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Abstract In this paper we consider the family of sets verifying the uniform cusp
property introduced in [2] and extended in [4] to cusp functions only
continuous at the origin. In the latter case we show that to any ex-
tended cusp function, we can associate a continuous, non-negative, and
monotone strictly increasing cusp function of the type introduced in [2].
We construct an example of a bounded set in RN with a cusp function
of the form ¢|f|*, 0 < a < 1, for which its boundary integral is infinite
and the Hausdorff dimension of its boundary is exactly N — a. We then
give compactness theorems for the family of subsets of a bounded open
holdall verifying a uniform cusp property with a uniform bound on ei-
ther the De Georgi [6] or the vy-density perimeter of Bucur and Zolésio
[1]. We also give their uniform local C°-graph versions following [4].
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This class forms a much larger family than the one of subsets verifying
a uniform cone property.
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Introduction

In this paper we consider the family of sets verifying the uniform
cusp property introduced in [2] and extended in [4] to cusp functions
only continuous at the origin. In the latter case we show that to any
extended cusp function, we can associate a continuous, non-negative,
and monotone strictly increasing cusp function of the type originally
introduced in [2]. Unlike sets verifying a uniform cone property, such
sets do not necessarily have a locally finite boundary integral. This fact
is illustrated by constructing an example of a bounded subset of RN
with cusp function ¢|f|?, 0 < « < 1, for which the boundary integral is
infinite and the Hausdorff dimension of its boundary is exactly N — «.

Even without a uniform bound on the perimeter a general compact-
ness theorem was given in [4] for a family of subsets of a bounded hold-all
verifying a uniform cusp property with a cusp function only continuous
at the origin. In this paper we give compactness theorems for the family
of subsets of a bounded open holdall verifying a uniform cusp prop-
erty with a uniform bound on either the De Georgi [6] or the y-density
perimeter of Bucur and Zolésio [1]. We also give in § 4.3 their uniform
local C°-graph versions following [4]. This class of subsets forms a much
larger family than the one of subsets verifying a uniform cone property.

1. Preliminaries: Topologies on Families of Sets

We first introduce some notation. Given an integer N > 1, my and
Hpy 1 will denote the N-dimensional Lebesgue and (N — 1)-dimensional
Hausdorff measures. The inner product and the norm in RN will be
written z -y and |z|. The complement {x € RN : x ¢ Q} and the
boundary N CQ of a subset  of RN will be respectively denoted by
CQ or RM\Q and by 89 or I'. The distance function d4(z) from a point
T to a subset A # @ of RN is defined as inf{|y — z| : y € A}.

Recall a few results on metric topologies defined on spaces of equiv-
alence classes of sets constructed from the characteristic function, the
distance or the oriented distance functions to a set. Given Q C RN,
I’ £ &, the oriented distance function is defined as

bo(z) ¥ da(z) — dgg(). (1)
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It is Lipschitz continuous of constant 1, and Vbg exists and |Vba| < 1
almost everywhere in RN, Thus bg € le’f(RN) for all p, 1 < p < oo.
Recall that b;; =dgq, by = dgq, and |ba| = dr, and that Xiniq = [Vdgql,
Xintca = |Vdal, and xr = 1 — |[Vdr| a.e. in RN, where x4 denotes the
characteristic function of a subset 4 of RN. Given a nonempty subset
D of RN, the family Cy(D) = {bq : Q@ C DandT' # @} is closed in
WLP(D). The following theorem is central. It shows that convergence
and compactness in the metric on Cy(D) associated with WLHP(D) will
imply the same properties in the other topologies introduced in [2].

THEOREM 1 Let DCRN be bounded open and 1 < p < oo. The maps

bo > (bd, g, bal) = (da, dgq, daq) : Co(D)C WHP(D)—»WIP(D)? (2)
ba = (X80, Xint 2 Xint0o): WHP(D) — LP(D)? (3)

are continuous.

Proof. — They are well-defined from [2] (Chapter 5, Theorem 2.1 (iii),
p. 207) for the map (2) and [2] (Chapter 5, Thm 2.2 (iv)-(v), p. 210)
for the map (3). They are continuous from [2] (Chapter 5, Thm 5.1). O

2. Extension of the Uniform Cusp Property

The uniform cusp property introduced in [2] (Chapter 5, § 11) was
specified by a continuous function A : [0, o[ = R such that

h0)=0, h(p)=A V¥8,0<0<p 0<Ah(B) <A (4)

Recall that with h of the form h(f) = X (0/p)%, 0 < o < 1, we recover
the uniform cusp property for 0 < o < 1 and the uniform cone property
for « = 1, p = A tanw and h(f) = 6/tanw which corresponds to an
open cone in 0 of aperture w, height A, and axis ey.

The uniform cusp property was extended in [4] to the family of cusp
functions h in the larger space

HE 11 [0,00[— R : h(0) = 0 and h is continuous in 0}  (5)

by associating with h € H, p > 0, and A the axi-symmetrical region

def

C(Ah,p) = {(C',CN)ERN=IC'I<0 and 1i£rflsgp h(€') < v < /\} (6)

around the axis ey = (0,...,0,1) in RN, Given A > 0, p > 0, h € H,
and a direction d € RN, |d| = 1, the rotated region from direction ey to
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d is defined as

dof o |PH(y)] < pand
CAh,pd) = JyeR™ limsup h(|Pw,(2)]) <y-d<A(’ (7)

z2—Y

where Hy = {d}* is the hyperplane through 0 orthogonal to the direction
d. Finally, the translation of C(A, h, p,d) to the point z will be denoted

Co(\ hy pod) E o+ C(\ by p, d).

LeEMMA 2 ([4],[5]) For all A > 0, p > 0, h € H, and x € RN, the
regions C(A, h, p) and Cy(A h,p,d) are nonempty and open. Moreover
the segment (z,z + Ad) is contained in Cy(A, h, p,d).

The function h is referred to as a cusp function and the space H as
the space of cusp functions. The definition of the uniform cusp property
in [2] (Chapter 5, § 11) can now be extended to the larger class H.

DEFINITION 3 Let Q be a subset of RN such that 0Q # @.
(1) Q satisfies the local uniform cusp property if

Veed, JheH,IN>0,3p>0, 3r>0,3dec RY,|d| =1,
such that Vy € B(z,r)NQ, Cy(\h,p,d) Cint .

(ii) Given h € H, § satisfies the h-local uniform cusp property f

VredQ, IAN>0,3p>0, 3r>0, 3dcRY,|d =1,
such that Vy € B(z,7)NQ, Cy(\ h,p,d) CintQ.

(111)  satisfies the uniform cusp property for (r, A, h, p) if
3heH,30>0,3p>0,3r >0, VzedQ, IdecRY,|d =1,
such that Yy € B(z,7)NQ, Cy(\h,p,d) C int Q.
The three cases of Definition 3 only differ when 0f2 is not compact.

THEOREM 4 ([4]) If 0 is compact, then the three uniform cusp prop-
erties of Definition 3 coincide.

In fact, when a local uniform cusp property is verified for some cusp
function h € H, it is verified for another cusp function which is contin-
uous, non-negative, and monotone strictly increasing as in (4).

THEOREM 5 Assume that Q satisfies the local uniform cusp property in
x € OQ for some (r,\,h,p), h € H. Then there exist (r',N,h',p),
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with h' € H continuous, non-negative, monotone strictly increasing, and
N = KW(p'), such that Q satisfies the local uniform cusp property in
z € 0Q for (r,N' 1, p).

Proof. — By continuity of h € H in 0,

Vn>1, 30<6,<0,-1/2, Y0<O<L0, |hO)]<I2vL

At each step n > 0 construct the continuous monotone strictly increasing
and non-negative function k, : [0,6p] = R defined as follows

A 00 N _ .
kn(6) def ) Zi+T 9]._]_9].+1 ﬁgj_éiHv if0;,1<0<6;, 0<j<n-1
A 6,0 A :
AT o T Q_n%, if0<0<80,.

By continuity of A at the origin and the fact that h(0) = 0, 6, — 0
and k,(0) — 0. By construction, 0 < |h(0)] < kps1(8) < kn(f) in
[0,00]; knt1(6) = kn(6) in [Bny1,00], and [[kns1 — knllclo,0,,, < A/27FE
Therefore there exists a continuous non-negative and monotone strictly
increasing function k£ € C{0, 6] such that k, — k in C[0, 8], £(0) = 0,
and |h(6)] < k(0) < Xin [0,6]. Finally, if k(g) = A, choose p’ such that
k(p'y =X XN =\, and h' = k. If k(6y) < A, choose p’ = 6y, N = k(6y),
and h' = k. From the construction, p' < p, N < A, A’ > h, and hence
C(N,W,p") € C(A h,p). Therefore the local uniform cusp property of
Definition 3 is verified with a non-negative, continuous, and monotone
strictly increasing cusp function of the form (4). O

We now turn to the compactness theorem. Given a bounded open
subset D of RN, p> 0, A >0, r > 0, and h € H, consider the family

L(D, A\ b, p,r) &

def {Q cD Q) satisfies the uniform cusp} . ®)

property for (A, h, p,7)
The compactness Theorem 11.1 ([2], Chapter 5) readily extends to H.

THEOREM 6 ([4]) Let D be a nonempty bounded open subset of RN and
1<p<oo. Forp>0, A>0, and h € H the family

B(D, M\ hyp,r) & {bq : ¥ € L(D, A by p,7)}

is compact in C(D) and WIP(D). As a consequence the families

Ba(D, M\ hyp,r) € {dg : ¥Q € L(D, Ak, p,7)},

BS(D, A\ b, o) € {dgq : Y2 € L(D, A\ by p,7)},
BY(D, A\ hyp,r) ¥ {don : ¥Q € L(D, A b, p,1)}
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are compact in C(D) and WYP(D), and the following families are com-
pact in LP(D)
X(D,\hopr) = {xq « Y2 € L(D, A b p,1)}
XC(D,A,h,p,T') d____‘if {XCQ : Ve L(D,)\,h,pﬂ')}-

3. Extended Uniform Cusp Property and
Boundary Integral (Perimeter)

Domains {2 which are locally Lipschitzian epigraphs or, equivalently,
satisfy the local uniform cone property enjoy the additional property
that the (N — 1)-Hausdorff measure of their boundary 9Q is locally
finite. In general, this is no longer true for domains which are locally
Holderian epigraphs of exponent «, 0 < a < 1, but we have an upper
bound on the Hausdorff dimension of 02. We first recall a definition.

DEFINITION 7 Let Q C RN be such that 00 # @. The set Q is said to
be locally a C%¢-epigraph, 0 < £ < 1, if for each = € O there exist

(a) an open neighborhood U(z) of x;
(b) a direction ey(z) € RN, ley(z)| = 1;

(c) a bounded open neighborhood Vi (z) of 0 in the hyperplane
H(z) = {ex(z)}* through 0 such that

U(z) € {y € RY : Pyiy(y - 2) € Vi), 9)
where Py (g 1s the orthogonal projection onto H(z); and
(d) a C%-mapping ag: Vi(zy — R such that

U) N8N =z + ¢+ (ven() : ¢ € VH“} } (10)
(N = a:c(C)

U(z) N intQ = U(z) N {a: + ¢+ Cven (@) : Cfv iZH((Cﬁ)} (1)

THEOREM 8 If Q in RN satisfies the uniform cusp property associated
with the function h(f) = 0%, 0 < a < 1, then the Hausdorff dimension
of O is less or equal to N — a.

Proof. - From Theorem 3.3 (i) in [4], Q is locally a C%-epigraph and, a
fortiori, a C%-epigraph. Let r > 0, p > 0, and A > 0 be the parameters,
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en(z) = dy the direction and H(z) the hyperplane through 0 orthogonal
to d, associated with the point x € 0€2. Then there exists g,

0<7< % min{r)/2} (12)
which is the largest radius such that
Br()(0,7) C {Pyq)(y — ) : Yy € Bz, 1) NN} .

The neighborhoods of Definition 3.2 in [4] or Definition 5.2 in Chapter 2
of [2] that specify the local graph a; : Vy(;) — R can be chosen as

def _
Vi(z) = B(z)(0,p) and

def
U(z) = B(z,ra) N{y: Py —z) € V) ),

where By (;)(0,7) is the open ball of radius p in the hyperplane H(z).
For each ¢’ € Vy(y), there exists a unique yo € 9Q NU(z) such that
Pr(oy(y¢ — =) = ¢ and the function

(13)

¢ aa(¢)E (o — 2) dy s Vi) = R
is well-defined, bounded,

V'€ Vi), laa()l <, (14)
uniformly continuous in Vi), and
V(G € Vg, aa(G) = aalC)] S e G - ¢ (15)

Since 99 is compact there exists a finite number of points {z; € 9Q :
1 <4 < m} such that 0Q C UZ,U(z;). Given € < p, p as chosen in
(12), let Nq(e) be the number of hypercubes of dimension N and side
¢ required to cover 02 and let Ng ;(¢) be the number of hypercubes of
dimension N and side ¢ required to cover 9Q NU(z;).

We have the following estimate

N1 o(yN=Te)®

Nag(e) < (2) -

Indeed the neighborhood
Vi@) = Br@)(0,P) C Br(g)(0,72)

can be covered by [ry/e]V~! (VN — 1)-dimensional hypercubes of side ¢.
On each (N — 1)-dimensional hypercube of side ¢ the variation between
the minimum and the maximum of the function a, is bounded by

c( (N—l)eQ)a=c(\/NTTs>a.
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So the number of N-dimensional hypercubes of side ¢ necessary to cover
the hypersurface above each (N — 1)-dimensional hypercube of side ¢ is

£ (1)

€
Finally
ot (20) " (¢ (7))
< 51\71—1 ell_a (ry+e)V! <c ( N - 1>a + 51_a>

SNl_a (rx + 5)N‘1 (c( N - l)a + 61_"‘> .

Asaresult forall 8> N — «a

IN

Noi(e) <Y Nale)
1=1

m ENl_a (ry+e)¥ 1 <c \/J—V———l)a + sl_a)

= No(e)e® < P~N4em (ry+¢)V (c( N-1) +51—a>
= VB> N-a, Hy(d2) =0

IN

This means that, by definition, the Hausdorff dimension of 9€2 is less or
equal to N — a. [

It is possible to construct examples of sets verifying the uniform cusp
property for which the Hausdorff dimension of the boundary is strictly
greater than N — 1 and hence Hy_1(0§2) = +oo.

EXAMPLE 9 This following two-dimensional example of an open domain
satisfying the uniform cusp condition for the function h(8) = 6%, 0 <
a < 1, can easily be generalized to an N-dimensional ezample. Consider
the open domain Q in R?

ded{(x,y):—-1<m§0and0<y<2}

N{(z,y) : 0<z<1and f(z) <y<2}
N{(z,y) 1 1<z<2and0<y<2}
where f:[0,1] = R is defined as follows

f(z) q—e:fdc(:c)a, 0<z<1,

and C is the Cantor set on the interval [0,1]. This function is equal to 0



Uniform Cusp Property, Boundary Integral, and Compactness 33

2
.
1 domain C(\ hyp,em)
f(z) A
ol W]
-1 0 1 2

Figure 1. Domain Q for NV = 2, 0 < a < 1, ez = (0,1), p = 1/6, A = (1/6)%,
h(d) = 6°.

0 1/9  2/9  1/3 ' /9 8/9 1

2/3 7
Figure 2. f(z) = do(z)*/? constructed on the Cantor set C for 2k + 1 = 3.

on C. Any point in [0, 1)\C belongs to one of the intervals of length 37,
k > 1, which has been deleted from [0,1} in the sequential construction
of the Cantor set. Therefore the distance function dc(x) is equal to the
distance function to the two end points of that interval. In view of this
special structure it can be shown that

vz,y € [0,1], [de(y)® —de(2)®| < ly —=|*

Denote by I' the piece of the boundary O specified by the function f =
do. On T the uniform cusp condition is verified with p = 1/6, A =
(1/6)%, and h(0) = 0%. Clearly the number Nqo(e) of hypercubes of
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dimension N and side € required to cover 08 is greater than the number
Nr(e) of hypercubes of dimension N and side € required to cover I'. The
construction of the Cantor set is done by sequentially deleting intervals.
At step k = 0 the interval (1/3,2/3) of width 371 is removed. At step
k a total of 2% intervals of width 3=+ are removed. Thus if we pick
e = 3~*+D) the interval [0,1] can be covered with ezactly 3*+D intervals.
Here we are interested in finding a lower bound to the total number of
of squares of side € necessary to cover I'. For this purpose we only keep
the 2% intervals removed at step k. Vertically it takes

{ (2—13—(Ic+1))0‘:l . (2—13—(k+1))a

3—(k+1) 3—(k+1) -1

Then we have for 8 >0

9-13—(k+1))®
Nafe) > Nr(e) > 2* (Lg-mﬁ“)* -

> Zk—a3(k+1)(1—a) _ 21(3 — (3(1—a)2>k 2—a3(1—a) _ 21€

> Nae)(34)1* 2 374049 ((36-e)z) " yregii-e) ot)

k 2 k
—(a+8) —aq(l-a) _ [ =2
= (3 2) a3 (3(1+ﬁ)>

The second term goes to zero as k goes to infinity. The first term goes
to infinity as k goes to infinity if 37@TA2 > 1, that is, 0 < a + f <
In2/In3. Under this condition, H145(092) = H143(I') = +oo for all
0 < o <In2/In3 and all 0 < B < In2/In3 — a. Therefore given
0<a<In2/In3

VB,0< f+a<In2/In3, Hi4p(00) =+o0
and the Hausdorff dimension of 0 is strictly greater than 1.

Given 0 < o < 1, it is possible to construct an optimal example of a set
verifying the uniform cusp property for which the Hausdorft dimension
of the boundary is exactly N — « and hence Hy_;(09) = +o0.

ExAMPLE 10 Optimal example of a set that verifies the uniform cusp
property with h(0) = |6]|%, 0 < « < 1, and whose boundary has Haus-
dorff dimension exactly equal to N — a.

For that purpose, we need a generalization of the Cantor set. Denote
by Cy the Cantor set. Recall that each x, 0 < x < 1, can be written
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uniquely (if we make a certain convention) as
o
_ aj(3a 113)
-3 ot
j=1

where aj(3,z) can be regarded as the jth digit of x written in basis 3.
From this define the Cantor set is characterized as follows

z € C) <= Vj,a;(3,2) #1.

Similarly for an arbitrary integer k > 1, each x € [0, 1] can be uniquely
written in the form

and we can define the set Cy as
z € Cp <=V, aj(zk +1,z) # k.

In a certain sense, if ky > ko, Cy, contains more points than Cy,. We
now use these sets to construct the family of set Dy as follows

€Dy <<=2rcC

and for k> 1
T € Dy — 2/”'1(:5 ~- 2%y e ¢

Note that, if ky # ko, Dy, () Dk, = @ since the Dy’s only contain points
from the interval [1 —2F=1 1 ~ 2K]. Consider now the following set

pl
= |J s
=1

and go back to Example 9 with the function f is replaced by the function

Again it can be shown that
vz,y € [0,1], |dp(y)* —dp(z)*] < |y — ="

Note that on the interval [1 — 2811 — 2%] we have dp(z)* = dp, (z)°.

Denote by I the piece of boundary 98 specified by the function f = dp
and Ty the part of boundary OS2 specified by the function f =dp =dp,
on the interval [I — 25711 — 2], Once again on T the uniform cusp
property is verified with p =1/6, A = (1/6)%, and h(8) = 6“.
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Clearly the number Nq(e) of hypercubes of dimension N and side ¢
required to cover OS) is greater than the number N () of hypercubes of
dimension N and side € required to cover I'y. The construction of the
set Oy, is also done sequentially by deleting intervals. At step j = 0 the
interval Jk/(2k + 1), (k + 1)/(2k + 1)[ of width (2k+1)7! is removed. At
step j a total of 27 intervals of width (25 + 1)~U+Y) are removed. If we
consider the intervals that remain at step j, a total of 2771 nonempty
disjoint intervals of width (ﬁ%)jH remain in the set Cx. Each of these

intervals contains a gap of length (ﬁﬂ)jﬂﬁ created at step 7 + 1.

If we construct the set Dy in the same way, at step j a total of 27

nonempty disjoint intervals of width (2k+1) AR 21k remain in the set Dy.

Each of these intervals contains a gap of length (2k+1)J+12k(2}c+1)' Pick
1 ko
= — j+l
©= w1

and look for a lower bound on the number of squares of side € necessary
to cover I'y. For this purpose, only consider the 29! nonempty disjoint
intervals remaining at step j. As they each contain a gap of length

EOVTY o
<2k+1> 25(2k + 1)
vertically it takes

(s s 222
| 1
2 (<2k]:-1>]+1 2k+1(21k+1)> ok (%k >]+ 1

e-cubes. Then we have for 3 >0

Na(e) = Nr(e)

o i+l AL 1 azk 2k+1\*
= 2%k + 1 2k+1(2k + 1) k

o (202 + ke i+l 2k gy

=\ k(2k + 1) 20(k+1) (2 + 1)@

. k(l—a)~a
— l—aa—1}Jj+1 _2_______ i+l
= (2(2k + 1)1 7k <(2k+1)a> 2
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and hence

'8 No(e)

; 8
1 k I\ 1T ™ ok(l-a)-a )
> | — ) l—apa=-1\J+if 2~ 7 "1  55+1
—<2k <2k+1) ) (202 + D7) e ) 2

o\t ok(1-a)-a 1 N A
> | =—— 2 - 27 — | ——
= <2k+l> 2k(1+B) (2 + 1)@ 2k <2k+1)
The second term goes to zero as j goes to infinity. The first term goes
to infinity as j goes to infinity if (Ekk?)o”'ﬂQ > 1 for any integer k, that
is, if

log 2
log ((2k +1)/k)"

As k can be chosen arbitrarily large, the former inequality reduces to
0 < a+ B < 1. Under this condition there exists an integer k for which
Hi15(0Q0) = Hii (k) =400 forall0<a<land all0 < <1 - a.
Therefore, given 0 < a < 1 V3,0 < <1 — ¢, H13(0Q) = +o0.. This
implies that the Hausdorff dimension of 02 is greater than or equal to
2 — o which is the upper bound we obtained in Theorem 8.

O<a+pB<

4. Compactness under the Uniform Cusp
Property and a Bound on the Perimeter

4.1 De Giorgi Perimeter of Caccioppoli Sets

One of the classical notions of perimeter is the one introduced in the
context of the problem of minimal surfaces for Caccioppoli sets.

DEFINITION 11 Let Q be a measurable subset of RN. Given an open set
D in RN, Q is said to have finite perimeter with respect to D if xq €
BV (D). This perimeter denoted by Pp () is given by the expression

def
Pp() = [ Vxallan oy (16)

where BV (D) is the space of functions of total bounded variation and
MY (D) is the space of bounded measures on D.

Given a bounded open subset D of RN, p> 0, A >0, 7 >0, ¢ > 0, and
h € H, consider the family

Q satisfies the uniform cusp
L(D,\ h,p,7,c) lach: property for (X, h,p,r,c) . (17
and Pp(Q?) <c¢
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The compactness Theorem 6 readily extends to this new family.

THEOREM 12 Let D be a nonempty bounded open subset of RN and
1<p<oc. Forp>0,A>0,¢>0, and h € H and assume that
L(D,\, h,p,r,c) is not empty. Then the family

B(D,\h,p,r,¢) & {bg : ¥Q € L(D,\ h, p,r,¢)}
is compact in C(D) and WYP(D). As a consequence the families

Ba(D, M\ hyp,r,c) & {dg : VQ € L(D, A\ b, p,ryc)}
BE(D, M\ by pyryc) & {dge, : ¥ € L(D, A h, p,r, )}
B3(D, M\ hypyry0) & {dog 1 ¥Q € L(D, A, h, p,7,0)}

are compact in C(D) and WYP(D), and the following families are com-
pact in LP(D)

X(D, Mk, p,r¢) € {xq 0 ¥Q € LD, Mk, p,r, )},
XD, A by prye) S {xeq : Y € LD, M b, p,r,0)}.

Proof. — From Theorem 6 there exist Q in L(D, A\, h, p, ) and a sequence
{Q} in L(D, A\, h, p,7, ¢) such that by, — bg in WHP(D) and Pp(Q,) <
c. In particular, from Theorem 1, xq, — xq in L}(D). But, in view
of the uniform bound Pp(Q,) < ¢ on the Q,’s (cf. [6]), there exist a
subsequence {xq,, } such that xq, - xqo in LY (D) for some ' for
which Pp (') < c¢. But, as a subsequence of {2},

ba,, — b in W'#(D) and xq, — xa in L'(D).

Hence xqo = xa, Pp(Q) = Pp(Q) < ¢, and Q € L(D, A, h,p,r,c). This
concludes the proof. [J

4.2 Finite v-density Perimeter

The v-density perimeter introduced by Bucur and Zolésio [1] is a
relaxation of the (N — 1)-dimensional upper Minkowski content which
leads to the compactness Theorem 14, We recall the definition and quote
the compactness for the W1P-topology under a uniform bound on the
v-density perimeter as revisited in [3].

DEFINITION 13 Let v > 0 be a fized real and Q a subset of RN with
nonempty boundary I'. Consider the quotient
r
P % sup my (V™)

18
0<k<y 2k ( )
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Whenever Py(T') is finite, we say that € has a finite y-density perimeter.

It was shown in [1] that, when Py (T") is finite, mn (I') = 0. The compact-
ness result of [1] can be revisited and established in the W!P-topology
from which convergence in all other topologies of Theorem 1 follows.

THEOREM 14 ([3]) Let D # @ be a bounded open subset of RY and
{0}, Tn # @, be a sequence of subsets of D. Assume that

v >0 and ¢ > 0 such that Vn, Py(I'y) <c. (19)

Then there exist a subsequence {Qy,} and Q, T # @, of D such that
PW(F) < linrg%gfpfy(rn) <c (20)
Vp, 1 <p< oo, bq, —bain WhP(U, (D)) -strong. (21)

The proof of the next result combines Theorem 6 which says that the
family L(D, A, h, p,r) is compact with Theorem 14 which says that the
family of sets verifying (19) is compact in W'P(D). The intersection of
the two families of oriented distance functions is compact in W1?(D).

THEOREM 15 For fized v > 0, Theorem 12 remains true when Pp(2)
is replaced by the y-density perimeter P (T).

4.3 Compactness via Local C%graphs

It was shown in [4] (Thm 3.3 and 3.4) that the uniform cusp property
is equivalent to conditions on the local C%graphs. Thus by adding a
condition either on the De Giorgi or the perimeter y-density perimeter
in Theorem 4.1 of [4] we get the analogues of the above Theorems 12 and
15. Recall the definition of the orthogonal subgroup of N x N matrices

OMN){A: "4AA=A"A=1T}, (22)

where *A is the transposed matrix of A. A direction can be specified
either by a matrix (of rotation) A € O(N) or the corresponding unit
vector d = Aey € RN,

THEOREM 16 Let p > 0 be given and assume that U is o bounded neigh-
borhood of 0 such that

Uc{yeRY: Py(y) € Bu(0,0)}, VEBr(0,0).  (23)

Let R > 0 be such that B(0,2R) C U. Given a bounded nonempty
subset D of RN, consider a family L(D,p,U) of subsets Q of D with
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the following properties: for each Q@ € L(D,p,U) and each x € 09,
there exist A%(z) € O(N) and a C°-mapping o : V¥(z) — R, where

Vﬂ(m)d:-e-fAQ(m)V and L{Q(I)défa: + A%(2)U, such that

! Q
U (z) N o = {x+g’+<Ne§5(x); ¢ EVQ(x’)} (24)
(v = a; ()
g intQ = U (x T ! W : CIEVQ(IC)
U (z)NintQ = U (z) N + ¢+ Cnven(z): €N>a¥(é')} (25)

where €St () = A%(z)ey.
(i) Assume that there exists h € H and ¢ > 0 such that
VQ e L(D,p,U), Yy eV, ai(y) <h(lyl), Pp(Q) <c (26)

where @ = afl o A%(z) : V — R. Each Q of L(D,p,U) satisfies
the uniform cusp property for the parameters (r?, A?, p%, h%) =
(R, R,p,h). Hence (from Theorem 12) the family

B(D,p,U,0)% {bg : ¥Q € L(D, p,U) and Pp(Q) < ¢}
is compact in C(D) and WIP(D), 1 < p < .

(ii) Given v > 0, the results of part (i) remain true with Pp(Q) < ¢
in place of Py(I') < c.
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