIGN

Sylvain Robert', Ansgar Radermacher’, Vincent Seignolez, Sébastien
Gérard', Virginie Watine?, Stéphane Ménoret” and Frangois Terrier'
'CEA-LIST, CEA/SACLAY, 91191 Gif sur Yvette, France; *Thales/ALICE pilot program,
Thales Communications, 91300 Massy, France

Abstract:

Key words:

Coping with the increasing complexity of software in embedded and
distributed real-time systems is becoming a major concern. Even if promising
as far as this latter aspect is concerned, design techniques issued from the
middleware components (or framework-based) approaches have until now fall
short in achieving their breakthrough in the real-time and embedded
community. They are usually perceived as complex, monolithic and resulting
in oversized applications, and thus, as not adapted to RT/E software
development constraints. In an attempt to bridge this gap, we' aim at
contributing to the adaptation of the lightweight CCM [1] to real-time and
embedded systems. The originality of our approach, mainly resides in the
emphasis on high-level (or design-time) issues of the development process, on
the contrary to the usual focus on low-level ones: we raise QoS issues from
implementation level to analysis and design level. In such a process, we have
found it would be worth integrating considerations from the software
architecture/ADL field in middleware components approaches. We especially
claim that interactions configurability at design time is a major requirement in
the class of systems we target and that, on this latter aspect, middleware
components approaches could benefit from a separation of concerns between
computation and interactions, as in most ADLs.

Real-Time Embedded, CCM, ADL, Connectors, Components

' The work set out in this paper is performed in the context of the ICE (Interaction of
Components during Execution) research project, lead jointly by CEA-LIST and
Thales/ALICE pilot program. For further information, see http://www.carroll-research.org.



118 Architecture Description Languages

1. Introduction

Real-time embedded software is generally considered as a category of
software in which resources are constrained: the application design has to
take into account such aspects as power and memory consumption, on top of
classical real-time constraints. Thus, common reasons why middleware
components approaches are considered to be poorly adapted to real-time and
embedded systems area is that the runtime platforms consume too much
resources (e.g. memory footprint), that they result in “heavyweight”
components, and eventually because they do not properly address real-time
constraints.

But this stance needs to be moderated: the term “RT/E systems” refers to
a large family, where the requirements are quite heterogeneous. In particular,
if the assertion made above about resources constraints applies to certain
members of this family -this is for instance the case of distributed command
and control systems, where sensors/actuators are associated with small units
of computation, usually provided with very limited resources-, it is not
completely true for all: for instance, some embedded communication
systems own larger hardware configurations (about 1-2 Mb of RAM/ROM
and even larger, sometimes close to those of common workstations). Then,
middleware components approaches have numerous inherent advantages
from which RT/E systems could benefit: they provide applications with
standard platforms comprising an extensive set of extra-functional services
(e.g. distribution management, security); they come with well-defined
component’s abstract models; they specify architecture of execution
frameworks; they natively address deployment and packaging issues, and
they provide guidelines which structure the components development
process. Moreover, efforts have already been made to cut down the size of
middleware platforms, for instance the initiative Lightweight CCM [1]
which proposes a “low-fat” version of CCM mostly dedicated to resources-
constrained systems. Even real-time aspects have (somehow) been
addressed, by extending the original platforms with dedicated mechanisms:
we can quote the example of real-time CORBA [3].

However, this continuous upgrading towards “RT/E-compliant”
middleware platforms by means of iterative functionalities addition /
subtraction diverts attention from several of their initial cons: they are
extremely complex to understand (and to use), and they lack design-time
configurability. The usefulness of the large range of provided services is
mitigated by the difficulty for the developer to appropriate these services in
accordance with his specific requirements. Thus, our belief is that major
issues for bridging the gap with RT/E reside not only in enhancing the
platforms themselves, but also in simplifying their use and, in enabling the
application designers to adapt the platforms to their specific needs. The



Architecture Description Languages 119

objective is thus to identify key issues which would contribute to answer
these two concerns. Researchers from middleware have obviously a bottom-
up approach, which consists in a constant rising in abstraction -from, for
instance, CORBA to CCM-. In order to have a complementary view, we
have chosen to consider approaches which have had a top-down process,
hence our focus on ADLs-based approaches. This paper presents the first
step of our work, in which the focus is on interactions between components
in CCM. It explains why we have chosen to introduce the concept of ADL
connector concept in CCM, and gives some insights about how we intend to
proceed. The structure of this paper is as follows: Section 2 is an
introductive overview of CCM, with a focus on the aspects linked to our
study. In Section 3, our focus on interactions is justified, and we describe the
rationale which has lead us to the “CCM connector” choice. Section 4
describes the primitive set of connectors we have built for integration in
CCM. Eventually, Section 5 gives some insights about the needed CCM
extensions, before concluding.

2. Introducing CCM

This section presents some fundamentals of framework-based approaches
and gives an overview of the CCM.

General concepts of framework-based approaches

Frameworks have been recognized to capture best practices in some
engineering domains: they provide templated implementations of patterns
that were seen as leveraging issues in particular domains. A main
characteristic of many frameworks is the inversion of the control flow: the
application specific code is invoked by the framework to perform specific
tasks and not vice versa (as opposed to a library).

Middleware components approaches use the abstraction of an
encapsulated component. A key characteristic of a component is that it is
loosely coupled, i.e. there are no dependencies to other components — only to
certain interfaces. This is achieved by the separation of interface and
implementation. A component implements a set of interfaces and it requires
components implementing a set of other interfaces.

A component requiring an interface can be bound to another component
offering a compatible interface (usually compatibility is defined via
inheritance hierarchies or via a structural equivalence). The bindings are
usually specified by a separate assembly descriptor.

Components are often embedded into Containers that mediate requests
from and to the component. Containers are part of the execution framework



120 Architecture Description Languages

for components that provides frequently used services such as persistency or
security. It can be tailored towards the application needs. The bindings
between components are enabled by means of a packaging format as well as
a deployment infrastructure.

The CORBA Component Model

In the CORBA Component model, the external connection points of
components are called ports. There are four different kinds of ports, called
facets, receptacles, event sources and event sinks. Facets correspond to
provided (implemented) interfaces, receptacles to required interfaces
(containing method calls specified in IDL — Interface Definition Language).
Event sources and sinks are the event based counterparts to receptacles and
facets. Sources emit events of a certain type, event sinks are named
connection points into which events can be pushed. Besides the facets, the
component always implements a primary interface, called equivalent
interface. Figure 1 shows a CCM component. Receptacles can be connected
to facets, as depicted for the second receptacle on the right.

component reference supports
component’s equivalent interface\A

facets / ? J
4 )

receptacles

o— c
® —(.—.
Event
attributes _—Y ——( 4 sink
(for ~—
configuration) )—-' o sf)\ul,ﬁg(te

Figure 1: CORBA Component Model
Component instances are managed by a component home, which is in
charge of instantiating and deleting components, i.e. the components life
cycle (not shown).
We give below an example of a component description in IDL3, as well

as the description of its associated interfaces, event types, and home:
interface intf1l {
void do something( in string s );
}i

eventtype E {



Architecture Description Languages 121

public string s;
}i
component C {
provides intfl a intfl;
consumes E a_E;
}i
home C_home manages C {
attribute string foo;
i
The CCM introduces a so called component implementation framework
(CIF) with the objective to separate concerns: the component should not be
responsible for instance to manage connections or know how to emit an
event via an underlying CORBA service.

— Container

Component | = & ____o----7] i (
0———( —’} mediated by | £ iormal
External Callback container |. xiermna
: . terface

interface interface n

I'd

I C

‘ EnterpriseComponent . —-'

’
-,
-,
-

Internal interface <
\ . Comp.specific
Container API| context +
CCMContext

Figure 2: Components are embedded into a container

The container is the glue between a component and the underlying
execution platform as shown in Figure 2. It provides a programming
interface for the component, the internal interface. This interface consists of
a standardized container API and a component specific context object. The
code of the context object is completely generated from the IDL definition. It
provides an interface that allows the component to retrieve references for
used interfaces and operations related to the publishing of events (a reference
to an implementation of the Context is passed by the container to the
component). If the latter are invoked, the context object generates suitable
events of the underlying event mechanism, usually the CORBA notification
service. For incoming events, the component has to implement a callback
interface and the container mediates the event by invoking a method



122 Architecture Description Languages

provided on this interface. Please note that this form of event delivery does
not allow the component to poll for new events, it is always “pushed” into
the component. Since the container shields the component by intercepting its
communication, it can implement some non-functional requirements such as
logging or security.

The CCM provides an explicit deployment step within the development
process. In this phase, component instances (including values of their
attributes) as well as their interconnections are specified. This task might be
supported by a suitable tool. The specification is done by means of different
descriptors files in XML, in particular a component descriptor and
component assembly descriptors.

We omit further details of the CCM, since they are not necessary in order
to understand the rest of the paper.

3. Answering the need for a CCM interactions improvement

In [14], the author states that (static) configurability is a paramount
concern in real-time embedded systems. This is particularly true when
talking about components interactions: industrial practices tend to favor
different architecture styles depending on the application domain considered.
As examples, in the field of communication protocols, a layered approach
together with a pipes and filters generalized pattern is commonly used. In the
signal processing domain, a data-flow approach is considered most of the
time. In some distributed systems like command and control-ones, a
common practice is to use variations around publish-subscribe. The variety
of practices thus highlights the necessity, to provide developers with means
to properly configure the interaction mechanisms to be used in their
applications and, to ensure the adherence to specified features (e.g. QoS
ones) at execution. And yet, as most middleware components approaches,
CCM offers rather poor means to express and configure components’
interactions modalities at design time.

In order to bridge this gap, we have first considered various attempts to
adapt CBSE to real-time embedded software design. In these latter, three
issues are generally distinguished:

e Adaptation of the component model, which is an informal representation
of what should be a component. It usually specifies the content (e.g.
binary [12]) of components, the interaction points with the environment
(e.g. event channels [13]), and often a set of non-functional features
associated to the component. The originality of these approaches
compared to classical ones usually lies in this latter point. For instance,
many authors seem to agree on the integration of WCET in components.



Architecture Description Languages 123

However, in some cases, the list of features to integrate can be much

larger, e.g., memory needs, deadline, power requirements.

e The development process of an application with components is often
described as a complement of the component model. This issue often
emphasizes the need to enable the reuse of components and the necessity
to have a connection with off-the-shelf validation tools, for instance to
assess the schedulability of the resulting system. The guidance provided
for development process may also be a mean to introduce common real-
time architecture patterns [11].

e The last aspect usually addressed is architectural configuration, i.e.
representation of applications by connected graph of components. The
approaches demonstrate the way components may be composed, or how
the resulting system architecture may be validated, e.g. with regards to
interfaces compatibility or exclusion constraints.

A common point arising from these approaches is the focus on the
component model specification. Very little attention is paid to the interaction
modalities, which are implicitly specified by the components’ interfaces and
the representation of the connections between these interfaces in the
architectural configuration. This focus is also obvious in [9], where the
authors list a set of industrial requirements for the CBSE approaches to be
suitable for automotive real-time embedded systems: all the requirements
regard either development process or component model issues.

The most relevant answer to our concern was actually found in
approaches issuing from the Software Architecture / ADLs field. ADLs
provide features for modeling software systems’ conceptual architecture,
independently from implementation concerns [16]. An ADL usually
provides, on top of the component modeling concept, the notion of a
connector, which represents an architectural building block used to model
interactions among components and rules that govern those interactions.
Connectors are considered as first-class model elements [6] in the sense that
they have quite the same attached features as components, e.g. interfaces,
semantics, constraints, non-functional properties. For instance, Unicon [4]
proposes to specify a protocol for each connector which provides a
connector type, and assertions constraining the interaction (e.g. roles). Each
connector specification provides also an implementation which may be built-
in. Non-functional attributes may also be attached, e.g. real-time ones to
perform a schedulability analysis. In [5], a comprehensive framework is
provided to perform a classification of all kinds of connectors. This approach
chooses to classify connectors according to the service they provide, their
types, and the dimensions along which these types may be refined. This
work follows a bottom-up pattern: instead of designing connectors and



124 Architecture Description Languages

implementing the corresponding mechanism, the authors have made an
attempt to perform an exhaustive classification of existing interaction
mechanisms in software. In [18], the author proposes a radically different
view of connector. After having noticed that usual connectors address rather
primitive interactions mechanisms, he proposes to consider connectors as
“pattern-like transferable abstractions”: connectors express only abstract
interactions -mainly specified by roles and protocols- which have no direct
mapping to the implementation of the application.

As noted in the introduction, one of the CCM drawbacks is that it does
not provide an abstract view of many aspects relevant for RT/E systems
(these are hidden in the implementation that may configure for instance a
CORBA timeout for synchronous operations). Many facilities are provided
by the communication layer, but they require a high level of expertise to be
used properly. Introducing connectors would constitute an opportunity to
provide a high-level translation of these mechanisms in a more
understandable manner. Connectors are also likely to facilitate the
integration, reuse and replacement of components, especially when building
applications from off-the-shelf ones. These connectors should not, of course,
result in a one-to-one representation of the underlying mechanisms. The aim
is to provide the developer with easily configurable interaction facilities,
shielding him the complexity of the platform. However, unlike [18], we
believe that introducing connectors is bound to have an impact on the CCM
component model and accompanying artifacts (e.g. IDL), and that
connectors shall have an implementation counterpart. On top of that, the
native architecture of CCM appears to be adapted to perform the
introduction of connectors. For instance, with its intermediate positioning
between the communication layer and the application, the components’
container is a relevant place holder for an implementation of the connectors.
Another important issue to consider is the integration in the development
process: our opinion slightly differs from the “connectors as first-call
elements” software architecture’s leitmotiv. Since we do not intend to act on
the communication layer, but only on the CCM level, the connectors to be
built will be largely constrained by the native mechanisms of the underlying
platform. In our view of the development process, connectors will not be
designed in the same way components are designed, but a set of primitive
connectors will be predefined and provided to the application developer,
who will be able only to configure them in order to fill the application
requirements. Following these high-level requirements, the points to deal
with are thus: first to define these primitive connectors, then to ensure their
configurability, and at last integrate them in CCM. In the next section, we
explain how we have dealt with the first two points, based on both a



Architecture Description Languages 125

bibliographical work in real-time platform and on the connector
classification framework provided in [5].

4. Interactions reification: building the primitive connectors

Our aim was twofold: identifying main interaction mechanisms available
in real-time platforms, finding means to express these mechanisms by means
of configurable connectors. The first point has been addressed by trying to
cover a large area in terms of technological trends in real-time systems in our
bibliographical work. Thus, several standard platforms offering different
levels of abstraction have been considered, from operating systems (e.g.
OSEK [20]) to middleware layers (e.g. Fractal [21]). Furthermore, the main
computation models in real-time systems have been studied (e.g. time-
triggered [19] and event-triggered architecture). We have also benefit from
the experience acquired in working on the Accord/UML platform [7], a
complex real-time systems development facility designed at CEA-List. In
order to deal with the second issue, we have chosen to use as a base the
conceptual foundations of the connector classification framework provided
by [5]. Our rationale is thus the following: defining basic connectors,
refining them by attaching them sets of parameters/sub-parameters which
may take different values, and assessing these connectors by expressing with
them the mechanisms found in the various real-time platforms.

Behevior |

- Cordinality

Benavior |

:Cardinality

Parameters & sub-
parameters

Figure 3: Root Connector
In order to set a starting point in the connectors design, we have tried to
clarify the notion of interaction by introducing several basic characteristics:
in our rationale, an interaction involves several participants, each acting in a



126 Architecture Description Languages

given role (e.g. sender, subscriber); the cardinality of the interaction
specifies the number of components instances associated to each role, and
the behavior of a role precises the actions performed by a component
playing this role. Interactions are also to be considered from the service type
point of view: communication (i.e. data transmission) or coordination (i.e.
synchronization). In RT/E applications, Quality of Service requirements (e.g.
priority, deadline) may be associated to the interaction. These few
characteristics specify a “root connector” (Figure 3) from which all our
connectors derive.

{ Bohavir |

Cardinality -

‘Behavior -

Cardinality

| | Real-Time
features.

. Synchroricily

—-{ Queving .. }

Parameters & sub- Possible Values
parameters

Figure 4: Message connector

From our bibliographical work, we have identified three main interaction
mechanisms: message passing, event broadcasting and procedure call. These
mechanisms have then been directly mapped to primitive connectors
(message, event, and procedure call), and refined by adding parameters and
sub-parameters, following the base pattern presented above. In the
following, we detail an example of building such a primitive connector: the
Message one. Message passing is a very common mechanism in real-time
platform, which basically consists in a data exchange between




Architecture Description Languages 127

tasks/components. To build the associated primitive connector “message”,

we have considered one by one its base parameters:

e Roles: In all platforms, message passing involves two roles: sender and
receiver. Depending on the platform considered, cardinality may be 1 to

1, or n to m. The behavior is homogeneous among the different platform:

the sender performs a push operation, and the receiver polls the incoming

messages.

Service: Message passing is a communication support.

QoS: Depending on the safety requirements of the platform, the delivery

of a message may be guaranteed (strict) or not (best-effort). Messages

may be filtered (for instance, not accepting the same content multiple
times) at reception or emission. Several Real-Time features may also be
associated to a message connector: temporal constraints (period,
deadline,...); priority: have all the message the same priority

(prioritized)? Or can a priority be set for each message (prioritized)?

synchronicity: asynchronous delivery, or synchronous.

The last aspect, not considered until now as not present in the root
connector, is the content: depending on the approaches, this content may be
typed (e.g. C type in OSEK) or untyped. Figure 4 shows the message
connector type resulting from this analysis.

It is equally possible to describe the “event” connector, which is another
common interaction mechanism in real-time systems. Briefly, let us precise
that the majority of parameters identified in messages are applicable to
events. However, roles behaviors are affected (for instance, the receiver will
be invoked or will poll the received messages) and the focus is no more on
the content since what matters is the occurrence of the event and not its
format.

In the same way, we have built the procedure call connector. This set of
three connectors has then been assessed with regards to its expressiveness,
by using them to represent the interactions mechanisms offered by the
studied real-time. Platform-specific mechanisms are expressed as subsets of
the primitive connectors: depending on the platform considered,
parameters/sub-parameters and values are removed. For instance,
representing the POSIX message queues requires to remove from the
message connectors the “filtering” QoS sub-parameter (and its associated
values), as well as the “unprioritized” priority value, the ‘“unqueued”
queuing value, the “synchronous” synchronicity value, and the “strict”
delivery value.

Once the primitive connectors built and assessed, we have looked for
ways to integrate them in CCM. In the next sections, we list the issues which
have to be dealt with, and give for several of them some elements of answer.



128 Architecture Description Languages

5. Lightweight CCM extension strategy

There are two extensions to the CCM model: the first is the introduction
of connectors, the second an extension of port abilities.

A connector shares many properties with a component: it will offer ports
as interaction points and provide attributes for its configuration. Therefore,
its specification in IDL will “look like” a normal component specification in
which the keyword component has been exchanged by the keyword
connector. Of course, its implementation will be different to that of a
component, as shown later. Unlike in the standard CCM, components will
normally not be connected directly with each other, but use a connector in
between. This means, that a component instance binds one of its ports to a
suitable port of a connector instance which in turn will be bound via another
port to the target component (in general, it should be possible that the
interaction is mediated via additional connectors). QoS aspects can be
configured either via the attributes of a connector or a specific, standardized
interface.

The connection of components and connectors via ports motivates the
second CCM extension: if a component interacts with a connector, it plays a
certain role. For instance, it could be an event producer or an event
consumer. In the CCM, ports always correspond to either implementing or
using a certain interface. For general interactions, this is not sufficient, since
a single role may imply using a certain interface and implementing another
one. For instance, an event producer might want to receive a notification, if
an event has been successfully delivered to all subscribed consumers (or if
the delivery has failed). In this example, the producer role would imply
implementing a delivery-status interface and using a push interface for the
delivery at the same time. While it is possible to define this scenario via a
pair of uses/provides specification in the IDL, we would not have the
possibility to associate a single role-name with this interaction.

Therefore, we propose to extend the notion of a port in CCM into an
element that consists of zero or more provided as well as zero or more
required interfaces, i.e. closely resembling the UML2 [17] specification of a
port — unlike in the current CCM. For the example, we would get the
following definition:

Port PushWithNotification {

provides IPush push; / provided interface

uses IDeliveryStatus deliveryStatus; // required intf.

}

A component will have the ability to use or provide ports and supply a
role name, using the syntax use port <port-name> as <role-name>
(analogous: provide port <port-name> with <role-name>). The translation



Architecture Description Languages 129

of this extended IDL code into the existing one is straight forward: the use
(provision) of a port is replaced by the use (provision) of the interfaces
provided by a port and the provision (use) of the interfaces required by it.

The role names are important during the assembly of components and
connectors. If a component instance is bound to a connector instance, each
use of a port of the component has to match the provision of a port of the
connector and vice versa. Provided and used ports match only, if type and
role name are identical. This implicit binding via a role name avoids an
additional specification (implying a further complexity). We assume that it
will not impose a restriction in practice, since the use of a different role-
name will almost certainly be accompanied by a different semantics that
would inhibit the (unchanged) reuse of a component or connector.

Non-functional configuration
High Level View interface (QoS)

Implementation View

e Component

™~ container

-4 — Connection
management

/ -

Fragmented connector Interaction control flow
implementation

Figure 5: A first draft for architectural integration of connectors

However, the implementation of a connector — i.e. the connector’s
behaviour — is different to that of a normal component. It might behave
almost like a normal component, e.g. in case of an event channel that is
located on a specific node. However, in general, connectors can only be
efficient, if their implementation consists of several parts, each co-located
with a component that uses the connector in a specific role as shown in
Figure 5. In addition, the connectors will be integrated in a different way



130 Architecture Description Languages

with the container (it is not clear yet, whether the connectors should be
considered as part of the container or not). Therefore, the CCM’s code
generation rules need to be adapted. It seems useful to support the
fragmentation of a connector on the implementation level by different
executors (compliant with CCM terminology; but different from component
executors). Each of these executors would correspond to the use or provision
of a port and would be co-located with the component bound to it.

The chosen component/connector model allows for the adaptation of
invocations without modification: the connector would simply need to
provide a port that assumes a certain style of usage and can internally
transform and mediate requests to another port. An example is the
transformation of a typed event at user level into an untyped event used by
the underlying platform. It may be possible to generate the necessary
adaptation code from a suitable description of the conversion.

There are two further aspects, connector packaging and assembly
descriptors that need to be adapted as well. Since components are packaged
into archives (containing descriptors, binary code for component), we
propose to package connectors in archives, too. The rationale for this is to
integrate the connector in the deployment procedure: it can be needed to
instantiate part of the connector on a particular host (think about Event
Channels). The component assembly descriptor format needs also to be
adapted since, as shortly mentioned in the CCM description, the assembly
descriptor format allows to describe direct binding between components (and
matching port types), and hence does not allow to insert connectors between
them,

6. Conclusions and Perspectives

We have described in this paper our ongoing work in the context of the
ICE project, which aims at contributing to the adaptation of the CORBA
component model to real-time software design domain. We have followed a
process of real-time interaction mechanisms expression by means of
connectors, supported and inspired by similar works from the ADLs area.
We have laid the foundations for the next stage which will focus in
concretely integrating these primitive connectors in CCM, and
demonstrating the relevance of our approach through prototyping and
application to use cases. The use cases selected have a close connection to
“real” application domains and offer enough complexity to constitute an
assessment of our conceptual and technical choices. For instance, we plan to
deal with a simplified UMTS radio-protocol stack use case.

But CCM enhancement is of course still an open issue. Even if well-
matured in some aspects, €.g., the extensive set of services provided with the



Architecture Description Languages 131

middleware or the deployment issue, it still lacks major features. The main
one regards what ADLs call architectural configuration, i.e. the ability to
specify an application by means of a graphical representation, as well as
addressing the associated issues (e.g. compositionality, refinement,
scalability) [16]. Effectively, using CCM in its current state requires a sound
knowledge of the underlying CORBA platform, and high skills in platforms
implementation languages, which mitigate its usefulness for neophytes.
Moreover, this absence of a high-level representation forbids the early
validation of the developed application, an action commonly performed with
ADLs.

Building this CCM architectural configuration requires in a first step to
give an abstract view of the mechanisms provided by the CCM middleware
platform. It sets also a need for an enhancement of the CCM component
model. Our contribution regards these two issues, with a focus on
interactions representation.

7. References

[1] Lightweight CORBA Component Model — OMG draft adopted specification,
Object Management Group, 2003.

[2] CORBA Components, version 3.0, Object Management Group, 2002.

[3] RealTime — CORBA specification, version 2.0, Object Management Group, 2003.

[4] Abstractions for Software Architecture and Tools to support them, M. Shaw,
Robert Deline et al., Software Engineering, vol. 21, number 4, 1995.

[S] Towards a Taxonomy of Software Connectors, N. R. Mehta, N. Medvidovic and S.

) Phadke, ICSE 2000.

[6] Software Connectors and their role in component development, D. Bélek & F.
P14sil, DAIS’01.

[77 MDA Platform for Complex Embedded Systems Development, C. Mraidha, S.
Robert et al., DIPES 2004.

[8] Specification for deployment and configuration of component based applications -
draft adopted specification, OMG, 2003.

[9] Software Component Technologies for Real-Time Systems - An Industrial
Perspective -, Anders Mdller, Mikael Akerholm et al., RTSS 2003.

[10] Towards Aspectual Component-Based Development of Real-Time Systems,
Aleksandra TeSanovic, Dag Nystrom et al, RTCSA 2003.

[11] Developing component-based software for Real-Time systems, Janusz Zalewski,
27th Euromicro conference, 2001.

[12] Components in Real-Time Systems, D. Isovic, C. Norstrom, RTCSA 2002.

[13] An Approach to Component-Based Software Engineering for Distributed
Embedded Real-Time System, Uwe Rastofer, Frank Bellosa, WMSCI 2000.

[14] VEST: A toolset for constructing and analyzing component based operating
systems for embedded and real-time systems, John A. Stankovic, Lecture Notes in
Computer Science, vol. 2211, 2001,

[15] RNTL project ACCORD, http://www.infres.enst.fr/projets/accord.



132

[16]

(17]
(18]
[19]

[20]
(213

Architecture Description Languages

A Classification and Comparison Framework for Software Architecture
Description Languages, N. Medvidovic, R. N. Taylor, IEEE transactions on
software engineering, vol. 26, n. 1, 2000.

UML 2.0 Superstructure (Final Adopted specification), Object Management
Group, 2003, http://www.omg.org/cgi-bin/doc?ptc/03-08-02

A Connector Model for Object-Oriented Component Integration, Stefan Tai,
International Workshop on Component-Based Software Engineering, 1998.
Time-Triggered Real-Time Computing, H. Kopetz, IFAC World Congress,
Barcelona, July 2002, IFAC Press.

OSEK/VDX Operating System version 2.2.1, OSEK/VDX, 2003.

The Fractal project, ObjectWeb Consortium, http://fractal.objectweb.org/.





