
IMPLEMENTATION OF A DATA GATHERING
SYSTEM WITH SCALABLE INTELLIGENT
CONTROL ARCHITECTURE

Masayuki ~ a k a t a ' and Eiji k a i 2
Information Processing Center, The Univ. of Electro-Communications, Japan

' ~ e ~ t . of Manufacturing Science, Graduate School of Eng., Osaka Univ., Japan
e-mail: takata@cc.uec.ac.jp

Abstract: This paper describes a system named "Glue Logic", which is a infrastructural
system designed for factory automation control system, and a sample
implementation of a layer structured control system architecture, which is
named "Scalable Intelligent Control Architecture" reported in the DIISM2000.
The "Glue Logic" supports the real-time controlling and monitoring system, by
means of realizing communication and synchronizing among multiple agents.
Using the active database technique, this system includes event notification
message sending and condition monitoring features to eliminate data polling.
This system also supports efficient programming environment, by increasing
modularity and reusability of the software assets. Using the Glue Logic, we are
now designing a real-time data gathering system in practical manufacturing
lines according to the Scalable Intelligent Control Architecture, which permits
expansion of control systems not only in spatial dimension but also in
intelligence.

Key words: Factory Automation architecture, Manufacturing work-cell control system,
Infrastructural Software System, Distributed Programming / Execution
Environment

1. INTRODUCTION

The system named "Glue Logic" is an infrastructural system which is
designed to make building manufacturing work-cell control systems easy
and flexible[l,2]. This system binds multiple application software modules,

262 Knowledge and Skill Chains in Engineering and Manufacturing

referred as "agents", and coordinates those agents by means of inter-process
massage passing. As the Glue Logic supports event notification and
condition monitoring features based on active database scheme, users can
easily build real-time event-driven application agents, waiting for
notification messages from the Glue Logic.

As all of the data and agents in a system are abstracted, and are handled
with symbolic names defined in the Glue Logic, agents can be built without
any knowledge on implementation of others. As the result, the Glue Logic
compliant agents are easy to re-use, and the users can build up large libraries
of application agents. As some agents having rather general purpose may be
shared among users, and the software development cost is greatly reduced.

This paper describes the Glue Logic designed as the infrastructural
system for factory automation applications, and also a sample
implementation of the real-time intelligent control system. In Section 2,
description of the Glue Logic is discussed. Section 3 discusses "Scalable
Intelligent Control Architecture (SICA)," which is designed to fit multi-agent
control systems, and required extension in order to implement single control
system with multiple server processes of the Glue Logic. Lastly, in Section 4,
the architecture of the coming multi-agent real-time control systems are
discussed, and the extended Glue Logic is evaluated.

2. THE GLUE LOGIC

The Glue Logic is the minimal set of functionality to coordinate multiple
real-time application agents, which consists of an active database and
message passing mechanism. There are some other "middleware" systems
alike, such as CORBA, but we think those systems are too complex to
implement real-time embedded applications with compactness.

2.1 Architecture

The Glue Logic has been developed to support application programming
by means of data sharing, event notification and condition monitoring. As
the system uses inter-process communication internally over the network,
the Glue Logic can play the roles of the infrastructure of the distributed
manufacturing work-cell control systems. This makes development and
maintenance of the event driven application easier.

The Glue Logic relays all inter-process communication among its agents,
and manages all data shared by those. Because of this, the Glue Logic can
send the change notification messages, when the values of the shared data
are altered. As the virtualizing the counterpart of the communication can be

Implementation of a Data Gathering System with Scalable Intelligent 263
Control Architecture

achieved by relaying all of the inter-agent communication, each agent can be
independent from adding, deleting and altering other agents.

2.2 Overall Implementation

In the first implementation of the Glue Logic, its design is based on the
client-server model of transaction processing, as shown in Figure 1, though
there is no need for the users to know about its implementation. All agents'
processes communicate only with this server process over network, and there
is no redundancy in this system.

Figure 1. Configuration of the Glue Logic.

t r Inter-process r +

The Glue Logic consists of two major parts: the communication interface
subsystem and the data management subsystem. The communication
interface exchanges information with agents running in both the same work-
cell controller and remote controllers connected with the network system.

The data management subsystem consists of also two parts: the data
change monitor subsystem and the data storage subsystem. The data storage
subsystem manages the association pair of the name and the value of the
object. The data change monitor subsystem monitors the changes in the data
storage subsystem and sends out the data change notification messages, and
executes depending data evaluation.

Glue Logic Server Cornrnunicat~on
Veh~cle

fl I

Q ~ ~ l ~ ~ Ee
Data Storage Subsystem Subsystem

Oat avRelr .ved

2.3 Data Handling of the Glue Logic

The atomic data element of the Glue Logic is the tuple of a name and its
value. The name resembles variable identifier, and can have a value. The
name is a sequence of identifiers, separated by a period, such as abc.ijk.xyz.
Using this format, the agent programmers can implement arbitrary data
structures. For all elements of one structure, their names contain same
identifier sequence in their leading part, but trailing part of names differs
from each other. The common part is called a stem and the trailing part is
called a variant.

As the value of the name, application programs may specify one of
followings; integer, floating point real, character string, expression and link.

Glue Logic Client

Application 37 Logic
AP I

264 Knowledge and Skill Chains in Engineering and Manufacturing

As the name itself is not typed, users may bind any types of data in turns. If
an agent accesses the name bounded to an expression value, the expression is
evaluated and the result is returned as the value. Using the link, users can
point another name. Each name may have some attributes. The attributes
denote optional characteristics of corresponding names, and the Glue Logic
changes its behavior according to the values of attributes.

2.4 Interlocking Features

To share resources safely among multiple agents, the Glue Logic has the
feature of interlocking operation. Single transaction from an agent to Glue
Logic server process is processed indivisible way, and it may include
multiple accesses, for which three access methods are prepared; read, write
and compare. In general, the transaction of the Glue Logic may contain
arbitrary number of accesses, and there is no restriction on order of accesses.

The transaction for interlocking compares the value of name with the
value shown in the transaction, and assigns another value shown in the
transaction to the name if the compared data are identical. This transaction
provides means of updating shared data. When one transaction includes
more than two sets of comparison and conditional assignment, users can
maintain a linked list safely from insertion and deletion.

2.5 Active Database Features

In order to eliminate the needs of data polling and to decrease the
network load, the feature of data change notification is introduced. The
agents, which want to receive a change notification of a certain name's value,
can register the ID of the agent itself to the name. The agent ID list of the
notification destination is kept as the value of InformTo attribute. On the
time when the Glue Logic server system receives data update request, the
system searches for the agents registered as the notification destination, and
then notify the fact of change to all the registered agents.

Some agents may need to know the value of name being a certain
constant value, or the values of names satisfy a certain condition. The Glue
Logic can be set to send a notification message only if a certain condition is
met. As shown in Figure 2, each name in the Glue Logic can have
dependence lists as the values of Triggers and TriggeredBy attributes. If one
or more elements of the list in the some name's TriggeredBy attribute is
updated, the value of the name itself is updated to have the result of an
expression, which is also registered as the value of IfTriggered attribute. If
this new value differs from the former, the data change notification is sent to
its notification destinations.

Implementation of a Data Gathering System with Scalable Intelligent 265
Control Architecture

Name /Attribute Value

Figure 2. Data used by the condition monitoring.

3. SCALABLE INTELLIGENT CONTROL
ARCHITECTURE

3.1 Overview

The control systems ever built with the Glue Logic are implemented in
accordance with the "Subsumption Architecture" proposed by Brooks[3].
With his original architecture, it is very easy to add-on much more intelligent
controlling and planning abilities, by integrating much more higher level
layer which monitors status of lower layer and emits directive information.

Sensor
Drwer

Agents

Statussummary Intention

Currentstatus Highest Layer I
Statussummary Intention

Currentstatus

StatusSummary

Currentstatus 4 Lowest Layer Actuation ,

Dev~ce
Driver
Agents

Figure 3. The Scalable Intelligent Control Architecture

The authors have modified this architecture to fit it to multi-agent control
systems. In authors' "Scalable Intelligent Control Architecture (SICA)"
illustrated in Figure 3, which permits expandability not only on the breadth
of system to be controlled but also on the abstractness of the controlling aim.
Each layer consists of one or more agents, and their communications are
supported by message exchange feature of the Glue Logic.

266 Knowledge and Skill Chains in Engineering and Manufacturing

In our SICA paradigm, lower layers send messages to next higher ones to
show the current "summarized" or "abstracted" status of the controlled
system. On the other hand, higher layers send messages to next lower to
show the "intention" of the control or "targeting goal state," not to show
how the lower layer to behave.

3.2 Adapting the Glue Logic to the Scalable Intelligent
Control Architecture

In order to make the control systems scalable, it is necessary for the Glue
Logic to have capability of data locality control. In the Scalable Intelligent
Control Architecture, detail data are used frequently in lower layers, and
such data are accessed from limited number of agents within those layers.
This is the locality of data, and it is better for the Glue Logic to separate data
into multiple Glue Logic server processes.

3.2.1 The Name Space

To achieve this aim, the naming convention of the Glue Logic should be
extended to control locality of the data. Multiple Glue Logic server
processes consisting the unique control system must share same name space,
and the name of the data should imply the locality of the data, and also imply
the place (i.e. process) the data is kept.

child-A's name space parent's name space child-B's name space
. prefix: super.
.

Figure 4. Name Spaces of Parent and Two Child Sewer Processes.

In the current implementation of the Glue Logic, we structured server
processes into tree structure. The names begin with string super. show that
the data with those names reside in the remote Glue Logic server process,
and other names show they are not. This remote server process is called
"super" server or "parent" server. In the name space of a parent server, each
child server is associated to each name prefix, named "anchor". The data
with those name prefixes are kept in the parent server itself, but are also

Implementation of a Data Gathering System with Scalable Intelligent 267
Control Architecture

accessible from one of child server process of the parent server, which is
associated to the name prefix. This relation is illustrated in Figure 4.

3.2.2 Communication Among Glue Logic Server Processes

With this naming convention, no server process can communicate with
its brother or sister server process directly. To achieve this, a relay agent
attached to the parent server process must copy information between two
data area resides in the parent server itself. Such an agent is overhead for this
information system, but it frees other application agents from knowing of
their brothers and sisters.

Alike this, a relay agent is also required to communicate between one
server process and its grandparent server process. In this case, as there is two
levels of difference, the characteristics of data are also different. The data to
be handled by agents in the higher layer should be summarized, in order to
reduce data volume and to make those data more abstracted.

So the relay agent which relays "vertically upward" from one server
process to its grandparent server process must have summarizing feature. In
the reverse direction, relaying data "vertically downward" from one to its
grandchild, a relay agent should have some functionality which divides one
intention into a set of multiple sub-intentions. In many cases, this process is
called "goal deduction," and needs intelligence to solve complex problem.

3.2.3 Inter-Layer Interlocking

As the implementation of interlocking operation is based on the fact that
one transaction is indivisible, there may be some troubles if the names to be
interlocked resides in two Glue Logic server processes.

To keep consistent operations, we introduced some restrictions on
multiple "comparison and assignment" sets within one transaction. Thought
the restriction rules are now under evaluation, the current restriction set on
the order of comparison and assignment for the names implementing
interlocking includes; all assignment should come after all of comparison, all
comparison of name with super. prefix should come after all comparison of
name without super. prefix, and all assignment of name with super. prefix
should come before all assignment of name without super. prefix.

3.3 Implementation Example

Accordance with the Scalable Intelligent Control Architecture, we are
designing a data gathering system. This system gathers point-of-production

268 Knowledge and Skill Chains in Engineering and Manufacturing

data and process equipment condition data from multiple remote production
facilities. Processed data can be monitored at multiple sites, and warning
messages are given to the operators. This system consists of two layers,
lower one is for collecting data and warning to manufacturing floor when
unusual data is found, and upper one is for logging and warning to
management office when abnormal data is found.

The upper layer has its own Glue Logic server process, while lower one
has multiple Glue Logic server processes each of which are associated to
physical manufacturing lines or cells. The lower layer gathers raw data
continuously, and each data is checked against its own control limit.

CONCLUSION

In this paper, the new implementation of the Glue Logic and Scalable
Intelligent Control Architecture are described. The authors believe in the
effectiveness of the concept of infrastructural system for control agents, and
the paradigm of the scalable intelligence, through some application
implementation.

To develop flexible manufacturing system control software, it should
take less cost, less time and more reliability, as one may have to develop a
new manufacturing control software for producing only one instance. The
library which consists of widely used agents is strongly required for this
requirement, and the concept of our control architecture is one of the most
efficient way to grow manufacturing systems up step-wisely.

The authors would like to emphasize that the smart mechanism of the
Glue Logic is the very thing to make the control system powerful, intelligent,
and easy to be programmed.

REFERENCES

1. Takata, M., Arai, E. (2000): "Implementation of a Layer Structured Control System on the
"Glue Logic"", Global Engineering, Manufacturing and Enterprise Networks (Ed. Mo, J.,
Nemes, L.), Proc. of DIISM 2000, pp.488 - 496, Kluwer Academic Publishers on behalf of
IFIP, 2001.

2. Takata, M., Arai, E. (1997): "The Glue Logic: An Information Infrastructure System for
Distributed Manufacturing Control," Proc. of the Int'l Con$ on Manufacturing Milestones
toward the 21st Century, pp.549 - 554, Tokyo, Japan, July 23-25,1997.

3. Brooks, R. A. (1986): "A Robust Layered Control System For A Mobile Robot," IEEE
Journal of Robotics and Automation, Vol. RA-2, No. 1, 1986

