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Abstract This paper deals with the problem of state estimation for a hyperbolic 
equation in the presence of unknown, but bounded disturbances, on the 
basis of information from sensors with finite-dimensional outputs. The 
object of investigation is the hyperbolic telegraph equation with energy 
dissipation. Observability properties similar to those introduced earlier 
for parabolic systems ([8]) are checked for various types of measurement 
sensors. Further on recurrent guaranteed minmax filtering procedures 
are introduced which give dynamic estimates of the current state of the 
system and dual control problems are indicated as well. 
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Introduction 
In this paper we consider the problem of state estimation for a system 

described by a hyperbolic equation of the "telegraph" type, with energy 
dissipation. This is to be done through available sensor measurements 
in the presence of unknown, but bounded disturbances. 

We start with the the problem of observability which is the inverse 
problem of finding the final state for this system through available ob- 
servations in the absence of any information on initial and boundary 
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conditions and in the absence of disturbances. This problem may turn 
to be solvable depending on the paricular type of sensor applied. Con- 
ditions for observability are therefore investigated. 

We further derive a filtering equation which gives a set-membership es- 
timate of the state of the system under unknown disturbances subjected 
to a given quadratic bound. These equations also produce a vector- 
valued estimate with respective bounds on the estimation error. 

Finally some dual controllability problems are indicated. 

1. The Telegraph Equation and the Estimation 
Problem 

The telegraph equation is a PDE which describes, for example, an 
electric current transmission in the presence of wave aberration and de- 
pletion, namely ([2]) 

VX, = levtt + (Ig + rc)vt + rgv (1) 

ixx = leitt + (lg + re)& + rgi (2) 

where i is the current intensity, v is the voltage, r is the resistance, 1 is 
the induction, c is the capacity and g the conductivity. For r , g  = 0 it 
turns into a wave equation. 

We further consider the following system: 

( y ) g + y u + f  i n Q ~  Uxx = - 2 U t t  - 
v0 0 

ult=o = q x )  in R 
4 t = o  = Q(x) in R 
~ Z = O  = PI (t) u l Z = l  = p2(t) t E [0, TI, x E [0, I] = 0. 

(3) 
Here QT = R x (0, T), ST = dR x (0, T )  and f is either a control or a 
disturbance (given or unknown). 

An observation of the system performance is available through mea- 
surement sensors taken to be of the following types. 

Examples  of sensors 

2 Pointwise y(t) = u(t, xO) + [(t) t E [tl, t2] t i  > 0. 

3 Dynamic pointwise y(t) = u(t ,x( t ) )  + [(t) t E [t l , ta] t l  > 0. 

4 Distributed observation y(x) = u(0, x )  + [(x).  

5 Dynamic spatially averaged y(t) = g(t, x)u(t ,  x)dx + [ ( t ) .  
Oe(x ( t ) )  
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Then the measurement equation may be presented as 

where Gl( t ) (u( . , t )  -+ Rm), G2(u(., .) -+ {LT(O,l), H1(O, 1))) are the 
measurement maps given by one of the sensors of the above or a combi- 
nation of these. The disturbance in equations (4, 5) is bounded in the 
space of observations y: 

lltll$ 5 p2 (6) 

To formulate the observation problem we need the notion of informa- 
tion or consistency set ([7], [lo]). 

DEFINITION 1 The information set ~ ( t ;  y(.)) is the union of all states 
{u(., t"), ut(.,  i)) of system (3) at time t", for which there exists a tuple 
V = {@ (.), (.), pi  ( a ) ,  p2 ( e ) ,  f (., .) , (( .)I  (initial conditions, boundary 
conditions and input and measurement disturbance), satisfying (4, 6) 
(or (5, 6)) and consistent with observation y(.) due to equations (3, 4) 
(or (3,  5)). 

Problem A Find U(0, y(.)) - the set-valued estimate, or produce a 
pointwise estimate for the state u(0, a ) .  

With no bounds given for initial and boundary conditions and no 
disturbance f the information set U(0, y(.)) may turn to be unbounded 
even with bounded measurement noise. This may happen, for example 
when the observation is pointwise, at a rational point xO. Nevertheless, 
with bound (6) modified to include all elements of the tuple V, the 
estimation Problem A makes sense even in the latter case. 

A preferable type of solution to Problem A is a recurrent "guaranteed 
filtering" equation which describes the evolution of the estimate in time, 
on one hand, and also ensures numerical stability of the corresponding 
algorithm. A problem closely connected with Problem A is the one of 
observability of system (3, 4) (or (3, 5)). 

Problem B Assume disturbances f (., a )  = 0, [(.) = 0. In the absence 
of information on input - initial conditions { @ ( a ) ,  $ ( a ) )  and boundary 
values p1 (.), pa(.) - determine conditions for solvability of the problem: 
given measurement y(t), t E [O,T], find output - the solution u( . ,T)  at 
time T .  

The solution to this Problem B gives the so-called "observability con- 
dition" for system (3, 4) (or (3, 5)) with given type of measurement 
sensor G. It is important to understand which types of sensors ensure 
observability. 
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2 .  Some Properties of the Telegraph Equation 
To produce our solutions we need some properties of the telegraph 

equation 
The solution formula 

THEOREM 2 (Ladyxhenskaya) Let E H;, \I, E L 2 ( 0 ) ,  f E L 2 , ~ ( Q T ) ,  
pi ( t )  = pz(t) 0 + there exists a unique solution of (3) from H1 ( Q T ) .  

Here HI (0) = {p l y ,  2 E L 2 ( R ) } ,  and Ht is a subspace of HI (0)  
where smooth functions with compact support form a dense set. 

The solution of equation (3)  can be written out through Green func- 
tion, the latter being equal to 

2 m  ~ n x  ~ n [ v i e T ~  
G ( z , [ , t )  = - - x s i n -  

1 1 
sin - sh&t 

n=l 1 6 
Here the frequencies un are equal to: un = ( Y ) ~  - ( U O Y ) ~  due to 
wave dispersion. Using [ I ] ,  the following theorem can be proved 

THEOREM 3 For a < am,,(l) the system {eixnt) ,  A*, = f is a 
Riesz basis in Lz(O,To), To = y; 
For other values of a 3no : am,,(no) 5 a < a,,,(no+l), in this case the 
system {eixnt),  where A*, = f &, n 2 no + 1; A*, = f y, n = 
O..no will be a Riesz basis in L2(0,To) .  

A biorthogonal system 
Let a < a,,,(l). We denote by 

cpn = eiXnt - - cos Ant + i sin Ant; cp-,  = e-ixnt - - cos Ant - i sin Ant (7) 

the system that forms Riesz basis. According to Bari theorem ( [ I ] )  there 
exists a biorthogonal system { q ~ ' , } , ~ ~  with uniformly bounded norms, 
and if {cpi}nEz is the orthonormal system from Riesz basis definition 
(i.e. cp ,  = Vcp:), then: cph = (V-')*cp; n E 2. It is possible to show 
that orthonormal system can be taken as 

v o ~ n  v o ~ n  
{cp:)Ym = {cos - 

1 
t + i sin Tt}Tm 

and V - I  will be bounded according to the same Bari theorem. In this 
case biorthogonal system elements {cp',)nEz can be constructed, and so 
it is also possible to construct system biorthogonal to {sin Ant, cos Ant): 
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3. Observability 

In this section the system (3) is taken, with f = p1 = p2 = 0, coupled 
with observation equation (4) or (5) and bound (6). Let us first introduce 
several definitions (see [8]). 

DEFINITION 4 The system (3),(4) (or (3),(5)) with f = p1 = p2 = 0 
is said to be weakly observable if for any signal y(-) observed due 
to equation (4) (or (5)) with zero disturbance (t = 0) there exists only 
one possible couple of initial conditions { a ,  Q) that generate the solution 
u ( . ,  .) which provides the signal y(.) .  

Distributed observation of state and velocity at  time t l  
This is the simplest situation. Let f = 0, pi = 0 and the observation 

equations be as follows: 

Expanding a, 9, yi and ti into Fourier series over functions 
{s in(~nz / l ) ) ,  and denoting corresponding Fourier coefficients by an, 
Qnl dl Y:, t:, t:, we have: 

The last 
initial state 

an = 

Qn = 

system is always solvable and the Fourier components of 
a, Q will be 

Hence, it follows that 

THEOREM 5 For sensor (9) the system is weakly observable. 

It is also interesting to investigate the property of strong observability. 
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DEFINITION 6 The system (3), (4), (6) (or (3), ( 5 ) ,  (6)) with f = 
p1 = pg = 0 is said to be strongly observable if the information set 
of system initial states U(0, y(.)) (p. 179) is a bounded set in L2(R),  
whatever be the measurement y(.). 

To prove strong observability it is necessary that the series with com- 
w 

ponents (9) converge. For yl, yg E Lg(0, 1) the series C may 
n=l  

not converge because in the expression for Qn there is a component 
s s h & t l  -- nsin-tl. In general this series does not converge. 
But if t l  is such that: 

vot1 t l : - E Z  
1 

where Z is the set of integers, then due to the properties of the eigen- 
values vn we have: 

THEOREM 7 For sensor (9) the information domain of initial states 
is bounded in L2(0, I ) .  If instant t l  satisfies (lo), then the information 
domain for initial values of derivatives ut (Q) will also be bounded in 
L2(0, 1). If (10) does not hold, then one can only claim that the last set 
is bounded in V* = (H1(O, I ) ) *  

Distributed observation of state at  two instants of time t l ,  t2 
Take f = p1 = p2 = 0 with observation equations as 

Here a system similar to the one in previous section can be written down, 
but now its discriminant D = &e(u1+u2)t1shfi( t2 - t l ) .  For weak 

1 6  
observability it is necessary and sufficient that discriminant D # 0 . 

THEOREM 8 For sensor (11) system (3) is weakly observable @ (12). 

Spatially averaged observations Let f = p1 = p2 = 0 with observa- 
tion equation as 
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If now wn are the Fourier coordinates of the weighting function w ( x )  

and T 2 To, multiplying observation equation by function e - v t ,  and - -  - 
calculating scalar products with biorthogonal system functions ( 8 )  on 
[0, To], we result in 

Here yn,i,(n,i are scalar products of observations and disturbances 

with biorthogonal system functions with weight e-vt . The initial 
state can be calculated as: 

Yn,l - In,l . - 1 
Town 2 

u +D 
f i ( Y n , o  - In,o) - y ( ~ n , l  - &, , I )  . - 1 

Town 2 

THEOREM 9 System ( 3 )  with sensor ( 1 3 )  having its coeficients w n  # 0 
for all n is weakly observable for T 2 To. 

DEFINITION 10 The system ( 3 ) ,  (4), ( 6 )  (or ( 3 ) ,  ( 5 ) ,  ( 6 ) )  with f = 
pl = p2 = 0 is said to be &-observable if the projection of the in-  
formation set U ( 0 ,  y ( . ) )  (p. 179) on  any finite-dimensional subspace 
X,(O, 1 )  = Span{wnj (.))5=, is bounded, whatever be the measurement 
~ ( 9 .  

Here system { ~ ~ ~ ) j r = ~  is the set of r arbitrary different functions from 

the system of eigenfunctions {m s i n ( ~ n x / l ) ) ~ = ~ .  

THEOREM 11 The system with sensor (13 )  which satisfies wn # 0 n < 
N is observable i n  its first N Fourier components (its first N "harmon- 
ics") for T 2 To. 

COROLLARY 1 2  If the coeficients wn are non-zero Vn,  and T 2 To, 
then system ( 3 )  is observable the i n  first N Fourier components for any 
N and therefore E-observable. 

A pointwise sensor at point xo 
Here the sensor equation is 

Along the lines of previous procedures, we also come to the next 
propositions. 
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THEOREM 13 System (3) with sensor (14) where xo/ l  is irrational is 
weakly observable for T 2 To. 

THEOREM 14 System (3) with sensor (14) which satisfies c o s y  # 
0, n 5 N ,  is observable i n  its first N Fourier components for T 2 To. 
Moreover, i f x o / l  is an irrational point, then the system is observable i n  
its first N Fourier components for any N ,  and therefore is E-observable. 

4. The Filtering Equations 
State Estimation 
Consider the problem of dynamic state estimation for the telegraph 

equation 

The functional describing the measure of uncertainty in the system is 
taken as: 

Here operators Nl,  N2 may be interpreted as regularizers. Introduce 
operators S1 (.) (Green function), S3(.): 

then functional (17) can be rewritten as (in the last scalar product dots 
are omitted): 

F ( T )  =< - a 0 , N I ( Q ,  - QO)  > + < Q - Q0,N2(Q - QO) > + 
+ < Y - GS3@ - GSIQ, M ( Y  - G S 3 a  - @SiQ) > L ~ ( ( O , ~ ) X ( O , T ) )  

(19) 
If u o ( T )  and ul(T)  are the minimizers Q,  Q of (19), and if we denote 
u ( t ,  T) to be the backward solution generated by these minimizers, i.e., 
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u(t ,  T )  = S3(t)uO(T) + Sl ( t )u l (T) ,  then the minimizers should satisfy 

Now denoting u(T, T )  by ii(T), differentiating (20) with respect to T ,  
we get for u(t ,  T ) :  

and 
T 

K ( t , T )  = [ s ~ ( ~ ) N ; ~ s $ ( T )  + s ~ ( ~ ) N F ~ s ; ( T ) ]  - J [ s 3 ( t ) N c 1 s $ ( ~ ) +  
0 

Using notation P(T)  = K(T,  T ) ,  and denoting 

2 d2 .  
Z(T)  = G* ( T )  M(T)  ( Y ( T )  - G(T)ii(T)) 73. = u - - 0102- (24) 

O dx2 
we finally come to the following system describing the dynamics of the 
state estimate and the estimates of initial conditions: 

d2  ii -- dii d E  ( T )  
dT2 

(ol + 0 2 ) -  = Vii + P(T)- 
dT 

+ 
+ 2------ - [ '2) dT ) 1 t = ~  - ( 0  + a2)P(T)  

S ,*( t )G*( t )M(t )G( t )K( t ,T)dt  
dT 

T 
dul 
dT 
- = N;' - / s ; ( t ) ~ * ( t ) ~ ( t ) ~ ( t ) ~ ( t , ~ ) d t  

0 
ii(O)=O uo(0)=cp0 u1(0)=*O 

2 ( T )  

. E(T) 

. E(T) 

( 2 5 )  
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The equation for P ( T )  can also be written as follows 

d 2 p  --  d P  
dT2 

(01 + 0 2 ) -  d T  = V P  + P[V* + (ul + a2)G*MGP- 

- (G* MGP)!, - G* MGPG* MGP] - aK(t,T) G* MGP 
d T  

p(o) = N,-~ Ej = N;~G*(o)M(o)G(o)N;~ 
d T  .=, 

And for K (t, T )  : 
(26) 

- (G* MGP)!, - G* MGPG* MGP]  - 'K(t> T) G* MGP 
6'T 

(27) 
The initial conditions for K ( t ,  T )  can be obtained from equation (23). 

The Dynamic Estimate of Initial Conditions. Consider the 
problem of dynamic initial state estimation for the telegraph equation. 
This problem is directly related to the observability property, since for 
the formulation of the filtering equations the existence of bounded in- 
verse for certain operators is necessary. The related operators are invert- 
ible if the property of strong observability is true. These conditions are 
precisely the ones discussed in the observability sections. Such types of 
conditions were earlier introduced by J.L.Lions ([4]) and further studied 
in [3]. 

Consider problem (15,16). Let the measure of uncertainty in the sys- 
tem be the same as in (6): 

If we again use the notations SI(.) ,  S3(.) (see (18)), the functional 
(28) can be rewritten as: 
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If the system (15-16) is strongly observable, then expressing the mini- 
mizers from (30) and differentiating them with respect to T  it is possible 
to write down the following system of evolution equations: 

Here Ki ( t )  = Sf ( t )  G* ( t )  M  (t)G(t)Si  ( t )  , ICi ( T )  = (J: Ki (t)dt)-I Sf ( T )  x 
x G ( T )  M ( T ) ,  M i ( T )  = (ST Ki(t)dt)-' J: S; (t)G* ( t )  M( t )G( t )S j  (t)dt 
where i , j  = 1,3 a n d i  # j .  

If system (15,16) is only &-observable, then the projections of the 
informational domain on any finite-dimensional subspace are bounded. 
It is therefore possible to indicate the same types of filtering equations in 
finite-dimensional space. These would be written in terms of respective 
Fourier coefficients. 

5 .  The Duality of Optimal Control and 
Observation problems 

Consider the observability problem for the telegraph equation: 
a2u 

- (0' + 6 2 )  = V U  
uIan=O ult=o = < a  ~ ~ l ~ = ~  = Q  
y = G u + (  (31) 

l lEl l  5 P 

Here operator V  is defined by (24). If the solution is presented as (18), 
the support function of the information set U is as follows: 

S; (T)1 = J ~ S ;  ( t )  G* (t)$(t)dt (*) 
ST (T)1 = So ST ( t )  G* ( t )  $ (t)dt (r  l;) 
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Since for the telegraph equation the Green function is Sl (t, .), equation 
(*) is the solution to the adjoint equation in inverse time with right-hand 
side G*$: 

This leads to a control problem for system (32), where $(t, a )  E y* is 
the control. Due to S1 (0) = 0 the controllability of the following system 
will be equivalent to the solvability of equation (**): 

vIt=o = S;(T, . ) I ( . )  - ST(T)G*(T)$(T), 
where $(t, a )  E y* is the control. 

(33) 
This is a control problem for system (33) in backward time. 

Thus, the solution of the observation problem for system (31) under 
disturbances (noise) is equivalent to finding the control $(t, .) E y*, 
which simultaneously steers the adjoint systems (32), (33) in backward 
time to the prescribed end-points, as given in (32), (33), under minimum 
of the norm conjugate to the one that bounds the observation noise ( 
[4]). The prerequisite of such properties for finite-dimensional systems 
was given in [5], [6] and for infinite-dimensional time lag systems in [9]. 
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