Skip to main content

Part of the book series: The International Series in Engineering and Computer Science ((SECS,volume 783))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Gardner, “Charge-pump phase-lock loops,” IEEE Trans. Commun., vol. 28, pp. 1849–1858, Nov. 1980

    Article  Google Scholar 

  2. S. Palermo, “A multi-band phase-locked loop frequency synthesizer,” Master thesis, Texas A&M University, College Station, Texas, Aug. 1999

    Google Scholar 

  3. B. Razavi, RF Microelectronics. New York: Prentice Hall, 1998

    Google Scholar 

  4. W. Rhee, “Design of high performance CMOS charge pumps in phase locked loop,” Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), vol. 1, Orlando, FL, May 1999, pp.545–548

    Google Scholar 

  5. R. Stepinski, “Design high-order PLLs,” Microwave & RF, pp. 69–86, July 2001

    Google Scholar 

  6. D. Rosemarin, “Accurately compute PLL charge-pump filter parameters,” Microwaves & RF, pp. 90–94, Feb. 1999

    Google Scholar 

  7. —, “Accurately compute PLL active-filter parameters,” Microwave & RF, pp. 78–84, June 2000

    Google Scholar 

  8. K. Holladay and D. Burman, “Design loop filters for PLL frequency synthesizers,” Microwave & RF, pp. 65–70, Sept. 1999

    Google Scholar 

  9. H. Rategh and T. Lee, Multi-GHz Frequency Synthesis and Division. Boston, MA: Kluwer, 2001

    Google Scholar 

  10. H. Johansson, “CMOS Parallel-Sampling Receivers,” Ph.D. dissertation, Linkoping University, Sweden, May 1998

    Google Scholar 

  11. Y. Tang, M. Ismail, and S. Bibyk, “A new fast-settling gearshift adaptive PLL to extend loop bandwidth enhancement in frequency synthesizers,” in Proc. ISCAS’02, vol. 4, Phoenix, AZ, May 2002, pp. 787–790

    Google Scholar 

  12. D. Banerjee, “PLL performance, simulation, and design,” http://www.national.com

    Google Scholar 

  13. C. Vaucher, “An adaptive PLL tuning system architecture combing high spectral purity and fast settling time,” IEEE J. Solid-State Circuits, vol. 35, pp. 490–502, Apr. 2000

    Article  Google Scholar 

  14. J. Craninckx and M. Steyaert, Wireless CMOS Frequency Synthesizer Design. Boston, MA: Kluwer, 1998

    Google Scholar 

  15. C. Barrett, “Fractional/integer-N PLL basics,” http://www.ti.com

    Google Scholar 

  16. J. Crawford, Frequency Synthesizer Design Handbook. Norwood, MA: Artech House, 1994

    Google Scholar 

  17. C. Vaucher, Architectures for RF Frequency Synthesizers. Boston, MA: Kluwer, 2002

    Google Scholar 

  18. R. Best, Phase-locked Loops. 4th edition, McGraw-Hill, 1999

    Google Scholar 

  19. B. Razavi, “A 900MHz/1.8GHz CMOS transmitter for dual-band applications,” IEEE J. Solid-State Circuits, vol. 34, pp. 573–579, May 1999

    Article  Google Scholar 

  20. A. Rofougaran, G. Chang, J. Rael, J. Chang, M. Rofougaran, P. Chang, M. Djafari, M. Ku, E. Roth, A. Abidi, and H. Samueli, “A single-chip 900-MHz spread-spectrum wireless transceiver in 1-εm CMOS — part I: architecture and transmitter design,” IEEE J. Solid-State Circuits, vol. 33, pp. 515–534, Apr. 1998

    Article  Google Scholar 

  21. S. Sidiropoulos, D. Liu, J. Kim, G. Wei, and M. Horowitz, “Adaptive bandwidth DLLs and PLLs using regulated supply CMOS buffers,” Symp. on VLSI Circuits Digest Technical Papers, Honolulu, HI, June 2000, pp. 124–127

    Google Scholar 

  22. A. J. Bishop, G. W. Roberts, and M. L. Blostein, “Adaptive phase locked loop for video signal sampling,” in Proc. IEEE ISCAS’92, San Diego, CA, May 1992, pp. 1664–1667

    Google Scholar 

  23. G. Roh, Y. Lee, and B. Kim, “Optimum phase-acquisition technique for charge-pump PLL,” IEEE J. Solid-State Circuits, vol. 32, pp. 729–740, Sept. 1997

    Google Scholar 

  24. J. Lee and B. Kim, “A low-noise fast-lock phase-locked loop with adaptive bandwidth control,” IEEE J. Solid-State Circuits, vol. 35, pp. 1137–1145, Aug. 2000

    Article  Google Scholar 

  25. H. Shirahama, K. Taniguchi, and K. Nakashi, “A new very fast pull-in PLL system with anti-pseudo-lock function,” in Proc. Symp. VLSI Circuits Dig. Tech. Papers, Kyoto, Japan, May 1993, pp. 75–76

    Google Scholar 

  26. C. Yang and S. Yuan, “Fast-switching frequency synthesizer with a discriminator-aided phase detector,” IEEE J. Solid-State Circuits, vol. 35, pp. 1445–1452, Oct. 2000

    Article  Google Scholar 

  27. Y. Tang, Y. Zhou, S. Bibyk, and M. Ismail, “A low-noise fast settling PLL with extended loop bandwidth enhancement by new adaptation technique,” in Proc. IEEE ASIC/Soc Conf., pp. 93–97, Sept. 2001

    Google Scholar 

  28. I. Hwang, S. Song, and S. Kim, “A digitally controlled phase-locked loop with a digital phase-frequency detector for fast acquisition,” IEEE J. Solid-State Circuits, pp. 1574–1581, Oct. 2001

    Google Scholar 

  29. C. Lo and H. Luong, “A 1.5-V 900-MHz monolithic CMOS fast-switching frequency synthesizer for wireless applications,” IEEE J. Solid-State Circuits, vol. 37, pp. 459–470, Apr. 2002

    Article  Google Scholar 

  30. J. Hein and J. Scott, “z-domain model for discrete-time PLL’s,” IEEE Trans. Circuits Syst. vol. 35, pp. 1393–1400, Nov. 1988

    Article  Google Scholar 

  31. M. Paemel, “Analysis of a charge-pump PLL: a new model,” IEEE Trans. Commun., vol. 42, pp. 2490–2498, July 1994

    Article  Google Scholar 

  32. C. Hedayat, A. Hachem Y. Leduc, and G. Benbassat, “High-level modeling applied to the second-order charge-pump PLL circuit,” Texas Instruments Technical Journal, vol. 14, no. 2, pp. 99–107, Mar.–Apr. 1997

    Google Scholar 

  33. P. Larsson, “A simulator core for charge-pump PLL,” IEEE Trans. Circuits Syst. II, vol. 45, pp. 1323–1226, Sept. 1998

    Article  Google Scholar 

  34. E. Liu and A. Sangiovanni-Vincentelli, “Behavioral representations for VCO and detectors in phase-locked systems,” in Proc. CICC, Boston, MA, May 1992, pp. 12.3.1–4

    Google Scholar 

  35. L. Wu, H. Jin, and W. Black, “Nonlinear behavioral modeling and simulation of phase-locked and delay-locked systems,” in Proc. CICC, Orlando, FL, May 2000, pp. 447–450

    Google Scholar 

  36. B. Smedt, and G. Gielen, “Nonlinear behavioral modeling and phase noise evaluation in phase locked loops,” in Proc. IEEE CICC, Santa Clara, CA, May 1998, pp. 53–56

    Google Scholar 

  37. Y. Fan, “Modeling and simulation of Σ-Δ frequency synthesizers,” in Proc. IEEE ISIE, vol. 1, June 2001, pp. 684–689

    Google Scholar 

  38. S. Brigati, F. Francesconi, A. Malvasi, A. Pesucci, and M. Poletti, “Modeling of fractional-N division frequency synthesizers with SIMULINK and MATLAB,” in Proc. IEEE ICECS, vol. 2, Malta, Sept. 2001, pp. 1081–1084

    Google Scholar 

  39. C. Lee, K. McClellan, and J. Choma, “A supply insensitive PLL design through PWL behavioral modeling and simulation,” IEEE Trans. Circuits Syst. II, vol. 48, pp. 1137–1144, Dec. 2001

    Article  Google Scholar 

  40. M. Hinz, I. Konenkamp, and E. Horneber, “Behavioral modeling and simulation of phase-locked loops for RF frond ends,” in Proc. 43rd IEEE Midwest Symp. CAS, vol. 1, Lansing, MI, Aug. 2000, pp. 194–197

    Article  Google Scholar 

  41. F. Eynde, J. Schmit, V. Charlier, R. Alexandre, C Sturman, K. Coffin, B. Mollekens, J. Craninckx, S. Terrijn, A. Monterastelli, S. Beerens, P. Goetschalckx, M. Ingels, D. Joos, S. Guncer, and A. Pontioglu, “A fully-integrated single-chip SOC for Bluetooth,” in Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, Feb. 2001, pp. 196–197, 446

    Google Scholar 

  42. A. Ajjikuttira, C. Leung, E. Khoo, M Choke, R. Singh, T. Teo, B. Gheong, J. See, H. Yap, P. Leong, C. Law, M. Itoh, A. Yoshida, Y. Yoshida, A. Tamura, and H. Nakamura, “A fully-integrated CMOS RFIC for Bluetooth applications,” in Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 198–199, 446, Feb. 2001

    Google Scholar 

  43. N. Filiol, N. Birkett, J. Cherry, F. Balteanu, C. Gojocaru, A. Namdar, T. Pamir, K. Sheikh, G. Glandon, D. Payer, A. Swaminathan, R. Forbes, T. Riley, S. Alinoor, E. Macrobbie, M. Cloutier, S. Pipilos, and T. Varelas, “A 22 mW Bluetooth RF transceiver with direct RF modulation and on-chip IF filtering,” in Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2001, pp. 202–203, 447

    Google Scholar 

  44. C. Durdodt, M. Friedrich, C. Grewing, M. Hammes, A. Hanke, S. Heinen, J. Oehm, D. Pham-Stabner, D. Seippel, D. Theil, S. Van Waasen, and E. Wagner, “A low-lF RX two-point 2A-modulation TX CMOS single-chip Bluetooth solution,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1531–1537, Sept. 2001

    Article  Google Scholar 

  45. P. van Zeijl, J. Eikenbroek, P. Vervoort, S. Setty, J. Tangenberg, G. Shipton, E. Kooistra, I. Keekstra, and D. Belot, “A Bluetooth radio in 0.18εm CMOS,” in Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2002, pp. 86–87, 447

    Google Scholar 

  46. J. Cheah, E. Kwek, E. Low, C. Quek, C. Yong, R. Enright, J. Hirbawi, A. Lee, H. Xie, L. Wei, L. Luong, J. Pan, S. Yang, W. Lau, and W. Ngai, “Design of a low-cost integrated 0.25εm CMOS Bluetooth SOC in 16.5 mm2 silicon area,” in Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2002, pp. 90–91, 449

    Google Scholar 

  47. M. Kokubo, M. Shida, T. Ishikawa, H. Sonoda, K. Yamamoto, T. Matsuura, M. Matsuoka, T. Endo, T. Kobayashi, K. Oosaki, T. Henmi, J. Kudoh, and H. Miyagawa, “A 2.4 GHz RF transceiver with digital channel-selection filter for Bluetooth,” in Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2002, pp. 94–95, 449

    Google Scholar 

  48. G. Chang, L. Jansson, K. Wang, J. Grilo, R. Montemayor, C. Hull, M. Lane, A. Estrada, M. Anderson, I. Galton, and S. Kishore, “A direct-conversion single-chip radio-modem for Bluetooth,” in Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2002, pp. 88–89, 448

    Google Scholar 

  49. B. Song, V. Leung, T. Cho, D. Kang, and S. Dow, “A 2.4GHz Bluetooth transceiver in 0.18εm CMOS,” in Proc. IEEE Asia-Pacific Conf. on ASIC, Aug. 2002, pp. 117–120

    Google Scholar 

  50. H. Darabi, S. Khorram, H. Chien, M. Pan, S. Wu, S. Moloudi, J. Leete, J. Rael, M. Syed, R. Lee, B. Ibrahim, M. Rofougaran, and A. Rofougaran, “A 2.4-GHz CMOS transceiver for Bluetooth,” IEEE J. Solid-State Circuits, vol. 36, pp. 2016–2024, Dec. 2001

    Article  Google Scholar 

  51. W. Sheng, B. Xia, A. Emira, C. Xin, S. Moon, A. Valero-Lopez, and E. Sánchez-Sinencio, “A 3V, 0.35εm CMOS Bluetooth receiver IC,” IEEE J. Solid-State Circuits, vol. 38, pp. 30–42, Jan. 2003

    Article  Google Scholar 

  52. T. Lin and W. Kaiser, “A 900-MHz 2.5-mA CMOS frequency synthesizer with an automatic SC tuning loop,” IEEE J. Solid-State Circuits, vol. 36, pp. 424–431, Mar. 2001

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). PLL Frequency Synthesizer. In: CMOS PLL Synthesizers: Analysis and Design. The International Series in Engineering and Computer Science, vol 783. Springer, Boston, MA. https://doi.org/10.1007/0-387-23669-4_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-23669-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23668-1

  • Online ISBN: 978-0-387-23669-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics