
EVALUATION OF PARALLEL AGGREGATE
CREATION ORDERS: SMOOTHED
AGGREGATION ALGEBRAIC MULTIGRID
METHOD

Akihiro Pujii
The Center for Continuing Professional Development, Kogakuin University 1-24-2, Nishish-
injuku, Shinjuhu-ku, Tokyo, Japan; CREST, JST, 4-1-8 Honcho Kawaguchi, Saitama,
Japan.
fujii@cpd.kogakuin.ac.jp

Akira Nishida
Department of Computer Science, Graduate School of Information Science and Technol-
ogy, University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan; CREST, JST, 4-1-8
Honcho Kawaguchi, Saitama, Japan.
nishida@is.s.u-tokyo.ac.jp

Yoshio Oyanagi
Department of Computer Science, Graduate School of Information Science and Tech-
nology, University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
oyanagi@is.s.u-tokyo.ac.jp

Abstract The Algebraic MultiGrid method (AMG) has been studied intensively
as an ideal solver for large scale Poisson problems. The Smoothed Ag-
gregation Algebraic MultiGrid (SA-AMG) method is one of the most
efficient of these methods. The aggregation procedure is the most im-
portant part of the method and is the main area of interest of several
researchers.

Here we investigate aggregate creation orders in the aggregation pro-
cedure. Five types of aggregation procedure are tested for isotropic,
anisotropic and simple elastic problems. As a result, it is important
that aggregates are created around one aggregate in each domain for
isotropic problems. For anisotropic problems, aggregates around do-
main borders influence the convergence much. The best strategy for
both anisotropic and isotropic problems in our numerical test is the ag-

100 High Performance Computational Science and Engineering

gregate creation method which creates aggregates on borders first then
creates aggregates around one aggregate in the internal domain.

In our test, the SA-AMG preconditioned Conjugate Gradient (CG)
method is compared to the Localized ILU preconditioned CG method.
In the experiments, Poisson problems up to 1.6 x 107 DOF are solved
on 125PEs.

Keywords: AMG; Poisson Solver; Aggregate Creation

1. Introduction
For large-scale Poisson problems, multi-level methods are known to be

efficient solvers. In multi-level methods a smaller problem is constructed
from the problem matrix in the setup phase, and this is used to solve the
problem in the solution phase. The Smoothed Aggregation Algebraic
MultiGrid (SA-AMG) method is one of the most effective multi-level
methods. In the SA-AMG method the smaller problem matrices are
calculated by creating aggregates of the neighboring unknowns. The
convergence efficiency depends on the quality of the aggregates.

The parallel SA-AMG method is often realized by domain decom-
position, and parallel aggregation strategies based on domain borders
are needed. Thus, parallel aggregation strategies are a very important
part of the method, and are discussed in [Ada98, TT00]. These pa-
pers propose and compare various aggregation strategies, but they do
not consider the order in which the aggregates are created. The order of
the aggregate creation also highly influences the convergence. We imple-
ment the parallel SA-AMG method which can deal with any aggregation
strategy, and investigate which order of aggregate creation is better for
both isotropic and anisotropic problems.

Section 2 introduces the SA-AMG method. Section 3 explains the var-
ious orders of aggregate creation, and Section 4 summarizes the imple-
mentation of the SA-AMG method, followed by numerical experiments
and conclusions.

2. SA-AMG Method
The SA-AMG method is one of the MultiGrid methods. First, the

MultiGrid method is explained.
It is difficult to solve large-scale problems but the MultiGrid method

utilizes more than one grid and solves large-sized problems efficiently.
For example, we consider the two grid case of fine and coarse grids.
The problem matrices A\ and A2 are discretized on the fine grid and
the coarse grid respectively. Thus, matrix A\ is bigger than matrix A2.

High Performance Computational Science and Engineering 101

The problem is to solve the equation Aix± = &i, where vector x\ is the
unknown vector. The MultiGrid solution process is as follows.

1 Perform a relaxation, such as the Gauss Seidel method, for the
equation A\X\ = b\ on the fine grid

2 Compute the residual r\ = b\ — A\x\, and move r\ to the coarse
grid r2 = Rr\

3 Solve the coarse grid residual equation A2X2 = 62 (possibly recur-
sively)

4 Move X2 to the fine grid and correct the fine grid solution x\ —̂
X\

5 If the convergence criterion isn't satisfied, go to 1

Matrix R represents the restriction operator which moves the vector on
the fine grid to the vector on the coarse grid. Matrix P represents the
prolongation operator which moves the vector on the coarse grid to the
vector on the fine grid. Matrix R is often the transpose of matrix P.
Although we consider here a two-level case, Step 3 can be executed re-
cursively and more than two grid cases can be extended to multi-level
cases. The MultiGrid method is known to be a very effective method
for problems with structured meshes but it is difficult to create coarse
grids for unstructured problems. Algebraic MultiGrid (AMG) methods
have been studied intensively for such problems. AMG methods cre-
ate the smaller problem from only the problem matrix without mesh
information.

AMG methods have the two phases of setup and solution. The solu-
tion phase solves the problem as described above. The setup phase of
the AMG method is explained here. The setup phase creates a smaller
matrix from the problem matrix. AMG methods often calculate the pro-
longation matrix P and R = PT first. Then the smaller problem matrix
is calculated from A2 = RA\P, which is called the Galerkin approxima-
tion. If more than one coarse problem matrix is utilized, this process is
repeated and the coarser level matrices are calculated in order.

Various AMG methods differ in how the prolongation matrix P is
created from the problem matrix A\. In the SA-AMG method the pro-
longation matrix P is calculated using the following three procedures.

Filtering the Matrix A\ Matrix A\ is defined from matrix A\ by
dropping the elements that do not satisfy the following condition.

a-j > 02\au\\ajj\ (1)

102 High Performance Computational Science and Engineering

where 6 is a constant value between 1 and 0. a y means the element of
the i-th row and j-th column of matrix A\.

Construction of Aggregates We define a graph for the symmetric
matrix A\. The vertices and edges in the graph correspond to rows and
non-zero elements of matrix A\. The vertex set is divided into disjoint
subsets containing neighboring vertices following this procedure.

phasel : repeat until all unaggregated vertices are adjacent to an ag-
gregate

• pick a root vertex which is not adjacent to any existing ag-
gregate

• define a new aggregate as the root vertex plus all its neigh-
bors

phase2 : sweep unaggregated vertices into existing aggregates or use
them to form new aggregates

Figurel shows the situation. Each subset is called an aggregate, and
corresponds to an unknown of the next coarsest level.

Matrix P is an n x m matrix, where n and m are the numbers of
unknowns and aggregates respectively, and is defined as follows:

the i-th unknown
belongs to the j-th aggregate

other cases

Relaxation of Aggregates The SA-AMG method defines the pro-
longation matrix by smoothing the matrix P defined above. Here we
assume that the damped Jacobi method is used for smoothing.

P={I-uD~1A1)P (2)

where u and D are the damping coefficient and the diagonal part of A\,
respectively. Other methods of smoothing aggregates are described in
[VBM01].

Convergence of the SA-AMG method depends significantly on the
quality of the multi-level data structure constructed in the setup phase.
The construction of aggregates is especially important. For fast con-
vergence, aggregates need to be packed tightly in the domain. As in
Figure 2, adjacent aggregates are often created in order. In a parallel
computing environment, the problem domain is often decomposed and

High Performance Computational Science and Engineering 103

— Finer Level Aixi=bi

b2 R(bi-Aixi)

V
— Coarser Level A2X2 b2

A2=RAiP

X1 X1+PX2

Figure 1. Conceptual Image of the SA-AMG method: Graph structure is obtained
from the matrix

Figure 2. Aggregation Phasel for a Five-Point Stencil: The triangle identifies the
root vertex and the small circle identifies a vertex neighboring the root vertex

the aggregation process is executed by each PE. In the next section we
discuss strategies for aggregate creation orders for parallel aggregation.

3. Various Orders of Aggregate Creation

Parallel aggregation strategies are discussed in this section. These
are classified into two types, independent and joint. Independent aggre-
gation means that the aggregation is carried out independently in each
domain. Joint aggregation first makes shared aggregates around borders
and then creates aggregates independently in the inner domain.

Adams [Ada98] proposed the Maximal independent set algorithm as
an aggregation strategy. It has become one of the joint aggregation
strategies. Tuminaro et al. [TT00] proposed another joint aggregation
strategy and compared various aggregation strategies. They discussed a
method for realizing joint aggregation, but did not investigate aggregate

104 High Performance Computational Science and Engineering

Indl Ind2

Jointi Joint2 Joint3

Figure 3. Two Types of Independent Aggregation: Indl and Ind2. Three Types of
Joint Aggregation: Jointi, Joint2 and Joint3. The range colored orange represents
the vertices on borders with neighboring PEs. A circle represents an aggregate. A
green circle represents an aggregate whose root vertex is on a border, and a blue circle
represents an aggregate whose root vertex is an internal vertex of the domain.

creation orders. We investigate the various aggregate creation orders for
better convergence.

This paper considers and compares five types of aggregate-creation
method as follows. Figure 3 shows the situation.

• Independent Aggregation: Aggregates are created independently
from other PEs and aggregates cannot go beyond the borders.

— Indl: Aggregates are created around one aggregate in order.

— Ind2: Aggregates are created from borders in order.

• Joint Aggregation: Root vertices are selected in vertices of borders,
greedily at first. Then, root vertices are selected in the interior
domain by each PE. The following three strategies differ in the
method used to create aggregates in the interior domain.

— Jointi: Aggregates in the interior domain are created greedily.

— Joint2: Aggregates in the interior domain are created around
one aggregate in order similar to Indl.

— Joint3: Aggregates in the interior domain are created around
aggregates on borders.

High Performance Computational Science and Engineering 105

4. Implementation
Our implementation of the SA-AMG method is based on Tuminaro

et al. [TT00] and GeoFEM [Geo]. The joint aggregations method is
based on Tuminaro et al. [TT00]. Data structure for finite element
problems, ICCG solvers and other parts of the implementation are based
on GeoFEM.

This section explains the implementation of our solver. The data
structure of matrices and the resulting form of the aggregates, which are
an important part of the implementation, are discussed.

Firstly, the data structure of the matrices is written. The graph based
on the problem matrix is decomposed into sub-domains for PEs. Then,
rows and columns of the matrix are reordered by the sub-domains, and
the reordered matrix is distributed as a one-dimensional block-row dis-
tribution. Each PE has a block of rows from the problem matrix.

Vertices in each PE's domain are also connected with the vertices,
called ghost vertices, in the neighboring domain. Each PE's calculation
requires the values of the ghost vertices. Thus, communication tables
which record the PE number and the vertex number of the ghost vertices
are also necessary. Figure 4 shows a simple 2-dimensional finite-element
mesh with four PEs. Vertices of the gray part of Figure 4 are required
for calculating PE 0's domain, and the vertices 1..25. The ghost vertices
are 26..36. neibPE(:), send(:,p) and recv(:,p) have neighboring PE
numbers, their own vertices referred to by PE neibPE(p) and the vertex
number of the ghost vertices owned by PE neibPE{p).

Secondly, the resulting form of the aggregation is written. Parallel
aggregation creates aggregates which are disjoint sets of vertices on the
graph based on the problem matrix of each level. It then determines
the owner PE for each aggregate. PE k's own aggregates are collected
to PE k as vertices on the next coarser level. Thus, the coarser level's
domain decomposition follows the determination of the owner PE of the
aggregates. The relationship between the owner PE and the aggregates
can be any combination, and the domain decomposition of the finer and
the coarser levels can be totally changed.

The information for the aggregates is recorded by each PE. There
are two types of aggregate recorded by a PE, its own aggregates and
external aggregates. A PE's own aggregates are owned by the PE on
the next coarsest level. External aggregates are owned by the other PE.
Figure 5 shows PE k's 2-dimensional array which contains the vertex
numbers of the aggregates. In Figure 5, PE k recorded Na aggregates.
Aggregate numbers l..Nc are the aggregates owned by PE k on the next
coarsest level. Aggregate numbers Nc + l..Na are the aggregates owned

106 High Performance Computational Science and Engineering

PEO

1

""ft

I %

25

rffi

15

ft S

rtrt.*r

PE3
36

35

34

33

32

31

PE1 PE2

neibPE{\)

send(:, 1)

send(:,2)

recv(:, 1)

reci;(:,2)

= 1,2,3

= 1,2,3,4,5

= 5

= 5,10,15,20,25

= 26,27,28,29,30

= 31

= 32,33,34,35,36

Figure 4- Vertices and Communication Tables of PE 0

2-dimensional array on PE k:
aggregates' vertex numbers on PE k's domain

/ 1

Own aggregates

External aggregates <

V Nc
Nc+1

I Na

I

I

I

\

Figure 5. PE k's Aggregate Information Format: Aggregates l.JVc are owned by PE
k on the coarser level. Vertex numbers on PE k's domain are recorded in the array.
Aggregates X and Y are owned by PE k on the coarser level, but aggregates X and
Y are not on the vertices on PE k's domain.

High Performance Computational Science and Engineering

External aggregate table on PE k:

107

Other PEs which
own the external *\
aggregates

PEa

PEb

PEc

PEd

V

i1
G1

14
G4

m

LT
G7

m
is

U
\m

u L9
G9

Figure 6. PE k's Aggregate Table: Aggregate Table records pairs of the global ag-
gregate number (G?) and the local aggregate number (L?) for the external aggregates.

by other PEs. The array has the aggregates' vertex numbers in PE k's
domain. Thus, one aggregate, which contains vertices on the domain of
many PEs, is recorded by many PEs. Figure 5 shows that aggregates X
and Y have no vertices in PE k's domain and no vertices are recorded.
But the two aggregates may have vertices in the other PE's domains and
may be recorded as an external aggregate by those PEs. Aggregates are
recorded by PE k in the following cases.

• The aggregate's owner PE is PE k.

• The aggregate's vertices contain any vertices of PE k's domain.

Some aggregates are recorded by many PEs, and a global aggregate
number is needed to identify them. The local aggregate number is deter-
mined and utilized as in Figure 5. The PEs own aggregates are numbered
from 1 to the number of owned aggregates (Nc in Figure 5) for each PE.
Then, external aggregates follow. In our implementation the global ag-
gregate number is determined by numbering the owned aggregates in
the order of PE numbers. For owned aggregates on PE k, the global
aggregate number is determined by adding the local aggregate number
to the sum of the number of aggregates owned by PEs O..k-1. External
aggregates, however, cannot be identified by a local aggregate number.
Therefore, their global aggregate numbers are recorded in an aggregate
table as shown in Figure 6. The external aggregate table records the
pairs of global and local aggregate numbers for external aggregates.

Ultimately, the output of the aggregation on each PE is recorded as
two arrays, sets of vertices (Figure 5) and an aggregate table (Figure 6).

108 High Performance Computational Science and Engineering

This output interface can deal with any vertex set as an aggregate and
can cope with any PE allocation for aggregates.

We assume that the aggregation procedure determines two things: the
vertex set of each aggregate and the owner PE of each aggregate on the
next coarsest level. The implementation can deal with any aggregation
strategy which follows such assumptions.

5. Numerical Experiments and Evaluations

In this section, we evaluate the parallel algorithm for three types of
problem: anisotropic, isotropic, and 3-dimensional elastic. The problem
size per PE is set to be constant for each type of problem in order to un-
derstand the behavior of the solver for large-size problems on massively
parallel systems.

The SA-AMG mathod and Localized ILU preconditioned CG method
[NO99, NNT97, NakO3], which is refered to as ICCG, are compared in
the experiments. In addition, five aggregation strategies for the SA-
AMG method are tested. These are introduced in section 3.

The SA-AMG method utilizes a V-cycle for the solution phase. One
iteration of the Chaotic Symmetric Gauss Seidel(Chaotic SGS) method
is carried out as pre- and post-smoothing at each level. At the coarsest
level, twenty iterations of the Chaotic SGS method or parallel direct
solution method are performed. We utilize PSPASES [GGJ+97] as the
parallel direct solver.

Numerical Experiment Environment Numerical experiments are
carried out on a cluster with 128 nodes of Sun BladelOOO workstations
which have dual CPUs of UltraSPARC HI 750MHz and 1GB memory.
These nodes are connected by Myrinet2000. For parallelization, MPICH-
GM [MPI, Myr] is used. The code is written in Fortran90.

5.1 Anisotropic Problems

Equation 3 with a rectangular parallelepiped domain discretized by a
finite element method is solved for anisotropic and isotropic problems.
The problem domain has six surfaces perpendicular to the x, y and z
axes. In Equation 3 Xmin, Ymin, Zmax and Zmin represent surfaces
with minimum X value, minimum Y value, maximum Z value and mini-
mum Z value respectively. In the anisotropic case, e in equation 3 is set
to 0.0001. This anisotropic problem is very difficult to solve, from the
view point of condition number.

High Performance Computational Science and Engineering 109

Table 1. Problem Size and Number of PEs for Anisotropic Problems: DOF represents
Degree of Freedom of the problem.

Anisotropic
DOF
8192k
4096k
2048k
1024k
512k
256k
128k

of PEs
128
64
32
16
8
4
2

Problems
Problem Domain
160 x 160
160 x 160
80 x 160
80 x 80 :
80x80
40x80
40x40

x320
x 160
x 160
< 160
x 8 0
x 8 0
x 8 0

d/dx(dP/dx) + d/dy(dP/dy) + d/dz(e dP/dz) = o (3)
Xmin : dp/dx = 10.0
Ymin : dp/dy = 5.0
Zmax : dp/dz = 1.0
Zmin : p = 0.0

The problem domain is decomposed into sub-domains with 40 x 40 x 40
vertices, which are allocated to each PE. Table 1 shows the size of the
problems and the number of PEs. The convergence criterion is that the
2-norm of the relative residual is less than 10~7.

For anisotropic problems, the coarsest level problem is still difficult to
solve. We tested some aggregation strategies with a parallel direct solver
at the coarsest level. There are SA-AMG methods with five levels and
four levels. SA-AMG methods with five levels utilize twenty iterations
of the Chaotic SGS method at the coarsest level, and SA-AMG methods
with four levels utilize the parallel direct solver at the coarsest level.
In Table 2, the problem size at the coarsest level is described for each
aggregation strategy. The problem size is biggest in the 128PE case and
that case is written.

ICCG and SA-AMG Methods Tables 3 and 4 show the total times
for the ICCG and SA-AMG methods with Indl of independent aggre-
gation for anisotropic problems. The ICCG method doesn't reach the
convergence criterion for the biggest problem and indicates the diffi-
culty of the problem. On the other hand, Table 4 shows that the SA-
AMG method works well for anisotropic problems in comparison with

110 High Performance Computational Science and Engineering

Coarsest Level Size for
Aggregation Strategy

Indl
Ind2

Ind2 with Parallel Direct Solver
Joint 1
Joint2
Joint3

Joint 1 with Parallel Direct Solver

128PE
Size
7864
6375
22601
2602
3328
3136
20524

case
of Levels

5
5
4
5
5
5
4

Table 2. Coarsest Problem Size for Anisotropic Problems

the ICCG method. The following paragraphs compare and evaluate ag-
gregation strategies for the SA-AMG method for anisotropic problems.

Adaptation of Independent Aggregation for Anisotropy Tables
4, 5, and 6 have the iteration number, time of each phase, and the total
time for the SA-AMG method with three types of independent aggre-
gation strategy. Table 4 shows the normal independent aggregation of
Indl. This aggregation makes irregular aggregates around borders, and
the iteration number for convergence increases. Table 5 shows the result
of aggregation from borders, which is explained as Ind2 of independent
aggregation in section 3. This improvement does well in convergence. In
addition, the number of levels is reduced with the parallel direct solver
at the coarsest level. The result is shown in Table 6. By using these
improvements, independent aggregation can be adapted to anisotropic
problems.

Joint Aggregation for Anisotropy Tables 7, 8, 9 and 10 show the
results of various aggregation strategies for joint aggregation, Jointl,
Joint2, Joint3, and Jointl with fewer levels and a parallel direct solver.
Jointl, Joint2 and Joint3 differ in their aggregate creation method for the
inner part of each PE's domain. Jointl creates aggregates in the order of
the vertex numbers, and Joint2 creates aggregates around one aggregate
in order. Joint3 creates aggregates from borders. These are further
explained in section 3. Their performances for anisotropic problems
differ little. It also shows that improvements in the reduction of level
number and the use of a parallel direct solver, work well. In comparison
with independent aggregation, joint aggregations works effectively for
anisotropic problems.

High Performance Computational Science and Engineering H I

of PEs
128
64
32
16
8
4
2

ICCG method
of Iteration

>10000
5527
5426
5232
2750
2677
2219

Total Time
> 2106
1169.7
1100.4
1030.2
530.1
506.0
412.1

Table 3. ICCG Method for Anisotropic Problems. Time is written in seconds.

Aggregation Strategy For Anisotropic Problems For this nu-
merical experiment, joint aggregation with a parallel direct solver is the
most efficient. Ind2 of independent aggregation with a parallel direct
solver, however, works nearly as well as the previous method. Except
for methods using a parallel direct solver, any joint aggregation works
well for anisotropic problems.

Indl of Independent Aggregation
of PEs # of Iteration Setup Time Solution Time Total Time

128
64
32
16
8
4
2

515
732
506
73
47
60
27

5.7
5.6
5.0
4.3
4.2
3.7
3.3

443.0
622.2
399.5
51.8
32.1
39.4
16.9

448.8
627.9
404.5
56.2
36.4
43.1
20.4

Table 4- SA-AMG Method for Anisotropic Problems: Indl of independent aggrega-
tion creates aggregates around one aggregate in order. The number of levels is five.
Time is written in seconds.

5.2 Isotropic Problems
For isotropic problems, e in equation 3 is set to 1. Problem domain,

discretization method and boundary conditions are the same as the
anisotropic case. The problem domain is decomposed into sub-domains
with 50 x 50 x 50 vertices, which are allocated to each PE. Table 11
shows the sizes of problems and the numbers of PEs. The convergence
criterion is that the 2-norm of the relative residual is less than 10~12.

For isotropic problems, all SA-AMG methods have four levels and
utilize twenty iterations of the Chaotic SGS method at the coarsest level.

112 High Performance Computational Science and Engineering

Ind2 of Independent Aggregation
of PEs # of Iteration Setup Time Solution Time Total Time

128
64
32
16
8
4
2

245
147
65
62
43
44
29

5.0
5.0
4.6
4.1
3.9
3.5
3.3

205.6
122.6
50.0
42.9
28.9
28.4
18.2

210.7
127.6
54.7
47.1
32.9
31.9
21.6

Table 5. SA-AMG Method for Anisotropic Problems: Ind2 of independent aggrega-
tion creates aggregates from borders. The number of levels is five. Time is written in
seconds.

Ind2 of Independent Aggregation
with fewer levels and a parallel direct solver

of PEs # of Iteration Setup Time Solution Time Total Time
128
64
32
16
8
4
2

82
34
33
26
26
22
21

6.9
5.8
4.9
4.2
4.0
3.5
3.3

62.1
24.9
23.1
17.4
17.0
14.1
13.3

69.1
30.8
28.1
21.6
21.1
17.7
16.6

Table 6. SA-AMG Method for Anisotropic Problems: Ind2 of independent aggre-
gation with fewer levels utilizing a parallel direct solver at the coarsest level. The
number of levels is four. Time is written in seconds.

Jointl of Joint Aggregation
of PEs # of Iteration Setup Time Solution Time Total Time

128
64
32
16
8
4

C
N

99
59
48
47
32
20
26

4.9
4.6
4.2
4.0
3.8
3.4
3.2

78.1
46.7
36.1
32.2
21.4
12.8
16.2

83.1
51.4
40.4
36.2
25.2
16.3
19.5

Table 7. SA-AMG Method for Anisotropic Problems: Jointl of joint aggregation is
explained in section 3. Aggregates in the internal domain are created greedily. The
number of levels is five. Time is written in seconds.

High Performance Computational Science and Engineering 113

Joint2 of Joint Aggregation
of PEs # of Iteration Setup Time Solution Time Total Time

128
64
32
16
8
4
2

109
64
51
48
32
26
32

5.1
5.0
4.5
4.2
4.0
3.6
3.3

89.4
52.5
37.9
33.2
22.4
16.8
20.1

94.6
57.5
42.5
37.5
26.4
20.4
23.5

Table 8. SA-AMG Method for Anisotropic Problems: Joint2 of joint aggregation is
explained in section 3. Aggregates in the internal domain are created around one
aggregate in order. Time is written in seconds.

Joint3 of Joint Aggregation
of PEs # of Iteration Setup Time Solution Time Total Time

128
64
32
16
8
4
2

102
62
51
47
31
26
32

5.1
4.9
4.5
4.2
4.0
3.6
3.4

83.9
50.6
38.0
32.2
20.8
16.6
20.2

89.1
55.6
42.6
36.6
24.9
20.3
23.6

Table 9. SA-AMG Method for Anisotropic Problems: Joint3 of joint aggregation
is explained in section 3. Aggregates in the internal domain are created around
aggregates on borders in order. Time is written in seconds.

Joint 1 of Joint Aggregation
with fewer levels and parallel direct solver

of PEs # of Iteration Setup Time Solution Time Total Time
128
64
32
16
8
4
2

76
40
18
15
15
15
18

6.9
5.2
4.5
4.0
3.8
3.5
3.2

57.1
29.0
12.7
10.1
9.9
9.6
11.3

64.1
34.2
17.3
14.2
13.8
13.1
14.5

Table 10. SA-AMG Method for Anisotropic Problems: Joint 1 of joint aggregation is
improved with fewer levels utilizing a parallel direct solver at the coarsest level. The
number of levels is four. Time is written in seconds.

114 High Performance Computational Science and Engineering

Table 11. Problem Size and Number of PEs for Isotropic Problems

Isotropic Problems
DOF # of PEs Problem Domain
15625k
12500k
10000k
8000k
6000k
4500k
3375k
2250k
1500k
1000k
500k
250k

125
100
80
64
48
36
27
18
12
8
4
2

250
200
200
200
150
150
150
100
100
100
50
50

X

X

X

X

X

X

X

X

X

X

X

X

250 x 250
250 x 250
200 x 250
200 x 200
200 x 200
150 x 200
150 x 150
150 x 150
100 x 150
100 x 100
100 x 100
50 x 100

Coarsest Level Size for the 125PE case
Aggregation Strategy Size # of Levels

Indl
Ind2
Joint 1
Joint2
Joint3

2457
1562
986
1514
1048

4
4
4
4
4

Table 12. Coarsest Problem Size for Isotropic Problems

When the SA-AMG method utilizes Indl of independent aggregation in
125PE case, one PE has 125000, 9319, 526, 20 unknowns for each level.

In Table 12, the problem size at the coarsest level is described for each
aggregation strategy. The problem size is the biggest for the 125PE case
and that case is written.

ICCG and SA-AMG Methods The results of the ICCG method for
isotropic problems are shown in Table 13. The ICCG method's total time
increases with problem size. On the other hand, Tables 14, 15, 16 17 and
18 show the result of the SA-AMG methods with various aggregations.
In comparison with the ICCG method, Tables of the SA-AMG methods
show that they need an almost constant time until convergence for any
problem size on the grounds that problem size per PE is constant in this
experiment. The SA-AMG methods work well especially for large-sized
problems.

High Performance Computational Science and Engineering 115

of PEs
125
100
80
64
48
36
27
18
12
8
4
2

ICCG method
of Iteration

602
590
537
481
463
417
364
340
296
241
207
165

Total Time
267.9
260.0
235.2
210.5
202.4
180.8
157.8
145.7
124.9
100.9
86.6
67.3

Table 13. ICCG Method for isotropic Problems. Time is written in seconds.

Indl of Independent Aggregation
of PEs # of Iteration Setup Time Solution Time Total Time

125
100
80
64
48
36
27
18
12
8
4
2

23
23
22
22
22
22
21
21
21
21
21
21

11.1
10.9
10.8
10.8
10.7
10.7
10.4
10.2
9.8
9.4
8.8
8.4

39.1
38.4
36.8
36.6
36.6
36.2
34.4
33.5
32.5
31.6
30.7
29.6

50.2
49.4
47.8
47.5
47.4
46.9
44.8
43.8
42.4
41.1
39.6
38.0

Table 14- SA-AMG Method for Isotropic Problems: Indl of independent creates
aggregates around one aggregate in order. Time is written in seconds.

116 High Performance Computational Science and Engineering

Ind2 of Independent Aggregation
of PEs # of Iteration Setup Time Solution Time Total Time

125
100
80
64
48
36
27
18
12
8
4
2

37
35
35
35
35
34
34
34
33
31
28
25

10.2
10.0
10.0
10.0
10.0
9.9
9.9
9.6
9.2
8.9
8.5
8.1

61.3
56.6
56.2
55.8
55.5
53.2
52.6
51.3
48.5
44.9
39.9
34.9

71.5
66.7
66.4
65.8
65.6
63.1
62.5
61.0
57.8
53.9
48.4
43.1

Table 15. SA-AMG Method for Isotropic Problems: Ind2 of independent aggregation
creates aggregates from borders. Time is written in seconds.

Jointl of Joint Aggregation
of PEs # of Iteration Setup Time Solution Time Total Time

125
100
80
64
48
36
27
18
12
8
4
2

62
62
61
60
59
59
57
55
55
51
51
48

10.6
10.4
10.5
10.3
11.0
10.3
10.0
9.5
9.2
9.0
8.8
7.8

110.2
106.9
104.4
101.2
98.0
97.9
91.8
86.2
84.4
77.1
76.9
69.1

120.9
117.4
114.9
111.6
109.1
107.3
101.8
95.9
93.7
86.1
85.7
77.0

Table 16. SA-AMG Method for Isotropic Problems: Jointl of joint aggregation cre-
ates aggregates in the order of the vertex number in the inner domain. Time is written
in seconds.

High Performance Computational Science and Engineering 117

of PEs
125
100
80
64
48
36
27
18
12
8
4
2

Joint2
of Iteration

28
28
28
27
27
27
26
25
25
23
22
19

of Joint Aggregation
Setup Time

10.9
10.7
10.6
10.5
10.5
10.2
10.5
10.9
9.7
9.4
8.9
8.4

Solution Time
48.4
47.8
47.2
45.1
44.7
43.9
41.6
39.1
38.2
34.7
32.0
27.0

Total Time
59.4
58.6
57.9
55.7
55.2
54.2
52.2
49.3
48.0
44.1
40.9
35.5

Table 17. SA-AMG Method for Isotropic Problems: Joint2 of joint aggregation cre-
ates aggregates around one aggregate in order in the inner domain. Time is written
in seconds.

Joint3 of Joint Aggregation
of PEs # of Iteration Setup Time Solution Time Total Time

125
100
80
64
48
36
27
18
12
8
4
2

55
55
55
54
54
53
50
51
49
44
50
37

11.6
11.4
11.3
11.2
11.2
10.9
10.7
10.6
10.2
9.8
9.8
8.9

95.8
93.6
92.9
89.4
89.1
85.2
78.6
79.2
74.4
65.9
74.5
52.4

107.5
105.1
104.2
100.7
100.3
96.2
89.4
89.9
84.7
75.8
84.3
61.4

Table 18. SA-AMG Method for Isotropic Problems: Joint3 of joint aggregation cre-
ates aggregates from borders in the inner domain. Time is written in seconds.

118 High Performance Computational Science and Engineering

Ind2 —sir-Joint 1 —*~~Joint2 ~^—Jo»nt3 —t—ICCGf-Ind1

300

250

20 40 60 80

of PEs

100 120 140

Figure 7. ICCG and SA-AMG Methods for Isotropic Problems: Indl, Ind2, Jointl,
Joint2 and Joint3 represent the aggregation methods of the SA-AMG method ex-
plained in section 3.

The SA-AMG method with Various Aggregations Unlike the
anisotropic cases, Ind2 of independent aggregation from borders is infe-
rior to Indl of normal independent aggregation for isotropic problems,
according to Tables 14 and 15. In comparison with other aggregation
strategies, Indl is the best strategy for these problems. The iteration
numbers of Indl are almost constant. These numbers are between 21
and 23 for problems whose sizes are from 2.5 x 105 DOF and 1.56 x 107

DOF.
Next we consider joint aggregation strategies. Joint aggregations cre-

ate aggregates on borders, then create the inner part of the domain.
Jointl, Joint2 and Joint3 differ in the creation of aggregates in the inner
part of the domain. Jointl creates aggregates in the order of aggregate
number, which corresponds to a greedy algorithm. Joint2 creates ag-
gregates around one aggregate in order. Joint3 creates aggregates from
borders. Tables 16, 17, 18 show the results of joint aggregation. Un-
like the anisotropic problems, joint aggregations differ considerably in
performance. Joint2 is the best among the three methods.

Figure 7 shows the total time for the ICCG and SA-AMG methods
for each problem size. It shows the Indl of the normal independent
aggregation strategy requires the shortest total time in our experiments.
Indl and Joint2 of the aggregation strategies work relatively well.

High Performance Computational Science and Engineering 119

Uniform distributed
force on Z=ZMAX

iUx=OonX=XMIN
Uy=O on I
Y=YMIN1

Y

Uz=0 on Z=ZM!N

Figure 8. Cube

5.3 3-Dimensional Problems in Elasticity

The problem of the pulled cube is one of the test problems for Ge-
oFEM. The problem is to compute the displacement U of a cube with
surfaces perpendicular to the x, y and z axes. Ux represents the displace-
ment U in the direction of the x-axis. The surface of Z=ZMAX is pulled
by a uniform distributed force in the Z direction. The other boundary
conditions are Ux = 0 on the surface of X=XMIN, Uy = 0 on the surface
of Y=YMIN, and Uz = 0 on the surface of Z=ZMIN. Figure 8 shows the
situation. The problem domain is decomposed into sub-domains with
35 x 35 x 35 vertices, which are allocated to each PE. A vertex of finite
element mesh has three DOF, corresponding to displacements in the x,
y and z directions. Thus each PE deals with 35 x 35 x 35 x 3 DOF. The
ICCG and SA-AMG methods are 3 x 3 blocked for this problem.

There is little difference in performance among parallel aggregation
strategies for this problem. It seems that the problem size for each PE is
too small for parallel aggregation strategies to make a difference. In this
subsection, comparison between the SA-AMG and ICCG methods, and
the behavior of the SA-AMG method for large problems in elasticity,
are investigated. For elastic problems, all SA-AMG methods have four
levels and utilize twenty iterations of the Chaotic SGS method at the
coarsest level. When the SA-AMG method utilizes normal independent
aggregation for the 125PE case, one PE has 42875x3, 1585x3, 80x3,
and 5x3 unknowns for each level.

ICCG and SA-AMG Methods This paragraph compares the ICCG
and SA-AMG methods for problems in elasticity. Figure 9 shows the

120 High Performance Computational Science and Engineering

DOF
16078k
12862k
10290k
8232k
6174k
4630k
3472k
2315k
1543k
1029k
514k
257k

elastic problems
of PEs
125
100
80
64
48
36
27
18
12
8
4
2

Problem Domain
175 x 175 x 175
140 x 175 x 175
140 x 140 x 175
140 x 140 x 140
105 x 140 x 140
105 x 105 x 140
105 x 105 x 105
70 x 105 x 105
70 x 70 x 105
70 x 70 x 70
35 x 70 x 70
35 x 35 x 70

Table 19. Problem Size and Number of PEs for Elastic Problems

total time for the ICCG and SA-AMG methods for each problem size.
ICCG method's total time increases along with the problem size. On the
other hand, the SA-AMG method's total time increases little as problem
size increases. This means that the number of iterations for the SA-
AMG method until convergencen is almost constant. For example, the
number of iterations for the SA-AMG method with Ind2 of independent
aggregation is 48 for 2 PEs and 52 for 125 PEs. For this problem, the
SA-AMG methods work better than ICCG method for all problem sizes.
The differences in performance of aggregation strategies are small, partly
because the vertex size 35 x 35 x 35 of the problem allocated to each PE
is small in comparison with isotropic and anisotropic problems.

6. Summary and Conclusions

This paper compares various aggregation strategies seeking robust
strategies for both isotropic and anisotropic problems. We implement
the SA-AMG method which can deal with any aggregation strategy and
solve anisotropic, isotropic and elastic problems. There are two con-
tributions. First is that independent aggregation can be adapted to
anisotropic problems by creating aggregates from borders and utilizing
a parallel direct solver at the coarsest level. Independent aggregation is
known to be a bad aggregation strategy, as is shown in [TT00]. Second
is that the robust aggregation strategy is a strategy that creates aggre-
gates around one aggregate in order after shared aggregates are created
on borders. It is explained as Joint2 in section 3. The results for each
type of problem are given in subsequent paragraphs.

High Performance Computational Science and Engineering 121

-Indi Jointi

1200

1000

^ 800

""i1 600

f i 400
200

0

7

50 100

of PEs

150

Figure 9. ICCG and SA-AMG Methods for Elastic Problems: Indl, Ind2, and
Jointi represent aggregation strategies for the SA-AMG method.

For anisotropic problems, joint aggregations work more efficiently
than independent aggregations, but Ind2 of independent aggregation
with a parallel direct solver works as well as joint aggregations with a
parallel direct solver. Methods such as Ind2 or joint aggregations create
aggregates around borders first. That aggregate creation order creates
no distorted aggregates around borders, which seems to be important
for anisotropic problems.

For isotropic problems, Indl of independent aggregation is the best
aggregation strategy in the total time. Joint aggregations differ in their
performance much more than the anisotropic case. Joint2 of joint aggre-
gation works the best of the joint aggregations. Indl and Joint2 create
aggregates around one aggregate in order in the internal domain. This
aggregate creation order in the internal domain seems to be important
for isotropic problems. For elastic problems, there is little difference in
performance. There seems to be too small a domain allocated for each
PE.

References
[Ada98] M. F. Adams. A parallel maximal independent set algorithm. In Pro-

ceedings 5th Copper mountain conference on iterative methods, 1998.

[Geo] GeoFEM, http://www.geofem.tokyo.rist.or.jp/.

[GGJ+97] Anshul Gupta, Fred Gustavson, Mahesh Joshi, George Karypis, and
Vipin Kumar. Design and implementation of a scalable parallel direct

122 High Performance Computational Science and Engineering

solver for sparse symmetric positive definite systems. In Proceedings of
the Eighth SIAM Conference on Parallel Processing, 3 1997.

[MPI] MPI(Message Passing Interface) Forum Web Site, http://www.mpi-
forum.org/.

[Myr] Myrinet Software, http://www.myri.com/scs/.

[NakO3] K. Nakajima. Parallel Iterative Linear Solvers with Preconditioning for
Large Scale Problems. Ph.D. dissertation, University of Tokyo, 2003.

[NNT97] K. Nakajima, H. Nakamura, and T. Tanahashi. Parallel iterative solvers
with localize ILU preconditioning. In Lecture Notes in Computer Science
1225, pages 342-350, 1997.

[NO99] K. Nakajima and H. Okuda. Parallel iterative solvers with Localized ILU
preconditioning for unstructured grids on workstation clusters. IJCFD,
12:315-322, 1999.

[TTOO] Ray S. Tuminaro and Charles Tong. Parallel smoothed aggregation
multigrid: Aggregation strategies on massively parallel machines. In Su-
per Computing, 2000.

[VBM01] Petr Vanek, Marian Brezina, and Jan Mandel. Convergence of alge-
braic multigrid based on smoothed aggregation. Numerische Mathe-
matic, 88(3):559-579, 2001.

