
NEW PROTOCOL FOR GROUPING DATA USING 
ACTIVE NETWORK 

A. Moreno1, B. Curto2 and V. Moreno2 

Computer Science 
University of Salamanca (Spain) 

amoreno@usal. es 
control@abedul. usal. es 

Abstract: Active networks provide an ideal support for the incorporation of intelligent be­
haviors into networks. This ones make possible to introduce a more general 
functionality, that supports the dynamic modification of the behavior of switch­
ing networks. By means of this approach, users can dynamically insert code into 
nodes, thus adding new capabilities. 

In this paper we propose a protocol to improve network services, imple­
mented from the point of view of active networks. The specific purpose of the 
protocol is to reduce the network traffic, thus increasing the ratio of the volume 
of transmitted data to the number of frames that pass through the network. More 
precisely, we intend to merge data coming from the same node or from different 
nodes in intermediate points of the path toward the receiver, so that they arrive 
as closely grouped as possible. This would reduce the congestion in networks 
that support a great volume of traffic, like those that are used in industrial envi­
ronments, which can also suffer from a low bandwidth. 

For the implementation of this protocol we use ANTS {Active Node Trans­
port System), a freeware tools for the construction of active networks developed 
by MlT(Massachusetts Institute of Technology). ANTS makes use of one of the 
most innovative and daring approaches for injecting programs into active nodes, 
by means of a mobile code called capsules. 

Keywords: Active networks, network protocols, mobile code, data grouping. 

INTRODUCTION 

A current tendency in distributed control systems is the use of general pur­
pose networks, like Ethernet, to communicate different processing elements. 



206 A. Moreno, B. Curto and V. Moreno 

This can produce poor network performance in segments that support high 
flows of data coming from multiple devices that are linked to it. This situation 
appears in industrial environments, particularly in data acquisition distributed 
systems. 

A possible solution is the development of new protocols that allow us to 
improve network services by looking for alternatives that adapt to the specific 
necessities of each moment. However, the introduction of a new protocol is a 
slow and difficult task. This is due, first of all to the fact that it is necessary 
to carry out a standardization process in order to guarantee the system interop­
erability. Then, once a protocol has been accepted, its development presents 
many difficulties since there is no automatic form to include the new protocol 
with those already in existence. And one must add to this, the problem of com­
patibility with existing versions. This means one must take into account the 
times needed to solve the previous problems, thus making viable solutions to 
appear very slow in the evolution of network services. In this sense, it is fore­
seen that the deployment of IPv61 will take no less than approximately fifteen 
years to be completed. 

Thus, active networks seem to be a perfect solution to tackle the aforemen­
tioned problems2' 3. The Active Network Program is a DARPA-sponsored re­
search program born during the years 1994 and 1995. Users can program the 
network by loading their own programs for the realization of specific tasks. 
The main idea in active networks is to standardize a communication model, 
instead of individual communication protocols. 

There exist two approaches for the construction of active networks: one 
of them is discrete and the other is integrated. In the first one, we separate 
the procedure to inject programs into active nodes from the processing of the 
packets that cross the node. Therefore, there will be a mechanism for the users 
to include their programs into active nodes, and there will be a mark on the 
packets to indicate which is the program that will process them. A different 
approach is to include the code with which packets will be processed inside 
the very same packets. This way, packets (called capsules) will contain both 
data and programs3. 

At the moment, one important research field in active networks2 is centered 
in the creation of tools that facilitate their construction to a greater extent. One 
of them, ANTS (Active Node Transport System), has been developed by MIT 
and is freely distributable4. It was the first tool to use the capsules pattern. 
More recently, MIT has designed ¥AN(Practical Active Networks)^, which is 
based on the ANTS architecture, but whose objective is to be more efficient 
than its predecessor, both in execution and in the code mobility system. Utah 
University is also working on a system based on ANTS, known as Janos6, 
that improves node resource administration and tries to make a clearer and 
surer separation among the different user programs that will be executed in one 



New protocol for grouping data using active network 207 

node. The University of Pennsylvania in collaboration with Bell Switchware , 
which has taken the discrete approach as its focus, makes special emphasis on 
node security. Georgia Tech is creating an operating system for nodes, called 
Bowman8, and an execution environment called CANE {Composable Active 
Network Elements)9, also with a discrete approach. 

Our work, based on the integrated approach, tries to find a definition for 
protocols that intend to solve the overload problems or network congestion 
that appears in industrial environments, typically in data acquisition distributed 
systems. The proposed solution contemplates the grouping of data generated 
by different sources that head toward a common point. We try to increase the 
ratio of useful information to the overhead of these protocols. This leads to a 
reduction of the traffic that goes through the network, thus producing a better 
response time. One must also take into account the possibility that the time 
necessary to carry out a grouping could be detrimental when trying to have 
data arrive without undue delay. As we shall see, we have thought about the 
introduction of a timeout procedure that guarantees as much as possible that 
packets are sent in a reasonable interval of time. 

The remainder of this paper is organized as follows: in second and third sec­
tions we describe the motivation and the goals that have guided the realization 
of this work. In the next section we detail the specifications of the grouping 
protocol. In the fifth section we describe the implementation details, and after­
ward we show a study case. The seventh and last section closes the work and 
we present our main conclusions. 

1. MOTIVATION 

Let us consider a communication scheme in which a group of sender nodes 
distributed in the network must transmit a large amount of data that are being 
produced, and a receiving entity must operate taking those data as input. This 
situation can be found in a distributed data acquisition system (Figure 1), where 
several nodes capture data coming from different sensors. These nodes send 
the data they have picked up to a receiver, all within some established time 
constraint. 

If each node sends its data one by one and data arrive separately, coming 
from different nodes, the network will experience an unnecessary overload. 
This problem is specially severe in the segment connected to the receiver, since 
it collects all incoming traffic. 

If we use this approach, each data is encapsulated inside a frame when cross­
ing the network, and we can have the paradoxical situation that the information 
of the protocol can actually take up more space than data being sent. 



208 

]Sbcfe <*• 

Figure 1. Data transmission without group 

A possible solution to the problem would be that senders themselves grouped 
their data before emitting them. However, it can be interesting not to overload 
to the originators with grouping tasks. Then this solution would not be feasi­
ble. In any case, this scheme does not solve one of the problems, since data 
coming from different nodes will still reach the receiver separately. 

2. GOALS 

The main goal of this work is to propose a solution to improve the ratio 
between the amount of transmitted information and the protocol-related over­
head in environments with heavy traffic. In this way we try to enhance the 
performance of low-bandwidth links, thus enhancing their response time. 

The solution is based on an active network system that makes it possible 
to generate new network protocols that adapt to the specifications of different 
services. The solution of the problem we have described will be a protocol in 
which data are grouped (Figure 2) as they traverse the network toward their 
target. The points where data can be grouped would be the active nodes, in 
such a way that data can reach the receivers in as close a group as possible. 

The new data frame maintains the same size, with a bigger amount of useful 
information. The grouping of data sent from the same node would be no longer 
be the responsibility of sender, but rather it could be delegated to the closest 
node in the network. The protocol could be also built in such a way that the 
sender could configure the emission, thus indicating the node that must do the 
grouping, its size, the maximum wait time for data grouping, etc, all this in an 
attempt to enhance the time response of the network. 

A. Moreno, B. Curto and V. Moreno 

Senecr 

V 3 jfr 

>bcfe 
" 2 X 

>fccfe 
- 4 — 

KMxfe 
1 X 5 

/ \SsTscr 

>fccfe 
• 6 -L Sena: 

file:///SsTscr


New protocol for grouping data using active network 209 

Head 

H< ;ad 

Head 

Data of 3 

Data of 3 and :> 

Data of 3 

Tail 

*,',,-

"7* 

Tail 

^ 

Tail 

"v 

\ 

v 
' " " > / 

Node 
/ 3 

Receiver 
Sender 

Head Data of 5 Tail 

Head Data of 5 

Sender 

Node 
1 " 

V Node / 

2 \ 

Node 

4 

Node 
" 6 

Figure 2. Data transmission with group 

3. THE PROPOSED GROUPING PROTOCOL 

The data grouping protocol makes it possible to join data coming from one 
or different sources in best possible way. In order to carry out this task, it 
performs three important functions: 

• Configuration of the grouping system. The receiving node has the ca­
pability to configure the system so that an efficient grouping of data is 
done. 

• Grouping of data coming from the same originator. This task is that of 
building groups with data that come from the same node. It can be the 
responsibility of the same sending node, or that of any neighbor. 

• Grouping of data coming from different senders. The nodes that receive 
data coming from different sources should encapsulate them all in one 
frame in an orderly way. This task will be carried out by nodes placed at 
the intersections. 

Configuration of the grouping system 

First, the receiver must select the nodes from which it requires data. All 
these senders will be part of a merge data group. The receiver will send a 
set of parameters (Table 1) to each data source. This process shall be called 
registration. 



210 A. Moreno, B. Curto and V. Moreno 

Table 1. Registration information 

sender Sender node 

receiver Receiver node 
group Group-id to which the sender will belong 
units Highest node number of data that can be grouped in a frame 
time Available maximum time to group the data before sending them 

jump Distance limit among the sender node and the node that clusters their data 

The intermediate nodes that will participate in the data grouping system 
are registered in a simultaneous way with the sending nodes. This way, we 
generate what we call the groupings tree, which lets them know from which 
path they will receive data. In order to build the tree, it is necessary that each of 
the registered sender nodes confirms its registration with the receiver, so that, 
when a node receives confirmation, it can know about the network links that 
will belong to the tree branch and store them in the registration array (RM). 

Receiver 

Node 
1 

R 

Node 
2 

Mde2 

5 

Node 
3 

Node 
4 

Sender 
Node 

5 

RMde4 Sender 
Node 

6 

Figure 3. Registration operation 

In order to show the registration process we refer to the network topology 
that we have shown previously. Node 1 sends a registration frame to nodes 5 
and 6, and with their answers the tree is built (Figure 3). Nodes 2 and 4 have 
generated a registration array (RM) that serves to locate the tree branches. 
Node 3 is excluded because it has not been registered. 

Grouping data from the same sender node 

Nodes that have been registered as data sources send their data in an indi­
vidual way toward the node where they will group. This will be configured by 
the jump parameter or in an mandatory way a intersection node (a node whose 
registration array has more than one element). Frames with individual data are 
named unit capsules and the place where the units will group shall be called 
grouping point. At this point, the unit capsule itinerary is finished and this will 



New protocol for grouping data using active network 211 

be the place where data are stored in the cache together with the data from other 
unit capsule that come from the same source. The first capsule of the grouping 
should start a timer whose timeout value is specified in the configuration. 

When the unit capsule that completes the group arrives, that is to say, when 
the limit of elements {units) fixed in the configuration phase is reached, the 
whole group is stored in a grouping capsule (described in the next section), 
and this capsule is transmitted to the receiver. The cache is cleared and the 
timer is stopped. If time runs out before a group is completed, the grouping 
capsule is created with whatever elements are available at the moment; then 
the frame is marked as urgent and sent, and the cache is cleared. 

If we had configured in the previous example the jump parameter with a 
value greater than two, then the unit capsule would cluster in the intersection 
node 2, since they are not able to group beyond an intersection (Figure 4a). If 
the value of jump is 1, then the node 6 capsules would cluster in 4 and those of 
the node 5 would cluster in 2. They would only leave the grouping point when 
the time runs out, or when the group is completed (Figure 4b). 

Node 
3 

Grouping point of 5 / Grouping point of 6" 

Node 

4 

I Node 
5 

RMof4 

6 

Sender 

Node 
6 

t) Grouping i tone jump b ) Grouping ittwo or more jump 

Figure 4. Grouping 

Grouping data from different senders 

The second phase of the protocol is the grouping of data that come from dif­
ferent senders. In this phase, data are no longer grouped according to source, 
but depending on their tree branches. It is necessary to ensure that no informa­
tion about the original data sender is lost. 

As in the previous case, when the first datum to be grouped arrives, a timer 
is started. Data are not sent to the following node unless one of these four cases 
happens: 

• Data of all the tree branches have been stored, that is to say, a complete 
grouping has been made. In that case a group is formed with all the data 



212 A. Moreno, B. Curto and V. Moreno 

and they are sent to the next node of the tree. Afterward, the timer is 
stopped. 

• Data arrive from some of the branches and there are data remaining in 
the area corresponding to that branch. A group is formed with the data, 
and they are sent to the next node. The timer is stopped. The data that 
have just arrived are stored in the proper place. Since they are the first 
data of the next grouping capsule, the timer is started again. 

• Data have arrived marked as urgent. In that case, data are sent as urgent 
data and the timer is stopped. 

• Time has run out. A group is formed and it is sent as urgent. 

In the previous network topology example, if we suppose that the unit cap­
sule are grouped at one jump(Figure 5) then the grouping capsule related to the 
node 6 is generated in node 4. The capsule proceeds directly to node 2, since 
there is only one source branch (node 4). However, when it reaches node 2, it 
is stored waiting for data from node 5, and from node 4. The unit capsule of 
node 5 are grouped in node 2, but when they generate a grouping capsule we 
take as previous node the same as the previous node of the capsule that created 
them (node 5). 

Receiver 

Node 
1 

Grouping point of 5 

Grouping capsule 
of5y6 

Node 
2 

Node 
3 

G 

. < 
\Grouping capsuleL « \ ° 

Unit capsule of 5 N 

F6 
Sende 

Node 
5 

rouping point of 6 

Node 
• 4 

r 

Unit capsule of 6 

Sender 

Node 
6 

Figure 5. Final scheme of the grouping 

In the previous description we have assumed that only one group had been 
generated. However, the protocol supports the generation of various groups in 
a direct way. 

file:///Grouping


New protocol for grouping data using active network 213 

Table 2. Classes and methods of ANTS 

Class Methods 
Application send, receive, node 

Capsule evaluate, length, register, serialize, deserialize 
Node address, get, put, routerfornode, delivertoapp 

Protocol startProtocolDefn, startGroupDefn, addCapsule, endProtocolDefn, endGroupDefn 

4. IMPLEMENTATION 

In order to implement the protocol10, we have selected ANTS as a tool for 
the construction of active networks, because it is written in a general-purpose 
language (JAVA), as opposed to others that define their own language. Thus 
we achieve a double goal: the portability of the applications and the possibility 
of modifying some aspects of the tool, since we can access the source code. 

ANTS 

ANTS provides a programming model that allows to define protocols, a 
code distribution system to load new protocols into the network and an envi­
ronment to execute them. It is based on the capsule-oriented network model, 
in which the frame can take a reference to some executable code in each node, 
so that if the node does not have code it can make a request to previous nodes. 

In this model, users adapt the network to their necessities by means of the 
definition of protocols based on ANTS classes (Table 2). Thus, to develop 
your own protocol, an derivation of the abstract class Protocol is created. It 
is necessary to identify the protocol data units (PDU) that will be inserted in 
the network and the different processing routines. Each type of PDU and its 
routines are specified in a derivation of the abstract class Capsule. A new ap­
plication, an entity that makes use of the network to send and receive capsules, 
must be developed by means of class derived from abstract class Application. 
Active nodes constitute the environment in which a capsule is executed: they 
receive it, load it and they execute its routines, and they plan its transmission. 
Thus, an instance of the Node class represents the environment of local execu­
tion of ANTS. 

The protocol 

As we have mentioned, in order to use ANTS to codify the protocol it is 
necessary to generate the classes that will implement the protocol, the capsules 
and the applications that use them. 



214 A. Moreno, B. Curto and V. Moreno 

Hence, we have defined a class called FussionProtocol that registers the 
different kinds of capsules that compose the protocol: FussionRegCap, Fus-
sionUnitCap y FussionCapsule. The first one defines both the registration of 
sender nodes and the registration acknowledgment. FussionUnitCap trans­
ports the data toward the Grouping Points and it also implements the algorithm 
that groups individual data. The capsule FusionCapsule will be received by 
the reception node and it will contain grouped data. It will be created by a 
FussionUnitCap and it implements the algorithm to fuse data groups. 

Applications constitute the programs that are going to use an active network 
protocol. They inherit the properties from the Application class and in our 
implementation three classes have been defined: ReceptionApp, EmissionApp 
and MFussionApp. ReceptionApp allows us to register emitter applications, 
in such a way that the group of fusion data and its parameters can be config­
ured by sending a capsule FussionRegCap. It also performs the reception of 
fused data that arrive from the FussionCapsule. The class EmissionApp repre­
sents the data emitter that makes use of protocol FussionProtocol, it receives 
registrations from a receptor and it sends automatically an acknowledge. 

Finally, the MFusionApp is executed at every node of the network to monitor 
their activities. It reads data from the cache when it receives a FussionUnitCap 
capsule or a FussionRegCap capsule, and it shows the GoupingTree for the 
node before the last actualization. 

The tree branches are filled at the actual moment and the senders nodes that 
groups their data at this node. 

The protocol requires a timing system to control data arrivals. The ANTS 
nodes do not provide any timing service. Nevertheless, ANTS has a extension 
system of functionalities that in this work has allowed us to implement a mod­
ule that offers this timing service. Timing is done by means of a thread that will 
wait for the indicated time period, and then will send a finish signal. In order 
to perform this task, it has been necessary to create a class named WaitTime, 
that performs a timing task, and a interface, Timlnt, that must be implemented 
by every class that need to be timed. 

5. CASE OF STUDY 

In order to show the effectivity and the performance of the grouping protocol 
we have built, we shall test with a network topology like the one shown in 
Figure 6. 

The receiving application that is executed at node 20.20.20.1 registers the 
following emitter nodes at group 0: 20.20.20.3, 20.20.20.4 and 20.20.20.5. 
This means that the grouping task will be performed at the previous node 



New protocol for grouping data using active network 215 

Figure 6. Active Network Topology 

(Jump^l), where three data will be grouped (Unit=3) and that the waiting time 
will be 10 seconds (Time=\0). 

A register capsule of type FusionRegCap is sent to every node and their 
applications reply with a CapRegFusion as an acknowledgment (Figure 7). 

^j^fnemsamjsnnsii 

Dntoa 
tfeilOB 
Tfempo 
DHPlna 

DfltroRatfbliiDE 

^ m m M H M ^ w > - M | r i 

Jn 
ja 
j i 
ITH 

ja0jLL3fl.3 

SGmp cc AntertDWE 

Figure 7. Register Operation 

Once all the nodes are registered, data will be grouped by following the 
schema shown in Figure 8, where one can see that nodes 20.20.20.3 and 20.20.20.4 
group their data at 20.20.20.6 and 20.20.20.7 at one jump as it has been indi­
cated at the configuration. The grouping point will be the tree intersection 
(20.20.20.2). Since node 20.20.20.5 is located at distance of one jump from 



216 A. Moreno, B. Curto and V. Moreno 

20.20.20.1, their data will reach the target before grouping, hence data will be 
received ungrouped (Figure 9). 

DHIBB d e Bi-rrtc [J? 

j^fff i f f f f^^^^M 

Dllce j 

saiou f 

rumpc, f 

Dailnn j 

L 
D o b i - Rficlbidoa 

|DIR 2D 3D ID 3 
PDEn. D 

poea-a 

^ ^ ^ ^ ^ > « W M 

^ ^ ^ ^ ^ ^ 

0 

D J D 2 D * 

JIl«^^^sl»»Jl 

j 
*3 

Figure 8. Data sending 

R^^^^^^^^^^^^^ 
• M M ^ ^ X 

it,*. . -, 

iL/'iK* '-

^SSSSSSSSSSSSSSSSSS^^^^i 
^ ^ ^ ^ ^ ^ ^ ^ r a P P t 

1 

. : ; ' .-'1 * 

« 

•-

i: 

Figure 9. Data from 20.20.20.5 



New protocol for grouping data using active network 2 1 7 

6. CONCLUSIONS 

This paper describes an attempt to improve network services by means of 
active networks. We propose a way to reduce network traffic for possibly low-
bandwidth network, thus optimizing their performance and helping to maintain 
a reasonable response time. 

To reach this goal, we have define a protocol that groups data coming from 
both single and multiple sources. In order to implement the protocol, we have 
used a tool to construct active networks that is based on the ANTS capsule 
model. Several applications that use this protocol have been developed, as 
well as an application used to monitor intermediate nodes. Finally, in order to 
include timing procedures, it has been necessary to develop an timer extension 
that can be used in any other research field related to Active Networks. 

REFERENCES 

R. Gilligan and E. Nordmark. Transition Mechanisms for IPv6 Hosts and Routers. Internet 
Draft, march 1995 

D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall and G. J. Minden. A Survey of 
Active Network Research. IEEE Communications Magazine, Vol. 35, No. 1, January 1997, 
pp 80-86 

D. L. Tennenhouse and D. J. Wetherall. Towards an Active Network Architecture. Multimedia 
Computing and Networking (MMCN 96),january 1996, San Jose, CA: SPIE. A revision 
of this article appeared in Computer Communication Review, Vol. 26, No. 2 (april 1996). 
http://www.tns.lcs.mit.edu 

D. J. Wetherall, J. Guttag and D. L. Tennenhouse. ANTS: A Toolkit for Building and Dynamically 
Deploying Network Protocols. IEEE OPENARCH'98, San Francisco, CA, april 1998 

E. L. Nygren, S.J. Graland and M. F. Kaashoek. PAN: A High-Performance Active Supporting 
Multiple Mobile Code Systems. Proceedings of IEEE OPENARCH'99, march 1999, pp 78-
89 

P. Tullmann, M. Hibler, and J. Lepreau. Janos: A Java-oriented OS for Active Networks. Appears 
in IEEE Journal on Selected Areas of Communication. Volume 19, Number 3, March 2001. 

J. M. Smith, D. J. Farber, CA. Gunter and S. M. Nettles, D.C. Feldmeier, W. D. Sincoskie. 
Switch Ware: Accelerating Network Evolution (White Paper). 1996 

S. Merugu, S. Bhattacharjee, E. W. Zegura and K. L. Calvert. Bowman: A Node OS for Active 
Networks. IFOCOMM,2000 

E. Zegura, K.Calvert. Composable Active Network Elements .-Lessons Learned. ANTETS PI 
Meeting, may 2000 

I. Blasco. Aplicabilidad de las redes activas a la mejora de los servicios de red. Technical 
Report, University of Salamanca, June, 2000 

http://www.tns.lcs.mit.edu



