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Abstract We consider the tracking problem for parabolic systems with boundary 
control. Assuming that the reference signal is bounded and measurable, 
we prove various regularity results as well representation formulas for 
the optimal control and the optimal trajectory. 
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1. Introduction and Preliminaries 

The quadratic regulator problem for distributed parameter systems 
was analyzed in the monographs [I, 51, in particular the (time and space) 
regularity properties of the Riccati equations, arising in boundary con- 
trol of PDEs, is deeply studied in [5]. However variants of the quadratic 
regulator problem like the tracking and cheap control did not receive 
much attention in the boundary control case. 

The aim of this paper is to partially fill this gap, by investigating 
the tracking problem. This consists in finding a control v to force the 
output z of a given system to follow a desired reference signal y; we 
refer to [3, 8]for an introduction to this problem in finite dimensions. 
We obtain regularity results for the optimal control v as well as useful 
representation formulas involving v and the optimal trajectory w, see in 
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particular Theorems 8, 10 and 13. These are extensions of known finite 
dimensional formulas (see [3]) to the present boundary control case. 

Since the presence of the reference signal y entails a lack of regularity 
in the solution and a different form of the optimal control, our theorems 
are not contained in the monograph 151. Moreover the results which are 
presented here will be applied to the study of the cheap control problem 
in a forthcoming paper. 

The system that we consider is described by 

where A generates an exponentially stable holomorphic semigroup on a 
Hilbert space X and v E L2 (0, T; X) .  Exponential stability is assumed 
only in order to simplify the notations. The operator B takes values in 
(domA*)'. Here A* denotes the adjoint of A and (domA*)' stands for 
the topological dual of domA* (the space domA* is endowed with the 
graph norm); see [5]for more details as well as for several applications of 
(1). We assume that for some y E [0, I ) ,  

i.e. D is a bounded linear operator from U to X ,  where U is a second 
Hilbert space (if A is not stable then the notation (-A)' is to be replaced 
by (-A - r I ) r  with r large enough). Note that (2) is equivalent to 
B E L(U, [dom(-A*)']') and implies that, for some 0 and M > 0, 

The tracking problem is the following: 

+n Ja(wo;v), Ja(wo;v) = {Ilz(t) - y(t)1I2 + allv(t)112} dt , iT 
z(t)  = z(t;wo,v) = Cw(t;wo,v),  

(4) 
where a > 0 is fixed, y is a prescribed reference signal and w(t; wo, v) 
denotes the solution to (1); further C is a linear and bounded operator 
from X to a third Hilbert space Y. The cheap control problem consisting 
in studying the limit for a + O+ will be studied in the sequel. The 
standing assumption on y is that it is measurable and bounded, i.e. 
y E Lm(O, T; Y).  

Let us introduce the following operators 
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wo E X .  The properties of these operators have been precisely studied 
in [5]. Moreover we recall from [5, p. 13 and p. 231: 

THEOREM 1 Let y E [ O , l )  as in (2). We have: 

L E C ( L ~ ( O ,  T;  U), L~ (0, T; dom(-A)'-?)) 

and L E C(LCO(O, T; U), C([O, TI; dom(-A)~))  for every 0 5 B < I - y 

We observe that we are in the second smoothing case studied in [5]so that 
we can freely use all the regularity results in that book, which concern 
the solutions of the Riccati equation and the operators L and A. Using 
a result in [6], we can improve Lemma 1 as follows (as usual, C u  denotes 
the space of Holder continuous functions): 

THEOREM 2 For any 8 E [O,1 - y), we have 

L E C(LCO(O, T; U) ,  C'-T-'([O, TI; dom(-A)'). 

In particular L E C(LCO(O, T; U), C1-?([o, TI ;  X ) ,  

Proof We write: 

see (2). Now recall that in Proposition 4.2.2 in [6], see also Sec. 2.2.2 in 
[B], it is proved that the operator R, 

R f ( t )  = Jot e ~ ( ~ - ' )  f (s )ds  

belongs to L(LCO(O, T ;  X ) ,  C1-a ([0, TI;  dom(-A),), for any a E (0 , l ) .  
Remark that this implies also that R E C(Lm(O, T ;  X )  , C 1 - ~  ([0, TI; X ) )  , 
for any a E (0 , l ) .  Applying this result to L we get the assertion. 

2. The Tracking Problem 
Let us consider (4). The existence of the optimal control v, is clear, 

Let w, be the state produced by v,, i.e. the solution of Eq. (1) when 
v = va. Let moreover z, = Cw, = Av, + rwO be the corresponding 
output. We easily obtain from (5) a second representation formula for 
the optimal control: 

1 
V, = -A*[y - &] . 

a (6) 
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Using Young inequalities, we see that A*(y - rwo)  is continuous on 
[0, TI and 1 1  A* (y - rwo)  (t) 1 1  5 M ( T  - t)'-7 . Moreover from [5, Theo- 
rem 1.4.4.4](a + A*A)-' is boundedly invertible on Cy(O, T; U), where 

C,(O,T;U) = ( f  E C[O,T);U uch that sup (T-t ) , l f ( t ) l  < +m). 
tE(O,T) 

Hence we have that v, is continuous on [O,T). In addition the usual 
bootstrap argument, based on Young inequalities, shows: 

THEOREM 3 The optimal control v, is continuous on [0, TI.  Hence, also 
w,(t) and x,(t) are continuous too. Moreover, I Jv,(t)J I = O ( T  - t ) l - ~ .  

Combining Lemmas 2 and 3 we obtain: 

THEOREM 4 The function w, is Holder continuous on every compact 
interval contained i n  (0, TI with values i n  X .  The Holder exponent is 
1 - y. 

Proof From 

we need only to prove Holder continuity of the integral (since the first 
addendum is continuously differentiable for t > 0, because eAt is a holo- 
morphic semigroup). To this end it is enough to apply Lemma 2. 

In the next result, we give two representations of the minimum value 
of the cost. 

THEOREM 5 W e  have: 

Proof In the following computation, 6 = y - I'wo and norm and inner 
product are in L ~ .  We note that 

since 
Q-Av,= y-2 , .  

This is the first representation. The second representation is obtained 
from here, since 
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The proof is complete. 
We introduce now the explicit form of ( 6 ) :  

1 
B*~**( ' -~)c* [ y ( s )  - z , (s )]ds  = - - B * p ,  ( t )  ( 7 )  a 

where 
T 

p,(t) = - /' e A * ( s - t ) c *  
t 

[ y  (4  - x f f  ( s ) l d s .  ( 8 )  

We note that p, E C([O, TI; X ) ,  since C is a bounded operator and 

For t = 0 we have the equality 

so that we find a third representation for the optimal cost, 

The function p, is the weak solution of 

We have the condition p ( T )  = 0 since the final value of w is not penalized. 
In this way we arrive at the usual hamiltonian system 

The functions p, and w ,  solve ( 1 0 )  in a weak sense. We improve the 
regularity of p, in the next Lemma. 

THEOREM 6 W e  have p, E c'-'([o, TI; d o m ( - A * ) ' ) ,  for every 0 < 6 < 
1, and p, E L 2 ( 0 ,  T ;  dom A*). 

Proof The first assertion follows from ( 8 ) ,  taking into account that the 
function C * [ C w ,  - y] is bounded and applying Proposition 4.2.2 in [6] .  
The second statement can be proved as in [4] ,  see also [5, p. 41. 

Let us consider now the special but important case when y is Holder 
continuous. Using [6,  Theorem 4.3.4land [7, Theorem 3.5.1, we get: 

THEOREM 7 If there exists q E ( 0 ,  I ) ,  q 5 1 - y, s.t. y E C " [ c , T ] ;  Y )  
for every c > 0 ,  then  p, i s  continuously differentiable, and the derivative 
i s  Holder continuous too, i.e., p, E C1+v([c ,  TI, X ) ,  for every c > 0 .  
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In the next result we consider the regularity of the map B*p, = -av,. 

THEOREM 8 Let 7 E (0 , l )  and y E C ~ ( [ E , T ] ;  Y),  for any E > 0. The 
functions B*p, (and so also v,) is Holder continuous on compact inter- 
vals contained in (0, TI, of exponent min{q, 1 - y). 

Proof Let f = -C*[Cw, - y]. The function f is bounded. Now fix 
E > 0 and take t" > t '>_ E. We obtain 

Hence, 

The function f is bounded so that the first addendum is less then 

The second integral is the sum of the following two terms: 

T-t" 

B* I eA* s C* [ y ( ~  $ t') - y(s + t")] ds, 

Holder continuity of y and condition (3) imply that the norm of (11) is 
less then Me[t" - t']" The second integral is treated analogously, and 
we get a similar estimate, with exponent 1 - y on every interval [€,TI, 
E > 0, see Lemma 4. 

A further regularity result that is needed below is as follows: 

THEOREM 9 Let xo E dom A*. The function: 

is differentiable on [0, TI and moreover 
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Proof First recall that the function t + Dv,(t) is continuous on [O, TI. 
Then let S > 0; because the semigroup is holomorphic, we have 

We see from here that 

Thanks to this estimate, we can use dominated convergence theorem 
and we can pass to the limit for 6 + O+ in the following equality: 

We differentiate both sides of the resulting equality and we get: 

The proof is complete. 
If y  = 0 it is well known that the optimal control can be put in 

feedback form. This is not possible if y  # 0 since at a given time t the 
future values of y ,  which affect the optimal control, are unknown. Infact 
we have: 

THEOREM 10 W e  have p,(t) = Pa ( t )w,  ( t )  + d, ( t )  where P, solves the 
Riccati diferential equation 
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Here x and y are arbitrary elements in dom A. The function d, is con- 
tinuous on [0, TI and is zero for t = T. It depends on y but not on wo 
and it is given by (here (Atu)(r) = S I  ~ e ~ ( ' - ' ) ~ u ( s ) d s )  

Proof The operator valued function P,(t) is the solution of the usual 
Riccati equation. For each x E X, P, (.)x is continuous on [0, TI and it 
is zero for t = T. Moreover, it is differentiable on (0, T), with continuous 
and bounded derivative in closed subintervals, see Theorem [5, p. 19-20]. 
In order to prove the theorem, it is sufficient to show that the continuous 
function d, (t) = p, (t) - P, (t)w,(t) only depends on the tracking signal 
y. We introduce the functions vS(s; t ,  xo) and wS(s; t, xo), xo E X, the 
solutions of the optimization problem under study, in the case that y = 0 
and with initial condition xo at time t instead then 0. Hence,vs = -(a+ 
AZ;At)-'AZ;rtxo, where r t xo ( s )  = ~ e ( ' - ~ ) ~ x ~  (note that v+ depends on 
a) .  Moreover, we use the following representation formula for P, (t): 

Hence, 

pa (t) - ~ , ( t ) w ~ ( t )  = - eA*(S- t )~*y(s )ds  6' 
For clarity, in this formula we indicated explicitly the initial time and 
initial value of w,. Now we use dynamic programming: the optimal 
control on [t,T], with initial condition w,(t; 0, wo) is the restriction to 
[t, TI of v,. This holds for every given reference signal y. Hence, 
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as wanted. 
In fact, in finite dimensions d, solves 

We will show that an analogous result holds in general. We prove first: 

THEOREM 11 We have, for every x E domA, 

Proof We already know the continuity of d, and that d,(T) = 0. 
Moreover, from [5, p. 21, formula 1.2.2.191, B*P, E L ( X ;  C([O, TI; U)).  

Recall that d,(t) = p,(t) - P,(t)w,(t). First let us treat p,. Using 
the Hamilton equation ( lo) ,  we see that 

Now we consider differentiability of Pa (t) .  We use formula [5, (1.2.2. Id)] 
and Lemma 9 in order to compute 

The first addendum is 

1 
(-A*P,(t)x - P,(t)Ax - C*CX + -P,(t)BB*P,(t)x,wa(t)). (17) 

Q 

The second addendum is computed from Lemma 9 (recall that P,(t)x E 
dom A* since x E dom A, see [5, property vii), p. 201). We get 

Now we subtract (17) and (18) from (16). The result follows. 
Now we improve our information on the regularity of d,(t): 
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THEOREM 12 We have d ,  E cl-'([o, T I ;  dom(-A*)'), for every 0 < 
0 < 1 ,  and d ,  E L 2 ( 0 , ~ ; d o m A * ) .  

Proof We derive an integral representation formula for d,, which dis- 
plays the desired regularity properties. For any s E [0, TI, set [Pa ( s )  B ]  = 
[B*P,(s)]*. From [5,  p. 21]it follows that P,B is linear and continuous 
from U to C([O, TI; X ) .  Moreover, B*d,(s) = B*p,(s) - B*P,(s)w,(s) 
is well defined and continuous, the first addendum from Lemma 3 and 
the second one from the continuity of w,(s) and of B* P,(s). For the 
same reason, s -+ [P,(s) B]  B*d,(s) is continuous so that, from (15),  the 
following representation formula holds: 

where f ( s )  is bounded on [0, TI with values in X. Now we conclude as 
in Lemma 6. 

We are going to prove a variation of constants formula for d,(t). 
Namely, we want to prove 

THEOREM 13 The function d,(t) is given b y  

where U ( t ,  s )  is an evolution operator which is exponentially bounded, 
strongly continuous and which transforms X into domB* = dom(-A*)', 
for a.e. t > s .  

In order to reduce the notation to a more usual form, it is convenient 
to replace ( ( t )  = d,(T - t ) .  A simple transformation shows that ( ( t )  
solves 

t 

( ( t )  = / e'* { [ P ( ~ ) B ] B * F ( T )  - c*z / (~ )}  dr 
0 

where ~ ( r )  = - ~ P , ( T  - r ) ,  y(r) = y(T - r ) .  To prove the previous 
theorem we need the next result. 

THEOREM 14 There exists a unique strongly continuous and exponen- 
tially bounded evolution family U ( t ,  s )  which, for t > s,  is defined b y  
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for every x E X .  Moreover, for a.e. t > s ,  we have U(t, s ) X  C dom B* 
and [P(.)B]B*u(., s ) z  is locally integrable on [s, SW), for every x E X .  
The evolution family U(t, s )  verifies, for t > s and x E X ,  

Proof We use Theorem 9.19, p. 487, in [2]. Let Uo(t, s) = e Ac(t-s)  and 
let B(t) = [P( t )  BIB*. Then, dom B(t) = dom B* is constant and we 
have B(.)Uo(., s )  strongly continuous for t > s ,  with 

locally integrable, from (3). The conclusion follows from this. 
Proof of Theorem 13. We introduce 

t 
((t) = - / U(t, s)C*&(s)ds 

0 

We are going to prove that [(t) = ((t). We see from (19) that s -+ 
B*U(t,  s )x  is integrable on [0, t], for any x E X .  Since B* is closed, it is 
straightforward to check, by using suitable Riemann sums, that 

Moreover, we see from (19) 

Hence, (( t)  and ((t) solve the same Volterra integral equation, and 

so that also 

(B* [((t) - ((t)]) = / " B*eA*("') 
0 

[&)BI(B*[E(T) - Jl(r)l)dr. 

Thanks to the inequality (3), Young inequalities and continuity of 

[@-PI 
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the operator on L2 (0, T) defined by 

has norm less then MTY for a suitable number M ;  so it is a contraction 
on ~ ~ ( 0 ,  TI),  TI < ( ~ / M ) ~ I Y  = TI. Hence B* [[(t) - J"(t)] is zero on [0, TI] 
and, for t > TI, 

The same argument shows that (B*[[(t) - l ( t ) ] )  is zero on [TI, 2Tl] too. 
In fact, it is easily seen that the norm of the operator 

from L ~ ( T ~ ,  2T1) in itself, is less then MTT, with the same coefficient 
M as above. After a finite number of steps we see that B*[[(t) - i ( t ) ]  
is zero on [O,T] so that, from (20) we have t ( t )  = ((t) on [O,T]. This 
finishes the proof. 
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