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Abstract A class of quasilinear variational data assimilation problems on the iden- 
tification of the the initial-value functions is considered for the models 
governed by evolution equations. The optimality system is reduced to 
the equation for the control function. The properties of the control 
equation are studied and the solvability theorems are proved for lin- 
ear and quasilinear data assimilation optimality systems. The iterative 
algorithms for solving the problem are formulated and justified. 
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1. Statement of Data Assimilation Problem 

Let H and X be real separable Hilbert spaces such that X is imbedded 
into H continuously and densely, H*,  X* are the spaces adjoint to H ,  
X ,  respectively. We assume that H = H*, (., .)L2(0,T;H) = (., .), 
1 1  - 1 1  = (., .)'I2. Let us consider also the spaces Y o  = L2(0,T; H ) ,  
Y = L2(0, T ;  X ) ,  Y* = L2(0,T;  X*) of abstract functions cp(t) with the 
values in H, X ,  X*,  respectively, and the space 

dcp W = {cp E L2(0,T;  X )  : - E L2(0,T;  X * ) )  
d t  

with the norm 
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Let a ( t ;  cp, y5) be a bilinear form defined for any t E [0, TI, cp, y5 E X 
and satisfied the inequalities: 

czllcp112x < a ( t ;  cp, Y )  , c:! = const > 0 , v t E [O, TI , v cp, y5 E x . 
(1.2) 

By A(t) E L(Y, Y*) we denote the operator generated by this form: 

Consider the following quasilinear evolution problem: 

where f E Y*, u E H ,  r E [-rO,rO] is a parameter, 70 E R+, F(cp) is 
a nonlinear F'rechet differentiable operator, F : Y + Y*. Introduce a 
functional of u E H of the form: 

where a = const 2 0, Z is a Hilbert space (observational space) with 
the scalar product (., and the norm I  . I z  = (., .);I2, B : Y + Z 
is a linear bounded operator, p E H,  @ E Z. The functions p, @ are 
generally determined by a priory observational data. The coefficient a 
is a regularization parameter [I]. 

Consider the following data assimilation problem: for given f E Y*, 
@ E Z,  find u E H, cp E W such that 

The problems of the form (1.6) were studied by L.S.Pontryagin [7], J.- 
L.Lions [5], [2]and many others (see Refs.) 

The necessary optimality condition [5]reduces the problem (1.6) to 
the system for finding the functions cp, cp* E W, u E H, of the form: 
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where (F1(p))* : Y -+ Y* is the operator adjoint to the F'rechet derivative 
of F at the point cp E W, A*(t) : Y -+ Y* is adjoint to A(t), K : Y -+ 
Y*, C : Z i Y* are linear bounded operators, K = CB,  C is defined 
by the equality (CO, $) = (0, B$)z V 0 E 2,111 E Y, and equations (1.7), 
(1.8) are considered in the space Y*. 

2. Linear Data Assimilation Problem 
Consider the problem (1.7)-(1.9) for r = 0. The solutions of problems 

(1.7), (1.8) for T = 0 may by represented [6]as 

where Go : H i W, GI : Y* -+ W, G(IT) : Y* -+ W are linear bounded 
operators. Eliminating p ,  p* from (1.7)-(1.9) for r = 0, we come to the 
equation for the control u: 

Lu = P, (2.2) 

where the operator L : H -+ H and the right-hand side P are defined 
by 

E is the identity operator, To : W -+ H is the trace operator: Top = 

vlt=o. 
Consider the operator L for a = 0 and denote it by z. Let Go : H --+ 

W be the operator from (2.1), where the element Gou is defined as the 
solution of (1.7) for T = 0, f = 0. The following statement holds. 

LEMMA 1 The operator 5 : H + H is continuous, self-adjoint, and 
positive semi-definite: 

If the operator BGo : H -+ Z is invertible, the operator z is positive: 
(Ev,v)H > 0 VV E H,v # 0. 

Proof. Let p E H and p = Go p. Then 

(TI Lp = TOG, K p .  

The first assertion of Lemma 1 was proved in [12]. The positive definite- 
ness or semi-definiteness of L follow from the equalities: 
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The lemma is proved. 
From Lemma 1, we get 

LEMMA 2 If the operator BGo : H -+ Z i s  invertible, t hen  the range 
R(L) of the operator L i s  dense in H, and the equation Lu = P i s  
solvable uniquely and densely i n  H .  

Remark 1. In case of "complete observation", when Z = Y O ,  B = E 
(the identity operator), we have C = E, K = E, and the operator L is 
positive. 

Introduce the following additional restriction on the operator A(t): 
Hypothesis (A):  For any  p E yo the solution cp* of the adjoint  

problem 

-- d c p * + A * ( t ) p * = p ,  t ~ ( 0 , T ) ;  p* (T)=O 
d t  

satisfies the inequality IIp* (0) / I x  5 cllpll y o ,  c = c o n s t  > 0. 
Remark 2. The hypothesis (A) is satisfied for a wide class of opera- 

tors A(t),  among them - the second-order elliptic operators in uniformly 
parabolic problems [4], [12]. 

LEMMA 3 Let  X be compactly imbedded in to  H ,  the  hypothesis (A) be 
satisfied, and the operator K : Y O  -+ Y o  be bounded. T h e n  the operator 
L : H -+ H i s  compact. 

Proof. Let us prove that L maps a bounded set of H into a compact 
set. Consider u E H such that 1/u1IH 5 C O ,  co = c o n s t  > 0. Let 

cp = GOu, cp* = G Y ' K ~ ,  then Lu = p*(O). Since 

and by the hypothesis (A), 

then, due to the boundedness of K : Y o  -+ Y o ,  we get 

where c3 = c o n s t  > 0. However, X is compactely imbedded into H, 
hence the set M = {Lu : llullH 5 c o )  is compact in H, i.e. the operator 
L : H -+ H is compact. 

LEMMA 4 T h e  spectrum a(L)  of the operator L satisfies 
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with the constant v from the inequality l l c p l l y  < v IIullH, where u E H ,  

and cp = G o u  is the solution of the problem 3 + A(t)cp = 0 ,  t E 

( 0 ,  T ) ;  d o )  = u .  

Proof. To estimate the spectrum of the self-adjoint operator L con- 
G(T)  sider ( L u ,  u )  for u E H. Let cp = Gou,  cp* = c p ,  then 

Hence, 

5 y2 1 1 ~ 1 ~ .  a ( L )  < sup - 
u E H ,  u#O (u ,  U )  

This ends the proof. 
For case of complete observation, from Lemmas 1-3 we have the fol- 

lowing 

L E M M A  5 Let Z = Y O ,  B = E (the identity operator), X be compactly 
imbedded into H and the hypothesis ( A )  be satisfied. Then the operator 
L-l : H -+ H exists, being unbounded; zero is the point of the continu- 
ous spectrum of the operator z; the equation L u  = P is solvable i n  H if 
and only if 

03 

k=l 
where uk is the orthonormal system of the eigenfunctions of the compact 
operator L, corresponding to the eigenvalues pk. 

The spectrum bounds of the operator L are very important for justi- 
fication and optimization of iterative algorithms for solving the original 
data assimilation problem. Some estimates for the spectrum bounds 
may be derived using Lemma 4. If K = E, for the spectrum a ( L )  of the 
operator L defined by (2.2) the following estimates hold [ll]: 

where 

and Amin,  A,,, are the lower and upper bounds, respectively, of the spec- 
trum of the operator A + A*. 
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If K = E, and A(t) = A : H --+ H is a linear closed operator indepen- 
dent of time, being unbounded self-adjoint positive definite operator in 
H with the compact inverse, then the eigenvalues pk of the operator L 
are defined by the formula [Il l :  

where Ak are the eigenvalues of the operator A. In this case the estimates 
(2.7) are exact, because in (2.7) Amin = 2A1, A,,, = oo, and m,  M are 
given in the explicit form: 

where A1 is the least eigenvalue of the operator A. 
From Lemma 1 it follows that for a > 0 the operator L : H + H is 

positive definite (i.e. coercive). Then, using the well-known results on 
solvability of linear optimal control problems [5]we come to the solvabil- 
ity theorem for the linear problem (1.7)-(1.9): 

THEOREM 6 Let f E Y*, E H, @ E Z. Then for a > 0 the problem 
(1.7)-(1.9) for r = 0 has a unique solution cpo E W, cpT, E W, uo E H, 
and the following estimate holds: 

3. Solvability of Nonlinear Problem 
Let co be the constant from (2.9). The following theorem holds: 

THEOREM 7 Let f E Y*, E H ;  @ E Z and for some R > 0 the 
inequalities 

are satisfied for any J, 7 E B(cpo, R) = {cp E Y : Ilcp - pollw < R), where 
ki = ki(vo, R)  = const > 0. Then for / T I  5 70, with 

Proof. Consider the problem for the remainders p = cp - yo, p* = 
cp* - cp:, G = u - uo, where (cpo, cp;, uo) is the solution to the problem 
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(1.7)-(1.9) for r = 0. The problem for @, @*, fi reads: 

d@* -- 
dt 

+ A*(t)+* + r(F1(cpo + @))*(cpT, + +*) = -KG, t E (0,T); 

+*(T) = 0, (3.5) 

a 6  - +*(0) = 0. (3.6) 
Consider the following iterative process: 

d+*(n+l) 
- -(n+l) 

dt 
+ A* (t)+*(n+l) + T ( F / ( @ ( ~ )  + $DO))* (+*(n) + cp;) = -Kcp , 

+*(n+l) (T) = 0, (3.8) 

&n+l) - p*(n+l) (0) = 0 (3.9) 

for ll+(0)llw + l l + * ( 0 ) ~ l w  5 R. Since (for a fixed n) +(n+l), ~ * ( ~ + l ) ,  fi(n+l) 
is the solution of the linear problem, then, in view of (3.1), it is easily 
seen that 

where 

By successive use of the last inequality, we get 

if (71 5 70. Then, consider the problem for +(n+l) - @(n),  @*(n+l) - 
+*(n), idn+') - idn). This leads to the estimate: 
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which implies 

where +, p*, ii is the solution to the problem (3.4)-(3.6), and the con- 
vergence rate estimate holds: 

with c = const > 0. It is easily seen that for 171 5 70 this solution is 
unique and satisfies the condition Ilpllw + Ilp*llw + IliillH 5 R. Thus, 
under the hypotheses of Theorem, there exists a unique solution of the 
problem (1.7)-(1.9). Theorem is proved. 

If the operator F(cp) is analytic, then the functions (cp, cp* ,  u) are rep- 
resented as the series in the powers of r: 

convergent for 171 < TO in W, W, H, respectively, where Pi, cpt , ui may be 
found by the small parameter method [8]. 

4. Iterative Algorithms 
To solve (1.7)-(1.9) one may use the successive approximation method 

(3.7)-(3.9). Each step of this method involves a linear data assimilation 
problem of the form (1.7)-(1.9) for T = 0. To solve it we consider a class 
of iterative algorithms: 

dcpk k 
- + ~ ( t ) c p ~  = f ,  t E (0, T); cpk(0) = u , dt (4.1) 

where Bk, Ck : H -+ H are some operators, and a k + l ,  PkS1 the iterative 
parameters. 

Let y = ~ ~ 1 1 ~ 1 1 ~  with v defined in (2.5). We introduce the following 
notations: 

rapt = 2(2a + y)-l ,  8 = (2a + y ) ~ - ' ,  (4.4) 
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where wk = (2i - 1 ) / 2 s ,  Tk is the  k - th  degree Chebyshev polynomial of 
the  first kind,  tk = a ( u k  - p) - c p * k ( ~ ) ,  and rlk is the  solution of the  

problem $$ + = 0 ,  t E ( 0 ,  T ) ;  rlk(0) = tk 
THEOREM 8 ( I )  If a k + l  = 7, Bk = E ,  Pk+l = 0 ,  0 < T < 2 / ( a  + Y), 
then the iterative process (4.1)-(4.3) is convergent. For T = rapt defined 
by (4.4) the following convergence rate estimates are valid: 

where qk = l / Q k ,  0 is given by (4.4), and the constants c l ,  c2, cs, c4 do not 
depend on the number of iterations and on the functions c p ,  c p k ,  cp* ,  p*k,  

u , u k , k  > 0 .  
(11) If Bk = E ,  Pk+l = 0 ,  and ak+l = r k ,  where the parameters rr, 

are defined by (4.5) and repeated cyclically with the period s ,  then the 
error i n  the iterative process (4.1)-(4.3) is suppressed after each cycle of 
the length s .  After k = Is iterations the error estimates (4.9) are valid 
with qk = ( ~ ~ ( 0 ) ) - ' .  

(111) If Bk = Ck = E and a k + l ,  Pk+l are defined by (4.6) ,  then the 
error i n  the algorithm (4.1)-(4.3) is suppressed for each k > 1, and the 
estimates (4.9) hold for qk = ( ~ k ( Q ) ) - l .  

(IV) If B k  = Ck = E and ak+1 = l / pk+l ,  Pk+l = ek/pk+l, where 
ek, pk+l are defined by (4.7) ,  (4 .8) ,  then the iterative process (4.1)-(4.3) 
is convergent, and the convergence rate estimates (4.9) are valid with 
4k = ( ~ k ( Q ) ) - l .  
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Proof. 
The iterative process (4.1)-(4.3) is equivalent to the following iterative 

algorithm [12] : 

for solving the control equation Lu = P, where L and P are defined in 
(2.2). 

According to Lemma 4, the bounds of the spectrum of the control 
operator L are given by 

def de f 

U E H ,  u#O (u, U )  
5 a + v2llB1l2. 

uEH,  u#O (u, U) 

(4.11) 
Thus, for a > 0 for solving the equation Lu = P we may use the 

well-known iterative algorithms with optimal choice of parameters. The 
theory of these methods is well developed [9]. Taking into account the 
explicit form of the bounds for m and M from (4.11) and applying for 
the equation Lu = P the simple iterative method, the Chebyshev accel- 
eration methods (s-cyclic and two-step ones), and the conjugate gradient 
method in the form (4.10), we arrive at the conclusions of Theorem, us- 
ing the well-known convergence results [9]for these methods. Theorem 
is proved. 

In case a k  = l/a, Bk = E,  pk = 0, the iterative algorithm (4.1)-(4.3) 
coincides with the Krylov-Chernousko method [3]. 

The numerical analysis of the above-formulated iterative algorithms 
has been done in [10]for the data assimilation problem with a linear 
parabolic state equation. 
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