
A LEARNING AND INTENTIONAL LOCAL 
POLICY DECISION POINT FOR DYNAMIC QOS 
PROVISIONING 

Francine Krief and Dominique Bouthinon 
LIPN Laboratory, UMR CNRS 7030, University of Paris XIII, Avenue Jean-Baptiste Clement 
99, 93430 Villetaneuse, France, {krief db}@lipn.univ-paris 13.fr 

Abstract: In the policy-based network management, the local policy decision point 
(LPDP), is used to reach a local decision. This partial decision and the original 
policy request are next sent to the PDP which renders a final decision. In this 
paper, we propose to give a real autonomy to the LPDP in term of internal 
decision and configuration. The LPDP is considered as a learning BDI agent 
that autonomously adapts the router's behavior to environment changes 

Keywords: Policy-Based Management, Self-aware Management, Multi-Agent System, 
BDI architecture, Learning, Quality of Service, DiffServ mechanisms 

1. INTRODUCTION 

Today, service providers must provide the quality required by the users. 
In the context of fierce competition, this quality is negotiated with the 
customers. A contract, called SLA (Service Level Agreement), is signed 
between the service provider and the customer1. The SLA specifies the 
service that must be delivered. This implies differentiated treatments and 
software infrastructures adapted to implement them. 

DiffServ is the model accepted by the network providers to allow them 
this services differentiation. In this model2, the traffic is separated in traffic 
classes which are identified by a value coded in the IP header. DiffServ is 
well adapted to wide networks because the complex operations (e.g., 
classification, marking) are realized at the network's entry by the edge 
routers. The core routers only treat packets according to the class coded in 
the IP header3, and an adapted behavior, the PHB (Per Hop Behavior). 

http://13.fr


278 Francine Krief and Dominique Bouthinon 

The IETF proposed a general framework called PBM (Policy-Based 
Management)4 for the control and management of these IP networks. This 
infrastructure provides a certain level of abstraction and allows the network a 
flexible behavior according to the various events which can occur during its 
management by using the policy concept. 

We proposed an architecture for the self-aware management of IP 
networks offering quality of service guarantees by using policy-based 
management and multi-agent systems5. The level of autonomy required is 
reached by introducing the operational objectives and the parameters to be 
followed in the infrastructure, as well as by providing respective monitoring 
and adaptation means. The operator does not need to apply corrections and 
adaptations himself so much anymore. Thus, the management system is 
simplified and even more oriented towards the definition of policies and 
operational parameters. 

In this paper, we propose to give a real autonomy to the network 
components in term of internal decision and configuration by introducing a 
learning and intentional agent in each network element to autonomously 
adapt the router's behavior to environment changes. This agent can be seen 
as a learning and intentional Local Policy Decision Point (LPDP). 

First, we present policies, intentional agents and the global architecture 
proposed for the self-aware management of IP networks offering quality of 
service guarantees. Then we describe the architecture of a LPDP. Finally we 
present the future work. 

2. POLICY APPROACH 

The policies can be defined like sets of rules which are applied to the 
management and control of the access to the network resources4. They also 
allow network administrators or service providers to influence the network 
element behavior according to certain criteria such as the user's identity or 
the application type, the traffic required, etc. 

In general, the policy rules are in the following form "IF 
policy_activation_condition THEN policy_action" where the condition 
describes when policies can be activated. 

The IETF introduces the role concept. A role is a type of property that it 
used to select one or more policies for a set of entities and/or components 
from among a much larger set of available policies6. 

The policies are centralized in a data base. A Policy Decision Point 
(PDP) has the responsibility of dispatching the policy rules onto the network 
elements concerned. The Policy Enforcement Point (PEP), situated in each 
element, constitutes the application point of the policies. 



A Learning and Intentional LPDPfor Dynamic QoS Provisioning 2 79 

A policy can be defined at different levels. The highest level corresponds 
to the business level. Then, this policy must be translated into a network 
level policy and, then, into a low-level which is understandable by the 
network element. 

The Foundation for Intelligent Physical Agents (FIPA) also defines the 
policy concept7. A policy is a constraint or a set of constraints on the 
behavior of agents and services. 

A policy rule is a conjunction of implications: when a condition holds 
then an action is permitted, prohibited or whatever. 

Policy domains are introduced to efficiently apply policies and simplify 
policies mechanisms. A policy domain is a set of agents to which a given set 
of policies apply. 

A policy library contains the policies and a distribution mechanism is 
used to distribute policy rules from originating authorities to mechanisms 
that have the ability and responsibility of applying policies. 

The concept of higher-level policy is introduced to simplify the task of 
generating specific policy rules for agents and services. 

3. INTENTIONAL AGENTS 

An agent is a temporal persistent computational system, able to act 
autonomously to meet its objectives or goals when it is situated in some 
environment. In order to be perceived as intelligent, a software agent must 
exhibit a particular kind of behavior, identified by Michael Wooldridge and 
Nick Jennings8 as flexible autonomous behavior and characterized by: 
• reactivity: intelligent agents must be able to perceive their environment 

and respond at time to changes on it though its actions; 
• pro-activeness: intelligent agents exhibit goal oriented behavior by taking 

the initiative to satisfy its design objectives; 
• social ability : intelligent agents must be able to interact with other agents 

or humans in order to satisfy their objectives. 
The study of intelligent agents has received a great deal of attention in 

recent years. This paper explores a particular type of intelligent agent, a BDI 
(Belief-Desire-Intention) agent. BDI agents have been widely used in 
relatively complex and dynamically changing environments9. They are based 
on the following core data structures: beliefs, desires, intentions, and plans10. 
These data structures represent respectively, information gathered from the 
environment, a set of tasks or goals contextual to the environment, a set of 
sub-goals that the agent is currently committed, and specification of how 
sub-goals may be achieved via primitive actions. The BDI architecture 
comes with the specification of how these four entities interact, and provides 



280 Francine Kriefand Dominique Bouthinon 

a powerful basis for modeling, specifying, implementing, and verifying 
agent-based systems. 

4. GLOBAL ARCHITECTURE 

We proposed an architecture for the self-aware management of IP 
networks by using policy-based management and multi-agent systems5. 
Using this architecture, the QoS management within the framework of the 
DiffServ model is dynamic. It includes three levels corresponding to the 
three mediation components recommended by the architecture of the 1ST 
CADENUS project11. Moreover, monitoring functions are introduced to 
allow each level to adapt its behavior to the environment which it is 
controlling. 

Each level implement their own tools of monitoring and have a meta-
control level which allows it to adapt its behavior to the dynamicity of the 
environment it is managing (see figure 1). 

IwW^Bi i^ i i i i i t t 

Configuration 
& Policies 
Generation 

and 
Distribution 

Configuration 
& Monitoring 

Policies 
Generation and 

Distribution 

Policies 

Figure 1. A Service/Resource Mediator 

The meta-control level contains two categories of agents: 
• The monitoring agent. It controls the coherence of network/network 

element behavior with the policies which were applied. It makes the 



A Learning and Intentional LPDPfor Dynamic QoS Provisioning 281 

decision to inform the others agents or the higher level before a SLA 
violation; 

The adaptation agent. It modifies the Mediator/Network Element 
behavior in order to improve its operation and to optimize the service 
configuration. 

5. THE LOCAL PDP 

In the architecture proposed, PDPs (i.e. Resource Mediators) send 
network-level policies which are not directly executable by the network 
elements in order to give them more autonomy. The Provisioning Agent, 
situated in each network element, receives the decisions and the policy rules 
from the PDP (see figure 2). Then, it must translate these policy rules into 
policy rules/commands understandable by the PEP. Therefore, it can be seen 
as a local PDP. 

PDP 
(intermediate level policy rules) PDP 

neighbors 
monitoring 

agents 

Monitoring 

Agent 

^s-
Provisioning 

PEP 

K£ 
DiffServ 

Mechanisms 

Monitoring 

PEP 

Wk r 
QoS Data 

Collector 

Monitor 

tools 

^ ^ ^ ^ ^ ^ ^ ^ ^ 

Figure 2. a network element 



282 Francine Kriefand Dominique Bouthinon 

5.1 bdi architecture 

The LPDP has a rational agent's architecture. Its rationality is turned 
towards the execution of a set of plans to maintain a certain QoS. Depending 
on the network state and the policy rules sent by the PDP, it pushes new 
configuration rules to the PEP. Using this architecture, the reallocation and 
management of network resources is based on current network state and 
applications QoS requirements. 

The LPDP architecture is based on BDI (Beliefs Desires Intention) model 
and the system implemented by A. Guerra Hernandez12. This system is 
composed of four key data structures : beliefs, desires, intentions and a plan 
library. In addition, a queue is used to store temporarily the events perceived 
by the LPDP (see figure 3). Theses structures are presented in the following: 
• Beliefs can be viewed as the informative component of the system and 

environment state. This component can be implemented as a set of 
logical expressions12,13. For example, the fact that the AF queuing size 
reached a threshold of 70% can be represented by the statement 
position (AF_queuing, 70). 
This information comes from the monitoring agent that filters the 
information received from the QoS Data Collector and translates them 
into logical expressions. It also receives information from the neighbors 
monitoring agents about their state. 
Beliefs are updated by the monitoring agent and the execution of 
intentions. 

• Desires are identified in our architecture as goals. Goals are descriptions 
of desired tasks or behaviors. They are provided by the PDP in the form 
of policy rules. An example of such policy rule is given in the following 
using the Ponder language14: 

Inst oblig EFConflgurationPolicy { 
Subject DiffServManager; 
Target r = /DomainA/Routers/CoreRouters; 
On EFConfigRequest(DS, max_input_rate,min_output_rate); 
Do applyEFPHB(DS, max_input_rate, min_output_rate);} 

EFPHB specifies the relative observable traffic characteristics (e.g., 
delay, loss)2. This policy rule is not directly executable by the node 
because it does not specify the particular algorithms or the mechanisms 
used to implement the PHB. A node may have a set of parameters that 
can be used to control how the packets are scheduled onto an output 
interface (e.g., N separate queues with settable priorities, queue lengths, 
round-robin weights, drop algorithm, drop preference weights and 



A Learning and Intentional LP DP for Dynamic QoS Provisioning 283 

threshold, etc): for example weighted round-robin (WRR) queue 
servicing or drop-preference queue management3. 
The policy rules are stored in a policy repository and analyzed by a 
policy conflict detection and resolution module15. To be understandable 
by the intentional LPDP, each policy rule is then translated into a logic 
expression such as 

Achieve (efphb_ds, ds, max_input_rate, min_output_rate) 
expressing the desire of the LPDP to associate a certain QoS 
corresponding to PHB type with a certain DSCP value. The LPDP 
interacts with its environment through its database and through the basic 
actions that it performs when its intentions are carried out. 
The perceptions of the LPDP are mapped to events stored in a queue. 
Events can be the acquisition or removal of a belief, e.g., the reception of 
a message coming from the monitoring agent or the acquisition of a new 
goal coming from the distant PDP. 
Intentions are the plans that the LPDP has been chosen for execution. 
Plan Library is the set of predefined plans. Plans describe how certain 
sequences of actions may be performed to achieve given goals or react to 
particular situations. Each plan has an identifier, a trigger or an 
invocation condition, which specifies in what situations the plan is 
useful and applicable, a context or precondition, and a body, which 
describes the steps of the procedure. An example of plan is given where 
a Weighted Round Robin scheduling algorithm is used to satisfy the goal 
presented above. 

Plan-id: p012 
Trigger: 

achieve(efphb_ds, ds, max_input_rate, min_output_rate) 
Context: 

Body: 
max_input_rate <= min_output_rate 

o 
I Classifier (ds) 

o 
Meter (newAverageRateMeter(max_input_rate)) 

o 
I Scheduler (WRR, min_output_rate) 

o 
Dropper (counter) 

& 



284 Francine Krief and Dominique Bouthinon 

Plan body can be represented as a tree which nodes are considered as 
states and branches are actions or sub-goals of the LPDP. The executable 
plans are ordered by utility before selecting the first one. Therefore, a 
specific queuing or scheduling algorithm can be privileged for example. 
Actions are of two kinds, internal and external ones. External actions are 
low-level policy rules directly executable by the PEP. They affect the 
environment where the LPDP is situated. Internal actions affect only the 
beliefs of the LPDP. Once a plan instance is executed, the LPDP 
executes a sequence of internal actions, i.e. add and delete beliefs. These 
internal actions are predefined for each plan in the plan library. 

An interpreter manipulates these components by selecting appropriate 
plans based on the system's beliefs and goals, placing those selected on the 
intention structure, and executing them. It is responsible for the behavior of 
the LPDP. The interpreter verifies that the terms associated with an action 
are grounded before executing an external action. Different algorithms are 
proposed in literature to execute intentions. Some of them are well adapted 
to dynamic environment16. 

Perceptions 

Beliefs Plan Library 

plans 

Interpreter 
(Reasoner) 

Tt 
Queue of events 

— T 

Goals 

Selected 
Intention 

Instantiated 
plans 

Intentions 

Internal actions 

Translation Module 

External actions 

Intermediate level policy rules Low level policy 

Figure 3. The intentional LPDP architecture 



A Learning and Intentional LPDP for Dynamic QoS Provisioning 285 

5.2 Learning 

The success or failure in the execution of the LPDP's plans depends on 
many factors connected with the environment such as the input traffic type 
or the network load. All theses factors are difficult to well identify. 
Moreover, the implantation of PHBs, which is the basis for DiffServ 
operation, involves a hard task of choosing among a set of buffer 
management and scheduling techniques. This is a crucial issue to an 
effective QoS management. Adaptation by learning are the most suitable 
policy configuration strategies14. Therefore, the BDI architecture presented is 
extended with the introduction of a learning module. This module allows the 
LPDP to use its passed experience (i.e. plans instances that have succeed or 
failed in a particular context and environment) to refine the context of its 
plans. This context represents the reasons a LPDP has to act in a particular 
way. By learning the context of plans execution, it selects plans, and 
consequently policies which are the most suitable depending on the 
environment. 

5.2.1 Learning and intentional LPDP architecture 

The learning BDI architecture we propose is an extension of the 
intentional LPDP architecture based on supervised concept-learning (see 
figure 4). 

Examples Base 

i r 

Learning elemer 

examples 

F knowledge 
i . ^ 

improvements 

Figure 4. The learning and intentional LPDP architecture 

The examples base contains labeled examples provided by the 
intentional element, i.e. the BDI architecture. Each example refers a plan and 
a set of beliefs that represents a given state of the environment, where the 
plan has succeeded or failed. 

The learning element is responsible for the learning task. It acts from 
examples base and background knowledge provided by the intentional 
element. In result the learning element proposes improvements, precisely 
refined contexts of the plans, to the intentional element. 

Intentional elemeri 

(BDI architecture] 

action 



286 Francine Krief and Dominique Bouthinon 

5.2.2 Learning Process 

The building of the examples base precedes the learning phase. The 
intentional element uses the evaluation of its actions from the environment to 
fill the examples base with labeled examples. Each labeled example 
characterizes a success or a failure in the execution of a plan in a given state 
of the environment (i.e. a given set of beliefs). A positive example (plan-id, 
e, success) is built each time the intentional element selects and applies the 
plan plan-id in an environment e represented by a set of beliefs. A negative 
example (plan-id, e', failure) is built when the intentional element detects 
that a previously applied plan plan-id is no longer available in the current 
environment e'. 

The learning task starts at the end of an outputs sequence of the 
intentional element, or ideally when the intentional element is idle and the 
examples base contains a sufficient number of examples. Tilde (Top-Down 
Induction of Logical Decision Trees) is used as learning method12. Tilde 
represents learnt concepts as decisions trees which suit the disjunctive form 
of the plans contexts. 

At the end of the learning process the learning element gives the 
intentional element modified contexts of applied plans. These new learnt 
contexts match the environments in which these plans must be applied. 

Cyclic incremental learning sessions can be activated by emptying the 
examples base and restarting the process described above each time the 
learning element produces its results. A non incremental batch learning 
session can also be carried out from all collected examples when the network 
is inactive. 

5.2.3 Distributed learning 

The learning presented in this paper is centralized. However, a distributed 
learning could be envisaged. When a LPDP learns something all the LPDPs 
having the same role could be beneficiary. All LPDPs, situated in the core 
network for example, have the same internal structure including goals, 
background knowledge and possibly competence. They also have the same 
procedure to select their actions. The only difference among them is their 
experience, i.e., their perception since they are situated differently in the 
environment. Thus the performance of a LPDPs group (i.e. core router 
LPDPs) could be improved by direct interactions, as exchanging the learnt 
contexts of their plans, among neighbors LPDPs having the same role. 



A Learning and Intentional LP DP for Dynamic QoS Provisioning 287 

6. CONCLUSION AND FUTURE WORK 

We have proposed an architecture for the Self-aware management of IP 
networks by using policy-based management and multi-agent systems. In 
this architecture, the role of the administrator is limited to the guidance of 
these processes in their laying down operational objectives and parameters. 

In this paper we propose to give a real autonomy to the LPDP in term of 
internal decision and configuration. The LPDP is considered as a learning 
BDI agent that autonomously adapts the router's behavior to environment 
changes. 

This approach presents many advantages : The performance of the LPDP 
is improved because the introduction of BDI concept allows it to adapt its 
behavior in an autonomous manner. It chooses the policy rules according to 
the policy rules sent by the distant PDP. Therefore, the network element 
becomes relatively autonomous. Policies are distributed to all the routers 
that are concerned and every one of them according to its context will seek 
the good parameters to configure its part of the service. 

By introducing learning methods, the LPDP is able to use its past actions 
to improve its future actions. It learns more accurately the environment in 
which a plan must be applied. 

Our future work concerns the distributed learning and the simulation of 
the LPDP by adapting A. Guerra Hernandez's system12. 

REFERENCES 

1. E. Marilly, O. Martinot, S. Betge-Brezetz, "Service Level Agreement Management: 
Business Requirements and Research Issues", DNAC'01, December 2001 

2. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss,"An Architecture for 
Differentiated Services", RFC 2475, December 1998 

3. K. Nichols, S. Blake, F. Baker, D. Black, "Definition of the Differentiated Services Field 
in the IPv4 and IPv6 Headers", RFC 2474, December 1998. 

4. R. Yavatkar, D. Pendarakis, R. Guerin, "A Framework for Policy Based Admission 
Control", RFC 2753, January 2000. 

5. F. Krief, "Self-aware management of IP networks with QoS guarantees", International 
Journal of Network Management, Vol.14, Issue 5, September-October 2004 

6. B. Moore and al. : "Policy Core Information Model (PCIM)"- IETF- RFC 3060. 
7. FIPA, "Fipa Policies and Domains specification", Document number PC00089D, August 

2001. 
8. M. Wooldridge and N.R. Jennings. "Intelligent agents: Theory and practice. The 

Knowledge Engineering Review, 10(2): 115-152, 1995. 
9. C.Olivia, C.-F. Chang, C. F. Enguix, A. K. Ghose, "Case-Based BDI Agents: an Effective 

Approach for Intelligent Search on the World Wide Web", AAAI Symposium on 
Intelligent Agents, Stanford, CA., USA, 1999. 

10.Rao A., Georgeff M., "BDI Agents:From Theory to Practice", Tech. Note 56, 1995 
1 l.CADENUS Project. QoS Control in SLA Networks. IST-1999-11017, March 2001. 



288 Francine Kriefand Dominique Bouthinon 

12 Alejandro Guerra Hernandez, "Learning in intentional BDI Multi-Agent Systems", PHD 
thesis, University of Paris 13, December 2003 

13 M. Ljungberg, A. Lucas, "The OASIS Air Traffic Management System", PRICAF92, 
Seoul, Koea, 1992 

14 J.C. Strassner, " Policy-based network management: Solutions for the next generation", 
Morgan Kaufmann, 2003 

15 L. Lymberopoulos, E. Lupu and M. Sloman, "An Adaptative Policy Based Management 
Framework for Differentiated Services Networks", Policy 2002 

16 M. Wooldridge. "Reasoning about rational agents". MIT Press, Cambridge, MA., USA, 
2000. 




