
ALGOL-GENIUS
An Early Success for High-level Languages

Bengt Asker

Formerly employee ofDatasaab and Ericsson; Bengt.Asker@comhem.se

Abstract: Algol-Genius, an Algol 60 implementation with features from COBOL, was
the brainchild of Borje Langefors. In 1964, assembler was the dominant
programming language, but Algol-Genius broke that trend among Datasaab
D21 customers. Algol-Genius programs were still in production in the late
nineties.

Key words: Algol, Datasaab computers, programming languages

1. INTRODUCTION

The main topic of this paper is the programming language Algol-Genius,
Since the history of the first Datasaab computers, D21 and D22 had little
representation at this conference, I will place Algol-Genius in the context of
Datasaab's early history.

2. HOW DATASAAB WAS BORN

Saab was one of the first organizations in Sweden to use computers on a
large scale. Aircraft design required extensive computing. Initially, women
did this on desk calculators. Borje Langefors pioneered the of use punch
card machines for matrix calculations. When Besk became available, Saab
was one of the heavy users and soon built a copy, called Sara. These efforts
meant that Saab early on acquired competence in software development. On
a parallel line, in other parts of Saab, Viggo Wentzel designed a
transistorized digital computer, aiming at an airborne version. The result

mailto:Bengt.Asker@comhem.se

252 BengtAsker

was a prototype, one of the first transistorized computers in the world, called
D2, which he demonstrated to the Swedish air force in 1960. It was a
desktop computer; in fact, it covered the entire desktop. See Figure 1.

Figure L The D2 desktop computer

Saab had attempted to diversify from a total dependence on military
products. Now it could use this unique combined expertise in hardware and
software to launch a commercial computer, the D21. Gunnar Lindstrom was
the typical entrepreneur heading the division. Quite naturally, Viggo
Wentzel took care of the hardware and Borje Langefors the software. Saab's
CEO Tryggve Holm, one the last patriarchs, said in a speech to prospective
customers: "We woke up one day at Saab and found that we made
computers"

The first customer was Skandinaviska Elverk, not surprising since
Gunnar Lindstrom came to Saab from the power utility sector. The first
order, shown in Figure 2, has become quite famous. It is a three-line letter,
dated 14 December 1960, ordering a computer according to the offer so and
so.

DATASAAB D21

3.1 Hardware

The first delivery of the D21 occurred in 1962. It was a very competitive
computer for its time. Maximum primary storage was 32K words (96KB)
with a cycle time of 4.8 jis. The addition of two 24-bit integers took 9.6 jis.
Secondary storage was tape, an inventive construction that originally was
developed for Sara with the appropriate name Saraband. Based on a
suggestion from Borje Langefors, the designer Kurt Widin invented a
coding, which he later found out was called a Hamming code, that corrected

Algol-genius 253

one bit and detected two-bit errors. Searching for a block, reading, and
writing occurred in parallel with processes in the CPU. This was a novelty
in that price class and contributed strongly to the excellent performance of
D21. Basic input and output was, in conformance with the Nordic tradition,
punched tape, with a very fast tape reader from Regnesentralen. Since they
designed the D2 for process control, it had an interrupt function that carried
overtoD21.

^ ' / •

^»

¥

Figure 2. The first D21 contract

254 BengtAsker

3.2 Market

The computer was a reasonable success. In all, they manufactured 32
computers, mostly sold in Scandinavia, a few also in Czechoslovakia and
Hungary. Some early customers after Skandinaviska Elverk were
Gothenburg University, Slakteriforbundet, Kockums shipyard, Volvo
Flygmotor, Allmanna Brand (insurance), Saab and SMHI (weather
forecasts). This was an interesting mixture and shows that the D21 was a
truly general computer. With the exception of SMHI and Gothenburg
University that had extremely demanding computations, they all used Algol-
Genius extensively.

The biggest order came from the county governments
(Lansstyrelsema). At first, orders for some twenty computers went to IBM
and its 360/30. After heavy lobbying, they changed the decision so that IBM
received only half of the orders and Datasaab the other half Since the two
computer brands were incompatible in every respect, this meant that two
parallel software development efforts had taken place for the
Lansstyrelsema. Today, this would be unthinkable; at that time, however, it
was not a unique compromise. The companies delivered the computers
between 1963 and 1966. However, in 1969 the parliament decided that the
counties should replace the IBM computers with D21s, because of their
superior performance, mainly in sorting. In the end, they delivered eight
D21 and seven D220. The Lansstyrelsema did not use Algol-Genius for two
reasons: Application development started before the compiler was available
and the computers had a much-squeezed memory.

3.3 Other software than Algol-Genius

The intermpts in D21 were never used for tme multiprocessing, only to
mn I/O in parallel with computing. Therefore, the "operating system"
occupied a tiny 1024 words in primary memory. In addition, "Dirigenten"
(the conductor) translated job control statements into a very compact
representation and proved to be very efficient and flexible.

The name of the assembler was DAC. As a protest against the very
stereotyped punched card tradition, it sported special features such as a free
format, use of capital and small letters, the use of + instead of ADD, the use
ofC+for LOAD.

The D21 excelled in sorting. The tape system with parallelism and the
comparatively big memory contributed of course, but also the advanced
sorting algorithms used. At this time, Donald Knuth and others had just
published their pioneering research and Ake Fager did a great job in
implementing the results for D21.

Algol-genius 255

4. ALGOL-GENIUS

4.1 4.1 Accidental problems

Fred Brooks' first published The Mythical Man-month in 1975. He based
the book on his experience as a project manager for IBM's OS/360. The
Mythical Man-month is mandatory reading for anyone interested in
computer history and is now available in a new edition, which also contains
No Silver Bullet. In this essay, Brooks divides the difficulties in software
design in essential and accidental. His point is that we will never find the
silver bullet that kills the essential difficulties but that we have made great
progress eliminating the accidental. One example of essential problems is
the inherent complexity that "software entities are more complex for their
size than perhaps any other human construct, because no two parts are
alike." Another is the necessity to conform to and implement rules and
regulations "forced without rhyme and reason by the many human
institutions and systems to which his interfaces must conform." Accidental
problems are those that are inherent in the "machine programs concerned
with bits, registers, conditions...." The first step to eliminate the accidental
problems was assemblers; then came the problem-oriented languages with
FORTRAN leading the way. Algol and of course Algol-Genius came soon
after. I would claim that Algol-Genius went as far as you could reasonably
go to eliminate the accidental problems with the machine resources then
available. Today's software world with so many complexities such as the
web and distributed components requires much more powerful tools. That is
another story to which I will return. The essential problems we still have to
live with!

4.2 The first version

In 1962, the dominating language for business data processing was
assembler, in particular in the IBM world. Borje Langefors was convinced
that we could and should use high-level languages. Algol 60 was already
well established at that time and they defined the first version of COBOL.
Since D21 had no decimal arithmetic, it was judged that performance in a
COBOL implementation would not be acceptable. The decision to choose
Algol was because early COBOL was not a good programming language. It
had a very primitive procedure concept with no parameters; all variables
were global and it featured some dangerous constructs like COMPUTED
GO TO and ALTER. A syntax that prescribed "ADD A TO B GIVING C"
instead of "C := A + B;" did not make things better. (COBOL has evolved
since then!) However, COBOL had a feature that was missing in Algol—it

256 BengtAsker

could handle records. So, Langefors suggested that we add a record and
input/output part to Algol, modeled after COBOL. The addition was called
Genius (Generellt in ut system).

Ingemar Dahlstrand had then implemented Algol for the BESK and the
Facit EDB in a pioneering work. We used the experience ft'om that
implementation and engaged one the designers Sture Laryd. He worked
together with Gunnar Ehrling, a pioneer from Matematikmaskinnamnden
and so we were able to get a good, efficient, and reliable implementation of
the Algol part. The specification was compatible with Algol 60 with few
exceptions. Consult Ingemar Dahlstrand's paper on the implementation of
Algol 60 for further details on that subject.

Based on the ideas from Borje Langefors, Gunnar Hellstrom and the
author made the detailed specification and supervised the implementation of
the Genius part. Data declared in Genius were globally accessible. The
syntax was rather faithful to COBOL except that it used underlining, like in
Algol, instead of reserved words. Looking back, at that time, the fact that in
Algol you could use any names for your variables was a great advantage in
the view of many. However, all modem languages use reserved words and
no one is complaining. The record concept was mostly used to model and
format data on peripheral equipment; it was not as flexible as in later
languages like Pascal.

Procedure calls replaced the verbs in COBOL since they were part of
the Algol program. One could perform operations such as open and close
files and read, search, and write records as one would expect.

4.3 Applications

The first version of Algol-Genius was released in 1964 and it soon
became evident that the language, as well as its implementation, was well
suited for a wide range of applications. Algol-Genius became the preferred
programming language for most of our customers. This was true both for
technical and administrative applications. It turned out that for specific
cases, only assembler could substantially improve performance. Let me just
mention one example. Kockums shipyard was then the leading builder of
huge tankers in the world. Under the leadership of Kai Holmgren, it
introduced CAD/CAM methods early on. With Algol-Genius as a base, the
developed a language and a system called Styrbjom/Stearbear for the entire
design process. Kockums shipyard is long gone, but Stearbear still lives on,
now under the name of Tribon. The software it uses had its beginnings from
D21 and Algol-Genius way back, of course. Nevertheless, Tribon is still a
very successful, although not a very well known Swedish software company.

Algol-genius 257

4,4 Extensions

Datasaab had a very active user club and one favorite subject of that club
was extensions to Algol-Genius. Since we owned the language, the
formalities were minimal. If enough customers wanted an addition and we
deemed it reasonable, we would implement it. One feature, which I still
have bad feelings about, concerned the use of punched tape. Algol-Genius
already had very powerful procedures for that. However, we got a request
for further automation from Industridata, who used D21s and later D22s in
their service bureaus. They had to accept and process tapes coming from
machines such as cash registers with many different formats. Together with
them, we designed a table driven method to handle this, but it was not very
successful and surely not worth the effort. Nevertheless, it is a good
example of the close cooperation we had with the customers.

5. DATASAAB D22

5.1 Hardware

1968 marked the launching of the D22. It was a much more advanced
computer with protected mode for the operating system, ability to address
256K word (768KB) of memory with a cycle of 1.6iis. Floating-point
arithmetic was part of the hardware. Professor Germund Dahlquist was a
consultant on the project and did pioneering work in specifying a new
arithmetic with a minimum of rounding errors. The D22 could manage
character handling and decimal arithmetic to obtain efficient execution of
COBOL programs. Quite an effort went into making the decimal hardware
as COBOL-compatible as possible. We could have all of these
improvements without breaking the compatibility with D21. Existing binary
D21 programs could run on the D22 without problems.

The D22 could support modem and extended peripherals. The most
important addition was the inclusion of disk memories with removable disk
packs. The tape standard changed to be compatible with the market (read
IBM) at that time, while still being program compatible with the D21. A
front-end computer handled the D22's communication with the outside
world; it was Datasaab's own 2100. That same computer also played a role
the ATM described by Viggo Wentzel; consult his paper on the topic in
these Proceedings.

258 BengtAsker

5.2 Market

D22 was of course the natural choice for the D21 customers. But sales
were not limited to those, all in all some 70 systems were delivered up and
until 1975. However 70 was a way to small number to create any interest in
the independent software vendors that begun to emerge at this time. They
picked of course IBM machines as their target. For this reason, the first
IBM-compatible machines, exemplified by Amdahl, made their entrance at
this time. Datasaab D23 was an attempt to build a computer that could
emulate D22 as well as IBM/360. But time run out for this project, it was in
fact doomed from the beginning.

5.3 Other software than Algol-Genius

The major software effort for D22 was an operating system. It inherited
the name Dirigenten, but was on a very different scale, with true
multiprocessing facilities. The work was lead by Jan NordUng. Dirigenten
was optimized for batch processing and was extended for time-sharing later
on. Jan Nordling and his colleagues had taken part in the design of the
hardware that consequently was well suited to multiprocessing, but there
was still a lot of new ground to be covered.

As indicated above, D22 could handle a COBOL as well as a
FORTRAN implementation. Good and efficient but not widely used, Algol-
Genius continued to be the preferred language.

Datasaab developed applications in some targeted areas, mainly health
care and logistics. They appropriately named the logistic system "Lagom."
It was quite successfiil and survived the D22 by being converted to Univac
1100 and to Unix.

5.4 Algol-Genius

Since D22 was compatible with D21, conversion was no problem. The
Algol-Genius language required a few additions, the major one being
indexed-sequential files for the disk memories. Still, substantial work had
taken place on the compiler to take advantage of the new features in the
hardware.

Algol-genius 259

6- UNIVAC1100

6.1 Background

The small number of computers we managed to sell and the consequent
lack of interest from software vendors killed Datasaab's mainframe line
(tunga linjen in Swedish). A deal was made with Sperry Rand, who
acquired the D21, D22 and D23 lines, resulting in a joint venture, called
Saab-Univac, formed in 1975 The goal was to convert as much as possible
of the customer base to Univac computers, specifically Univac 1100.

6.2 Algol-Genius

We soon decided that the best way to move the existing customers to the
Univac 1100 was to implement Algol-Genius for that computer. Once more,
we had an Algol implementation that we could use, this time already running
on 1100. It came from the University of Trondheim (sic!) and required very
few changes and additions. We had to build the Genius part from scratch.
Since it was quite dependent on the operating system and the file system, we
implemented it in close cooperation with Univac. For that purpose, Hans
and Christel Ljungren spent a winter in Minneapolis/St Paul.

It was not possible to achieve 100% compatibility because of differences
in the hardware as well as in the operating system, but it turned out that the
conversion was painless, compared to other alternatives. Algol-Genius
contributed no doubt to the fact that Saab Univac lost only few Datasaab
customers to other vendors.

Saab-Univac did not commit itself to develop Algol-Genius and
fijrthermore, it was after all a proprietary language. The customers thus
gradually converted to other languages. Even so, Algol-Genius enjoyed a
long life. Even at the end of the nineties, some companies were using Algol-
Genius programs in their production efforts; the subject of necessary
ongoing maintenance contributed to its final extinction. As far as the author
knows, none has survived the millennium.

6.3 What can we learn?

Software is expensive to develop but cheap to produce, copy, and
distribute. This means that volume is crucial for economic well being. With
large volume, a vendor has a great freedom in setting prices on his software.
Maybe even more important than the price advantage is the fact the large
volume attracts other players. It generates interest to do other creative things
such as developing add on products and specializing in consulting and

260 BengtAsker

training for that software, which in turn makes it even more attractive to
customers. Consequently, in each specific software area, there will always
be a gorilla and a few chimpanzees [Moore]. Datasaab not only tried to
build and sell software, it did so with software that could only run on its
own, very proprietary, platform. Moreover, this was in a language area and
a geographic market that was minimal. In hindsight, the result was
inevitable.

If it were difficult then, today it would be almost impossible.
Operating systems, middleware, and development environments run to
millions and millions lines of code. The corresponding D22 software was
tiny! So now, we have one gorilla (Microsoft) and a few chimpanzees (the
Unix/Linux companies). By using one of these platforms and specializing in
a specific software area, it is possible to succeed. In other words, let others
solve the accidental problems and focus on the essential ones. I have already
mentioned Tribon; another example is Opera fi-om Norway and doubtless,
there are many others, unknown to me. (Linux, by the way, solves the
accidental problems. The invention is a fascinating and novel business idea.
Can you, by the way, call "giving away for fi-ee" a business idea?)

The area of embedded systems is also very interesting. Whether it is
mobile phones, process control, or car and engine control, it starts out as a
very proprietary product. Only the hardware vendor has access to the
interface specifications and is interested in developing the software. But
gradually, as the applications grow, the need for other sources arises, as well
as the interest fi*om software vendors to contribute. Standards evolve that
make this possible. So far, we in Scandinavia have been quite successfiil in
embedded systems but the fight is not over yet. We hope that Symbian,
backed by Nokia and Ericsson-Sony, will become a force in the mobile
phone market.

REFERENCES

[Brooks] Fredrick Brooks, The mythical man-month, Addison Wesley 1995
[Mooore] Geoffrey Moore Inside the tornado, HarperBusiness 1995
[Wentzel, et al] Tema D21, Datasaabs vdnner, 1994
[Yngvell, et al] Tema D22-D23, Datasaabs vanner, 1997

