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Abstract We present a method to factorize a second order elliptic boundary value 
problem in a circular domain, in a system of uncoupled first order initial 
value problems. We use a space invariant embedding technique along 
the radius of the circle, in both an increasing and a decreasing way. 
This technique is inspired in the temporal invariant embedding used by 
J.-L. Lions for the control of parabolic systems. The singularity at the 
origin for the initial value problems is studied. 
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Introduction 

The technique of invariant embedding was first introduced by Bellman 
([2]) and was formally used by Angel and Bellman ([I]) in the resolution 
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of Poisson's problem defined over a rectangle. J.L. Lions ([5]) gave a jus- 
tification for this invariant embedding in the computation of the optimal 
feedback in the framework of Optimal Control of evolution equations of 
parabolic type. Henry and Ramos ([3]) presented a justification for the 
invariant embedding of Poisson's problem in a cylindrical domain. The 
problem is embedded in a family of similar problems defined on sub- 
cylinders limited by a moving boundary. They obtained a factorization 
in two uncoupled problems of parabolic type, in opposite directions. In 
this paper, we want to generalize this method to other types of geome- 
tries and, in particular, to the case where the family of surfaces which 
limits the sub-domains, starts on the outside boundary of the domain 
and shrinks to a point. We present here the simple situation where R 
(resp R,) is a disk of IR2 with radius a (resp s) and centered on the 
origin and where the sub-domains defined by the invariant embedding 
are both the annuli R \ R,, s E (0,  a)  ([4]) and the family of disks Rs, 
s E (0,  a ) .  This factorization can be viewed as an infinite dimensional 
extension of the block Gauss factorization for linear systems. 

1. Motivation 

Given f E ~ ~ ( 0 ,  I ) ,  yo, y1 E IR, q E RS, p E IRS \ {0), let y be the 
solution of the following boundary value problem: 

Considering the operator A = -p  $ + y, the natural way to factorize 
it, is by searching a, p such that A = -p  ($ + pix))($ - a(x) ) .  

Then, for each cp E C2((0, 1)) we have 

dD Thus, we must have a = P and - + p2 = 4. If we set p(0) = 0 and 
dx P 

dy J = - - +py, we find J(0) = -yo and the following system of uncoupled 
dx 

equations: 
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We point out that the equation in ,8 is a Riccati equation. 

2. Formulation of the Problem and a 
Regularization Result 

We consider the Dirichlet problem for the Poisson equation defined 
over R. 

( P )  - AU = f ,  in R; ulra = UO,  

where I?, denotes the circle of radius s and center at the origin, f E L2(R) 
and uo E H'/~(I',). We assume the additional regularity around the 
origin f E CO>"(0), 0 being a neighborhood of the origin. Introducing 
polar coordinates, G(p, 6) = u(xl,  x2) satisfies 

1 d2G 

(@) 
with respect to 6, 

where Z = ] 0 , 2 ~ [ .  However, by doing this, we introduce a singularity at 
the origin. Furthermore the analogous of the computation done in [3} 
would need to know u(0) which is not a data of the problem. 

In order to avoid this difficulty we start by defining the following 
intermediate problem: 

-nuE  = f ,  in 0 \ R E ;  u,lr, = uo 

- dl? = 0; uElreis constant 
dn 

where RE is a circular domain of radius 0 < E < a and concentric with 
0 .  It's easy to see that this problem is well posed. 

u,, in 0 \  RE 
THEOREM 1 W h e n  E -+ 0, fi,, defined as fi, = 

U, = u & ] ~ , ,  in  QE ' 
where u, i s  the solution of problem (P,) converges t o  u, solution of prob- 
l e m  (P) , in H1(R). 

We can write problem (P,) in polar coordinates restricting problem 
(@) over ]E, a [xZ  and joining the boundary conditions G,lr, constant, lE 2 d 6 = 0 .  
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3. Factorization by Invariant Embedding 

We embed problem (P,) in a family of similar problems ( P s l h )  defined 
on the annulus R \ O,, s  E ] E ,  a[  and satisfying an additional Neumann 
boundary condition in I?,; in terms of polar coordinates we find 

1 a2a, -'a (P?) - p2s = j, in I S ,  a [ x ~  
P dP 

asIra= Go,  a, 27r - periodic with respect to 8 
aa, 
-Ir, = h 
a P  

aa, 
Since --Ir, is well determined through the conditions 'LBEl,Econstant" 

a p  

and ''LE 2 dB = O n ,  it's clear that ( p E )  belongs to the family (&,h)  

for s = E .  

Defining H ~ , ~ ( Z )  as the space of periodic functions v of 8, verifying 
112 v E L ~ ( Z )  and a$$ E L ~ ( z ) ,  we take h E H::(Z)', where H P j p ( X )  = 

[Hj,p(Z)r ~ ~ ( ~ ) l i / 2 .  

For every s  E [E, a ) ,  h t H;$ (1)' we define P ( s ) h  = ysIr ,  , where y, 
is the solution of 

and r ( s )  = ,BSlo,  where CJ, is the solution of 

with respect to 8 

By linearity of (@,,h) we have 

where P(s )  is the Neumann to Dirichlet map for the annulus R \ 0 , .  
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Let X = (612 E L:(o,u; H j , p ( Z ) )  n E L : ( o , ~ ;  L 2 ( Z ) ) } ,  where L: 
stands for the space of functions of p square integrable with the weight 
p. After passing to the limit, when E + 0 ,  the factorization of problem 
( P )  is synthesized by the following theorem 

THEOREM 2 The solution Q of ( P )  is the unique solution of the following 
system of uncoupled, first order in p, initial value problems 

1. for every h ,  in L 2 ( Z ) ,  the self-adjoint operator P ,  P 5 0,  

satisfies the Riccati equation 

in D'(0, a ) ,  with the initial condition P ( a )  = 0, 

2. for every h in L 2 ( Z ) ,  r E X satisfies the equation 

in V1(O, a ) ,  with the initial condition r ( a )  = Qo; 

3. for every h in H ; , p ( ~ ) ' ,  Q E X satisfies the equation 

in D1(O, a ) ,  with the initial condition Q(0)  = lim r ( p )  in L 2 ( Z )  
P+O 

which is constant. 

P ,  r and Q thus defined are unique. Equations ( 4 )  and ( 5 )  are well 
posed for p decreasing from a to 0 and ( 6 )  is well posed for p increasing 
from 0 to a.  

The formal analogy between this result and the LU Gauss factoriza- 
tion of a matrix should be emphasized. The Riccati equation ( 4 )  for 
P is the analogous of the block LU factorization of a block tridiagonal 
matrix, and the initial value problems (5 )  and (6 )  are the analogous of 
the lower and upper block triangular systems. This factorization inher- 
its the well known property of the Gauss factorization for multiple right 
hand sides: if (P) has to be solved for different f and 210, (4 )  is to be 
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solved only once, then the initial value problems (5) and (6) are solved 
for each value of the data. Furthermore, if one considers a finite dif- 
ference discretization of (P) in polar coordinates, for example, one can 
show that the Gauss factorization of the obtained linear system can be 
obtained by one particular discretization of (4), (5), (6). But other pos- 
sible discretizations exist with their own interest. Also this equivalent 
formulation of problem (P) furnishes the Neumann to Dirichlet operator 
P(s) for the annulus 0 \ a, which is of interest for various kinds of prob- 
lems as domain decomposition or the definition of transparent boundary 
conditions. 

4. Sketch of the Proof of Theorem 2 

From (3), the solution CE of ($€) in polar coordinates, satisfies the 
dCE 

relation C, (p) = P(p)  - l r ,  + r(p),  Vp E [E, a]. From this last equality, 
dp 

taking the derivative, ill a formal way, with respect to p and considering 
d P  1 d2 1 A 1 d 2 r  

arbitrary, we obtain - - P--P-P- = I and -Pf - P--+ 
8~ dp p2 de2 P p2 do2 
dr  - = 0, and considering the boundary condition on I?, in (P,), we obtain 
dp 
P (a )  = 0 and r (a )  = GiLO 

From the two equations above, and respective initial conditions, we 

can obtain P and r .  Let M and N be defined by M = {v E (H~/;(T))' I 

i2" v dB = 0) and N = M~ = {v E H;$(Z)~V is constant}. They are 

invariant by P. One has L2(Z) = ( M  n L ~ ( z ) )  $ N and let IIM and IIN 
be the projection, for the L2(z)  metrics, on each subspace respectively. 
The following theorem provides the initial condition for C, on I?,. 

THEOREM 3 Given r ( ~ )  E L2(Z), there exists a unique solution C,(E) E 
dC, dC, 

N and -(E) E M for the equation &(E)  = P(E)- (E) + r ( ~ ) .  In  
8~ dp 

particular, CE ( E )  = IINr(&). 

We use the Galerkin method as in [5], [3], and adequate properties on 
the operator P and function r .  In finite dimension, we can prove the 
existence of a global solution of the decoupled system. Then we can 
justify the preceding formal calculation and we obtain, after passing to 
the limit when the dimension tends to infinity, the following result: 
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THEOREM 4 For every h , h  in L ~ ( z ) ,  the operator P belongs to 

Lm ( E ,  a; L ( H ~ / $  (z)', H:? (1))) and satisfies the following equation 

-h, h + --Ph, -Ph - -h,  P h  = ( h ,  h )  , ( 7 )  ( ) ( I "  p2 80 d0 ") ( -> 
in ;I) ' (&, a ) ,  with P ( a )  = 0. The function r belongs to X1o\nE, satisfies 
r ( a )  = Qo and for every h in L ~ ( z ) ,  satisfies in Dl(&, a )  the following 
equation 

- ,h  f --,-Ph = f , P h  . ( ) ( p 2  a0 a0 1 ) 
Since P and r do not depend on E and thanks to  the estimates on P ( p )  
and r ( p ) ,  we can take E arbitrarily small and consequently consider the 
previous equalities defined on V1(O, a ) .  Let ll.llp denote the norm in 

L (H,$(z)', H$(z ) ) .  T h e  following theorem gives the behavior o f  
P and r around the origin which provides the regularity claimed in 
Theorem 2: 

THEOREM 5 For P satisfying (7 )  and P ( a )  = 0,  we have lim IIP(p)llp = 
o-io 

1.  Furthermore lim 1 1  P ( p )  - p(Pm o I I M )  [ I p  = 0,  where P, is the nega- 
0 4 0  

d2 
tive self-adjoint operator satisfying -P,-P - I .  

do2 CO - 
The solution r of ( 8 )  and r ( a )  = G o ,  has a limit r ( 0 )  constant with 

respect to 0 : lim Ilr(p) - r ( 0 )  1 1  L 2 ( 2 )  = 0. 
P+O 

It should be also remarked that,  measured with the fixed norm 
I l . l l c ( L z c z ) , L z c z ) ) ,  P ( p )  goes to  0 as p goes to  0. Concerning the equa- 
tion on Q, we have 

THEOREM 6 For every h in Hi ,p (Z) ' ,  6 ,  satisfies in Dl(&, a )  the follow- 
ing equation 

with the initial condition & ( E )  = I I N T ( E )  

Using Theorem 1 we obtain the convergence in X o f  il, to  Q satisfy- 
ing ( 6 ) .  Furthermore, thanks to  the local regularity assumption on f 
near the origin which implies that u E C 2 @ ( 0 ) ,  one can prove that 
lim Q , ( E )  = G(0) (the proof for the uniqueness o f  the solution o f  (6 )  uses 
E-40 
the determination o f  Q ( 0 ) ) .  
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5 .  Factorization by Invariant Embedding: Dual 
Case 

Another factorization could be obtained by using an invariant embed- 
ding defined by the family of disks R,. Here the main difficulty is to 
define the initial conditions for P and r at the origin. 

We embed problem (R) in a family of similar problems (Rjh) de- 
fined on the annulus R, \ R,, s E]E, a [  and satisfying an additional Robin 
boundary condition in I?,. We find the following problem in polar coor- 
dinates: 

dQ, 
It is clear that (P,) is exactly (P,,h) for s = a and h = -Ir, + a h ,  and 

d P 

so we use the same notation G, for the solution of (P,) and the family of 

solutions of (&,h) .  This should not make confusion with the solutions 
112 of (ps,h)  in the previous section. For every s E (E ,  a] and h E H,,,(I)' 

we define f',(s)h = ;Y,Irs ,  where '; is the solution of 

. . , r ,  

y,,p_ constant, % 27r - periodic with respect 

and ?,(s) = alp , where ,& is the solution of 
S 

p- - p 2 - = f ^ ,  i n ] ~ , s [ x Z  

a,, constant, 6, 27r - periodic with respect 

f i - $ p c d o = o  

W E  - 
-Irs + a h I r s  = 0 
8~ 
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By linearity of we have 

The following theorem gives another factorization of problem ( P )  : 
THEOREM 7 The solution G of ( P )  is the unique solution of the following 
system of uncoupled, first order in p, initial value problem: 

1. for every h ,  f i  in L 2 ( 2 ) ,  the self-adjoint operator P,  P 2 0,  

1 
in D'(0, a ) ,  with the initial condition ~ ( 0 )  = -nN; 

a 

2. for every h in L ~ ( z ) ,  r" E X satisfies the equation 

D'(0, a ) ,  with the initial condition r"(0) = 0; 

3. for every h in H;,,(Z)', ii E X satisfies the equation 

- 
- ( f ,  h )  H;,~(z),H;,~(z)/ 

in D'(0, a ) ,  with the initial condition &(a) = So. 

Equations (11) and (12) are well posed for p increasing from 0 to a and 
(13) 7:s well posed for p decreasing from a to 0. P,  i: and 12 thus defined 
are unique. 
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6. Sketch of the Proof of Theorem 7 

From ( lo) ,  the solution fi, of (pE) satisfies 

Taking the derivative in a formal way with respect to p and considering 

- + a 6, arbitrary, we obtain the following system 
dP 

We have CE (a) = CO. Further, considering the sets M = {v E ( H (2) )' I 
v dB = O}, N = M'- = {v E H:$(z) IU is constant} and the opera- 

tors llM, nN as previously, one has 2: : M -+ M ,  : N + N and from 
(10) we obtain 

From (14) and (15) we obtain ?,(E) = ~ M ? , ( E )  + ITN?,(E) = 0. In the 
1 

same way, since P , ( E ) ~  = P,(E)IIM~ + P E ( & ) ~ N h  = - n ~ h  we obtain 
a 

1 
PE(&) = -nN.  

a 
Using again the Galerkin method, we can justify these formal calcu- 

lations through the adequate proprieties on PE and YE. After passing 
to the limit when the dimension tends to infinity, we find the following 
result, by the same reasoning as in section 4: 
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THEOREM 8 1. For every h, h i n  L2(Z), the operator P, belongs to 

Lm (E, a;  L(H~$(z)', H~$(I))) and satisfies the following equa- 
tion 

+'a ( ~ , h ,  ah) + 2a ( k h ,  L) - a2 ( ~ , h ,  ~ , h )  = (h, k) , 
P 

1 
i n  Dl(&, a ) ,  considering P,(E) = - I I N .  

a 

2. The function i., belongs to XI,s,,E, satisfies i. ,(~) = 0,  and for every 

h i n  L~ (1) verifies, i n  Dl(&, a ) ,  the following equation 

3. For every h in  Hjlp(Z)', GE satisfies the following equation 

i n  D1(e, a),  with Q, ( a )  = Qo. 

Using Theorem 1 we obtain the convergence in X of Q, to Q satisfying 
(13). Now, since and 7, depend on E and considering G ( p )  = P(p)  h + 
?(p) we use the following consequence of Theorem 1: 

112 COROLLARY 9 For all p E [0, a], iE(p)  i i (p )  strongly i n  Hqp(Z), 

when e i 0. Also, for all p E [0, a] and for a fixed h, &(p)h i P(p)h, 
strongly i n  H ~ $ ( z )  and weakly i n  H;/~(z), when E -+ 0. 

Therefore, passing to the limit when e -+ 0 we find P and i. satisfying 
(11) and (12), respectively. 

Using again the appropriate conditions of regularity around the origin 
(that is; f E C0)a(S;2)) ,  we can define the value of Q(0) (as a constant), and 

dQ du du 
consequently we have Q(0) E N. Also, since - = - cos(0) + - sin(0) 

dp  dx d y  
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and we have assumed enough regularity around the origin, we have Lin (0) d0 = c: cos(8) + c2 sin(0) dR = 0, from which we con- 

a6 
L2= 

86 
clude that -(O) E M. Therefore, from = P(s) (dplr3 + a + 

8~ 
?(s), b's E [0, a] we obtain 

From (16) and (17) we obtain r"(0) = IIMr"(0) + IIN?(0) = 0. In the 
1 

same way, since ~ ( 0 ) h  = P ( O ) I I ~ ~  + P ( O ) I I N ~  = -nNh  we obtain 
a 

1 
P(O) = -nN.  

a 

7. Final Remarks 

We believe that this method is much more general than presented here 
and that it can be extended to higher dimensions, to other operators than 
the Laplacian and more general domains. For example for star shaped 
domains the embedding can be done by homothety, taking the angle 0 
and the homothety factor as independent variables. Then the singularity 
at the origin is treated in the same way. 
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