
STORAGE CAPACITY ALLOCATION
ALGORITHMS FOR HIERARCHICAL
CONTENT DISTRIBUTION*

Nikolaos Laoutaris, Vassilios Zissimopoulos and Ioannis Stavrakakis
Dep. of Informatics and Telecommunications, University of Athens, 15784 Athens, Greece
"[laoutaris,vassilis,istavrak]-(9di.uoa.gr

Abstract: The addition of storage capacity in network nodes for the caching or replication
of popular data objects results in reduced end-user delay, reduced network
traffic, and improved scalability. The problem of allocating an available storage
budget to the nodes of a hierarchical content distribution system is formulated;
optimal algorithms, as well as fast/efficient heuristics, are developed for its
solution. An innovative aspect of the presented approach is that it combines
all relevant subproblems, concerning node locations, node sizes, and object
placement, and solves them jointly in a single optimization step. The developed
algorithms may be utilized in content distribution networks that employ either
replication or caching/replacement.

Keywords: content distribution; web caching; storage allocation; heuristic algorithms.

1. INTRODUCTION

Recent efforts to improve the service that is offered to the ever increas­
ing internet population strive to supplement the traditional bandwidth-centric
internet with a rather non-traditional network resource - storage. Storage
capacity (or memory) is employed to bring valuable information in close prox­
imity to the end-users. The benefits of this tactic are quite diverse: end-users
experience smaller delays, the load imposed on the network and on web-servers
is reduced, the scalability of the entire content provisioning/distribution chain
in the internet is improved. In most cases the engagement of the memory
has been done in an ad hoc manner. Such an uncoordinated deployment, can
seriously impair the effectiveness of the new resource.

This paper attempts to answer the question of how to allocate a given stor­
age capacity budget to the nodes of a generic hierarchical content distribution
system. Such a system can materialize as any one of the following: a hier-

*This work and its dissemination efforts have been supported in part by the 1ST Program of the
European Union under contract IST-2001-32686 (Broadway).

http://uoa.gr

180 Nikolaos Laoutaris, Vassilios Zissimopoulos and Ioannis Stavrakakis

archical cache comprising cooperating proxies from different organizations; a
content distribution network offering hosting services or leasing storage to oth­
ers that may implement hosting services on top of it; a dedicated electronic
media system that has a hierarchical structure (e.g., video on demand distri­
bution). The dimensioning of web caches and content distribution nodes has
received a rather limited attention as compared to other related issues such as
replacement policies Cao and Irani, 1997; Fan et al., 2000, proxy placement
algorithms Krishnan et al., 2000; Li et al., 1999; Qiu et al., 2001; Cronin et al.,
2002, object placement algorithms Korupolu et al., 1999; Kangasharju et al.,
2002, and request redirection mechanisms Pan et al., 2003. In fact, the only
published paper on the dimensioning of web proxies tha t we are aware of is
due to Kelly and Reeves, 2001, whereas the majority of related works in the
field have disregarded storage dimensioning issues by assuming the existence
of infinite storage capacity Rodriguez et al., 2001; Gadde et al., 2002.

The limited attention paid to this problem probably owes to the fact that
the rapidly decreasing cost of storage combined with the small size of typical
web objects (html pages, images), make infinitely large caches for web objects
realizable in practice, thus potentially obliterating the need for storage alloca­
tion algorithms. Although we support that storage allocation algorithms are
marginally useful when considering typical web objects - which have a median
size of just 4KB - we feel that recent changes in the internet traffic mix prompt
for the development of such algorithms. A recent large scale characterization of
h t tp traffic from Saroiu et al., 2002 has shown that more than 75% of internet
traffic is generated by P2P applications that employ the h t tp protocol, such
as KaZaa and Gnutella. The median object size of these P2P systems is 4MB
which represents a thousand-fold increase over the 4KB median size of typical
web objects. Furthermore, the access to these objects is highly repetitive and
skewed towards the most popular ones thus making them highly amenable to
caching. Such objects can exhaust the capacity of a cache or a CDN node,
even under a low price of storage thus eliminating the assumption of infinitely
large caches.

2. OUR A P P R O A C H TOWARDS STORAGE
CAPACITY ALLOCATION

The current work addresses the problem of allocating a storage resource
differently than previous at tempts, taking into consideration related resource
allocation subproblems that affect it. Previous a t tempts have broken the prob­
lem of designing a content distribution network into a number of subproblems
consisted of: (1) deciding where to install proxies (and possibly their num­
ber too); (2) deciding how much storage capacity to allocate to each installed
proxy; (3) deciding on which objects to place in each proxy. Solving each one
of the problems independently (by assuming a given solution for the others) is
bound to lead to a suboptimal solution, due to the dependencies among them.
For instance, a different storage allocation may be obtained by assuming dif­
ferent object placement policies and vice versa. The dependencies among the

Storage Capacity Allocation Algorithms for HierarchicalContent Distribution 181

subproblems are not neglected under the current approach and, thus, an op­
timal solution for all the subproblems is concurrently derived, guaranteeing
optimal overall performance.

Our methodology can be used for the optimization of existing systems (e.g.
to re-organize more effectively the allocation of storage in a hierarchical cache)
but hopefully will be the approach to be followed in developing future systems
where the memory resource will be utilized dynamically and on-demand. The
current work makes the following contributions towards the above mentioned
uses:

• Introduces the idea of provisioning memory using a very small granule
as an alternative to/extension of known paradigms (mirror placement,
proxy placement) and models the problem with an integer linear pro­
gram. The derived solution provides for a joint optimization of storage
capacity allocation and object placement and can be exploited in systems
that perform replication, as well as in those tha t perform caching.

• Develops fast efficient heuristic algorithms that approximate close-ly the
optimal performance in various common scenarios but can execute very
fast, as required by self organizing systems (and as opposed to plan-
ning/dimentioning processes that can employ slow algorithms). More­
over these algorithms may be executed incrementally when the avail­
able storage changes, thus obliterating the need for re-optimization from
scratch.

The work focuses on hierarchical topologies. There are several reasons for
this: (1) many information distribution systems have an inherent hierarchical
structure owing to administrative and/or scalability reasons (examples include
hierarchical web caching Wessels and Claffy, 1998, hierarchical data storage
in Grid computing Ranganathan and Foster, 2001, hierarchical peer-to-peer
networks Garces-Erice et al., 2003); (2) although the internet is not a perfect
tree as it contains multiple routes and cycles, parts of it are trees (due to
the actual physical structure, or as a consequence of routing rules) and what 's
more, overlay networks on top of it have no reason not to take the form of a tree
if this is called for; (3) it is known that once good algorithms exist for a tree
they may be applied appropriately to handle general graph topologies Bartal,
1996.

3. THE STORAGE CAPACITY ALLOCATION
PROBLEM

3.1 Problem statement

The storage capacity allocation problem is defined here as that of the dis­
tribution of an available storage capacity budget to the nodes of a hierarchical
content distribution system, given known access costs and client demand pat­
terns. The proposed algorithms allocate storage units tha t may contain any
object from a set of distinct objects (thus this is a multi-commodity problem

182 Nikolaos Laoutaris, Vassilios Zissimopoulos and Ioannis Stavrakakis

as opposed to the single commodity fc-median) and employ objective functions
that are representative of the exact content of each node. Additionally, it is not
assumed that a node can hold the entire set of available objects; in fact, this set
need not contain objects from a single web-server, but it potentially includes
object from different web-servers outside the hierarchy. As compared to works
that study the object placement problem Kangasharju et al., 2002; Korupolu
et al., 1999 where each proxy has a known capacity, the current approach
adds an additional degree of freedom by performing the dimensioning of the
proxies along with the object placement. Note that this may lead to a signif­
icant improvement in performance because even an optimal object placement
policy will perform poorly if poor storage capacity allocation decisions have
preceded (e.g., a large amount of storage has been allocated to proxies that
receive only a few requests, whereas proxies that service a lot of requests have
been allocated a limited storage capacity).

The input to the problem consists of the following: a set of N distinct unit-
sized objects, 0\ an available storage capacity budget of S storage units; a set
of m clients, J, each client j having a distinct request rate Xj and a distinct
object demand distribution pj : O —• [0,1]; a tree graph T with a node set of
n nodes, V, and a distance function dj)V : J x V —• R+ associated with the
j t h leaf node and node v; this distance captures the cost paid when client j
retrieves an object from node v. Each client is co-located with a leaf node
and represents a local user population (with size proportional to Xj). A client
issues a request for an object and this request must be serviced by either an
ancestor node tha t holds the requested object or by the origin server. In any
case, a client always receives a given object from the same unique node. The
storage capacity allocation problem amounts to identifying a set A C A with
no more than S elements (node-object pairs) (v, /c), v G V, k G G\ A is the set
that contains all node-object pairs. A must be chosen so as to minimize the
following expression of cost:

min YXjYpjik) •<&*"&), (1)

where djiin(k) = mm{dj)OS, dj}V} : v G ancestor s{j), (u, k) G A; dj^os is the dis­
tance between the j t h client (co-located with the j t h leaf node) and the origin
server, while djiV is the distance between the j t h leaf node and an ancestor
node v. This cost models only "read" operations from clients. Adding "write"
(update) operations from content creators is possible but as stated in Rabi-
novich, 1998 the frequency of writes is negligible compared to the frequency
of reads and, thus, it does not seriously affect the placement decisions.

The output of the storage capacity allocation problem prescribes where in
the network to place storage, how much of it, and which objects to store, so as
to achieve a minimal cost (in terms of fetch distance) subject to a single storage
constraint. This solution can be implemented directly in a real world content
distribution system that performs replication of content. Notice tha t the exact
specification of objects for a node also produces the storage capacity that
must be allocated to this node. Thus, an alternative strategy is to disregard
the exact object placement plan and just use the derived per-node capacity

Storage Capacity Allocation Algorithms for HierarchicalContent Distribution 183

allocation in order to dimension the nodes of a hierarchical cache tha t operates
under a dynamic caching/replacement algorithm (e.g., LRU, LFU and their
variants). Recently there has been concern that current hierarchical caches are
not appropriately dimensioned Williamson, 2002 (e.g., too much storage has
been given to underutilized upper level caches). Thus, the produced results
can be utilized by systems tha t employ replication as well as by those that
employ caching.

3.2 Integer linear programming formulation of an
optimal solution

In this section the storage capacity allocation problem is modeled with an
integer linear program (ILP). Let Xj^v(k) denote a binary integer variable
which is equal to one if client j gets object k from node v where v is an ancestor
of client j (including the co-located j t h leaf node, excluding the origin server),
and zero otherwise. Also let Sv(k) denote an auxiliary binary integer variable
which is equal to one if object k is placed at the ancestor node v, and zero
otherwise. The two types of variables are related as follows:

(i if J2 xjAk) > o
0v{k) — < jeleaves(v) W

y 0 otherwise

Equation (2) expresses the obvious requirement tha t an object must be placed
at a node if some clients are to access it from that node. The following ILP
gives an optimal solution to the storage capacity allocation problem.

Maximize:

z = Y, XJ Yl Po(k) • Y (dh°s - dw) - xjAk) (3)
j£j k£G v£ancestors(j)

Subject to:

53 XjiV(k)<l jeJ.keO (4)
v^ancestor s(j)

Yl XjtV{k)<U-8v{k) v€V,keO,U>\J\ (5)
j€leaves(v)

£ 52 6v(k) < S (6)
vevkeo

Xj)V(k), 5v(k) binary decision variables v G V, j G J,k G O

The maximization of (3) is equivalent to the minimization of (1) (the two ob­
jectives differ by sign and a constant). Notice that only the X^v{ky$ contribute
to the objective function and the 5v(kys do not.

In the sequel, the above mentioned ILP will only be employed for the pur­
pose of obtaining a bound on the performance of an optimal storage capacity

184 Nikolaos Laoutaris, Vassilios Zissimopoulos and Ioannis Stavrakakis

allocation. Such a bound is derived by considering the LP-relaxation of the
ILP (removing the requirement that the decision variables assume integer val­
ues in the solution) which can be derived rapidly by a linear programming
solver.

3.3 Complexity of an optimal solution

The ILP formulation of Sect. 3.2 is generally NP-hard thus cannot be used
for practical purposes. In Laoutaris et al., 2004a we have shown that the opti­
mal solution to the problem discussed can be obtained in 0(max{n4 iV, n2N2}).
From a theoretical point of view, this result is attractive as it involves small
powers of the input. In practice, however, such a result might be difficult to
apply due to the quadratic dependence of complexity on the number of dis­
tinct objects TV, which may assume very big values. For this reason, this work
is primarily focused on the development of efficient heuristic algorithms. The
developed algorithms are easy to implement, incur lower complexity, provide
for a close approximation of the optimal in all our scenarios, and lend them­
selves to incremental use (such need arising when the available storage changes
dynamically).

3.4 The Greedy heuristic

The Greedy heuristic begins with an empty hierarchy and enters a loop
placing one object in each iteration, thus, in exactly S iterations all the storage
capacity is allocated. Objects are placed in a globally greedy fashion according
to the gain tha t is produced with each placement and past placement decisions
are not subject to future placement decisions in subsequent iterations. The
gain of an object at a certain node depends on the location of the node, the
popularity of the object, the aggregate request rate for this object from all
clients on the leaves of the subtree rooted at the selected node, and on prior
iterations tha t have placed the same object elsewhere in the tree. In the
first iteration the algorithm selects an node-object pair (vi,ki) tha t yields a
maximum gain and places k\ at v\. Subsequent decisions place an object k in
node v when the gainv(k) is maximum among all (v,k) pairs tha t have not
been selected yet; gainv{k) is defined as:

gainv(k) = ^ (dj#arv(k) ~ djiV) • pj(k) • Xj (7)
j£leaves(v)
k<£path(j,v)

The parenthesized quantity in (7) is the distance reduction tha t is achieved by
client j when fetching object k from node v instead from node parv(k): i.e., v's
closest parent that caches k; initially it is the origin server that is the closest
parent for all objects and all nodes but this changes as additional copies get
replicated elsewhere in the tree.

Greedy is presented in detail in Table 1. Lines 1-7 describe the initialization
of the algorithm. For each node v the gain of placing object k in v is computed
and these values are inserted in a max-heap Cormen et al., 2001 data structure

Storage Capacity Allocation Algorithms for HierarchicalContent Distribution 185

g{v,-) (n max-heaps, one for its node v)\ the max-heaps are used so as to allow
locating the most valuable object for each node in 0 (1) (this does not require
sorting the N objects). In the S iterations of the algorithm the following
three steps are executed: (1) (i>*,/c*), the node-object pair tha t produces the
maximum gain among the set of node-object pairs that have not been placed,
V, is selected, removed from V, and the max-heap g(v*, •) is re-organized (lines
9-10); (2) for each ancestor u of v* up to parv(k) tha t does not hold fc*, the
(potential) gain incurred if k* is selected for u at a later iteration is updated
and the corresponding max-heap is re-organized (lines 11-14) - the update
of the potential gain g(u, k*) is necessary because the clients belonging to the
subtree below v* will not be fetching k* from u but from v* or its subtree, thus
effectively reducing its previous potential gain at u\ (3) for each descendant u
of v* tha t does not hold k* and has v* as closest parent with &*, the potential
gain incurred if k* is selected for it at a later iteration is updated and the
corresponding max-heap is re-organized (lines 15-18) - the update is in this
case necessary because v* becomes now the closest ancestor with /c* for some
of its descendants, thus effectively reducing the previously computed gain for
them that was based on a more distant parent. Notice that the various affected
max-heaps need to be re-organized since one of their elements changes value;
this must be done so as to maintain the max-heap property (i.e., have the
maximum value accessible in 0 (1) from the root of the max-heap).

A straightforward evaluation of the gain function gainv{k) requires 0(n)
complexity. Since there are n nodes, evaluating gainv(k) for a given A: for all
nodes v would require 0(n2) complexity, if each evaluation were to be car­
ried out independently. Such an independent operation would involve however
much overhead due to unnecessary repetitious work. See tha t the evaluation
of the gain function depends on knowing the request rate tha t goes into the
node and the closest parent that stores the object. To obtain the request
rate for object k at node i>, it suffices to know the corresponding rates at its
children, and then sum the rates that go into children that do not cache fc;
knowing these rates, makes re-examining the entire subtree of v down to the
leaf level redundant. Similar observation can be made regarding the identifi­
cation of the closest parent. We make use of these observations in order to
be able to evaluate gainv(k) for a particular pair (v, k) in 0 (1) . This allows
calculating the gain for placing k in each of the n nodes in 0(n) instead of
0{n2). In Laoutaris et al., 2004b we show how this can be achieved by first
pre-computing information pertaining to request rates and closest parents and
then using it to calculate up to n gain function for a given object in just 0(n).
Since the gain function is 0 (1) following the pre-computation step (occurring
once at the beginning of each iteration), the complexity of each iteration of
the Greedy algorithm depends on the number of nodes tha t are involved in
the iteration and the update of the corresponding data structures.

The initial creation of the n max-heaps can be done in 0(nN) (each max-
heap containing N values). At the beginning of each iteration there is the
pre-processing step to get ratev{k) and parv(k) in 0(n) as explained in the
appendix of Laoutaris et al., 2004b. The first step of each iteration requires
tha t the highest value in all n max-heaps be selected. Finding the largest value
in a max-heap requires 0 (1) time thus the largest value in all n max-heaps can

186 Nikolaos Laoutaris, Vassilios Zissimopoulos and Ioannis Stavrakakis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18
19
20

for each v G V
for each k G O

g(v, k) = gainv(k)
insert g(v, k) in max-heap g(v, •)

end for
end for
i = 1,7? = {(v,k) :veV,keO}
while i < S

select (v*,k*) G V : g(v*,k*) > g(v, k)V(v, k) G V
V — V — {(v*, /c*)}, re-organize max-heap g(v*, •)
for each u G path(v*,parv*(k*)) not caching fe*

g(u, fc*) = gainu(k*)
re-organize max-heap #(ii, •)

end for
for each u G subtree(v*) not caching /c*

with paru(k*) = v*
g(u,k*) = gainu(k*)
re-organize max-heap g(u, •)

end for
i = i+ 1

end while

Table 1. The Greedy algorithm.

be identified in 0{n) by a simple linear search or in O(logn) if an additional
max-heap is maintained, containing the highest value from each of the n max-
heaps g{v,-) (the latter might be unnecessary since n is typically rather small).
The second step requires in the worst case the update of L — 1 ancestors that
do not cache /c*, L being the height of the tree. The function gainv{k*) is
re-evaluated for these nodes (each evaluation in 0 (1)) and the corresponding
max-heap is re-organized in order to maintain the heap property; this can
be done in O(log TV) for a heap with N objects. The third step requires
updating the descendants of i>* that are affected by storing k* at v*; this can
be done in 0(n log iV). As a result the S iterations of the algorithm require
0(S - (n + L log TV + n log TV)), which simplifies to 0(S • n log TV) by noting
that L is at most n. Thus the overall complexity of Greedy (initialization +
iterations) is 0(max{nTV, Sn log TV}) which is linear in either TV or S.

A salient feature of Greedy is that it can be executed incrementally, i.e., if
the available storage budget changes from S to S' (e.g., because more storage
has become available) and the user access patterns have not changed signifi­
cantly then no re-optimization from scratch is required; it suffices to continue
Greedy from its last iteration and add (or remove) \Sf — S\ objects. This
can present a significant advantage when the algorithm must be executed fre­
quently for different S.

3.5 The improved Greedy heuristic (iGreedy)

In the previous Greedy algorithm one can make the following simple obser­
vation. Since clients are located at the leaves of the tree, if an object is placed
at all children of a node u, then it is meaningless to also store it in u since no
request will reach it there. This situation leads to the "waste" of storage units
in "barren" objects. The Greedy algorithm often introduces barren objects as

Storage Capacity Allocation Algorithms for HierarchicalContent Distribution 187

a result of its greedy mode of operation; an object is at some point placed at
the father u while at that time not all children store it but with subsequent
iterations it is also placed at all children thus rendering barren the copy at
the father. This situation is not an occasional one but it is repeated quite
frequently, resulting in wasting a substantial amount of the storage budget.
The situation may be resolved by executing an additional check when placing
an object k* at a node v*. The improved algorithm checks all peer nodes of v*
(at the same level, belonging to the same father) and if it finds that all store
fc* then it also check whether their father u also stores it. In such a case it
removes it from u freeing one storage unit; the resulting algorithm is called
improved Greedy (iGreedy). The additional step of iGreedy is given in Table 2
and is executed between lines 10 and 11 of the basic Greedy algorithm.

iGreedy performs slightly more processing as compared to Greedy due to
the following two additional actions: (1) in each iteration a maximum of Q
peers need to be examined against &*, Q denoting the maximum node degree
of the tree; (2) each eviction of a barren object increases the number of iter­
ations by one by freeing one storage unit which will have to be allocated in
a subsequent iteration. Searching the Q peers does not affect the asymptotic
per-iteration complexity of Greedy which is O(nlogTV). The increase in the
number of iteration has a somewhat larger impact on the required processing.
The following proposition establishes an exact upper bound on the number of
iterations performed by iGreedy (the proof is included in a longer version of
this article Laoutaris et al., 2004b).

P R O P O S I T I O N 1 The maximum number of iterations performed by iGreedy
cannot exceed T(S) = 2 - 5 — 1 .

Thus in the worst case iGreedy will perform 2 - 5 — 1 iterations, with each
iteration incurring the same complexity as with the basic Greedy. This means
that the asymptotic complexity of iGreedy is identical to that of Greedy.

3.6 Numerical results under iGreedy

In this section the presented numerical results a t tempt to accomplish the
following: (1) demonstrate the effectiveness of iGreedy in approximating the
optimal performance; (2) present possible applications of the developed algo­
rithms. When not stated otherwise, the clients are assumed to be sharing
a common Zipf-like demand distribution pj over O with a typical skewness
parameter a = 0.9 and equal request rates Xj = 1, Vj G J. A Zipf-like distri­
bution is a power-law dictating that the i th most popular object is requested
with a probability C/z a , where C = (27=1 ^) _ 1 - The skewness parameter a
captures the degree of concentration of requests; values approaching 1 mean
that few distinct objects receive the vast majority of requests, while small
values indicate progressively uniform popularity. The Zipf-like distribution is
generally recognized as a good model for characterizing the popularity of vari­
ous types of measured workloads, such as web objects Breslau et al., 1999 and
multimedia clips Chesire et al., 2001. The popularity of P2P Saroiu et al.,

188 Nikolaos Laoutaris, Vassilios Zissimopoulos and Ioannis Stavrakakis

10.1:
10.2:
10.3:
10.4:
10.5:
10.6:
10.7:
10.8:

10.9:

10.10

allpeers=l
for each v £ peers(v*)

if k* not cached in v
allpeers = 0
break

end if
end for
if k* cached in u=father(v*)

and allpeers=l
remove k* from u

and set i = i — 1
:end if

Table 2. Additional step of the iGreedy algo­
rithm. It is executed between lines 10 and 11 of
the basic Greedy algorithm.

fc^

N=10000, L=3, Q=2, a=0.9, lambda=ones

Greedy — i —
iGreedy - - x - -

LP relaxation » I

\ j

^^^N. 1
* C \ K ^ ^ j

" ' » - ^ T ^ * ^ ^ 1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S (storage capacity allocated)

Figure 1. The average cost of Greedy, iGreedy
and LP-relaxation.

2002 and CDN content has also been shown to be quite skewed towards the
most popular documents, thus approaching a Zipf-like behavior.

As far as the topology of the experiments is concerned, regular Q-ary trees
are used in all examples. Regular Q-ary trees are commonly used for the
derivation of numerical results for algorithms operating on trees Rodriguez
et al., 2001. The entire set of parameters (demand and topology) for each
experiment is indicated in the title of the corresponding graph. The distance
function d^v capture the number of hops between client j (co-located with the
jth leaf thus djj = 0) and node v. The distance of the origin server is djiOS = L
for an L level hierarchy.

Qual i ty of t h e approx imat ion . Figure 1 shows the average cost per
request for Greedy and iGreedy (expressed in number of hops to reach an ob­
ject). The performance of the heuristic algorithms is plotted against the bound
of the corresponding optimal performance obtained from the LP-relaxation of
the ILP of Sect.3.2. The x-axis indicates the number of available storage units
in the hierarchy (5) with each storage unit being able to host a single object.
From the graph it may be seen that iGreedy is no more than 3% away from
the optimal while Greedy may deviate as much as 14% in the presented re­
sults. The performance gap between the two owes to the waste of a significant
amount of storage in barren objects under Greedy.

T h e effects of skewness and n o n - h o m o g e n e o u s d e m a n d . The fol­
lowing two figures focus on the vertical allocation of storage under iGreedy.
Figure 2 shows the effect of the skewness of the demand distribution on the
per-level allocation of storage. Highly skewed distributions (the skewness pa­
rameter a approaching 1) increase the amount of storage tha t is allocated to
the leaves (level-1), while less skewed distributions allocate more storage to the
root (level-3). This effect is explained as follows. Under a highly skewed dis­
tribution a small number of popular objects at tracts the majority of requests

Storage Capacity Allocation Algorithms for HierarchicalContent Distribution 189

N=10000, S=1000,1=3, Q=4, lambda=ones
N=10000, S=10000, L=3, Q=4, a=0.7, lambda=ones

0.2 0.3 0.4 0.5 0.6 0.7
a (skewness of Zipf distribution)

0.1 0.2 0.3 0.4 0.5 0.6
0 (overlap dngron)

Figure 2.
on the per-]

m, a , r , c , ., Fiqure 3. The effect of non-homogeneous de-The effect of skewness of popularity •* , ,, , , ,, , . c , j , ,, , . c . J -VM J mand on the per-level allocation of storage under
el allocation of storage under lGreedy. -n A

and, thus, these objects are intensively replicated at the lower levels, leading to
the allocation of most of the storage to the lower levels. When the distribution
tends to be "flat" it is better to limit the number of replicas per object and
instead increase the number of distinct objects that can be replicated. This is
achieved by sharing objects, i.e., by placing them higher in the hierarchy that
leads to the allocation of more storage to the higher levels.

Figure 3 illustrates the effect of the degree of homogeneity in the access
pat terns of different clients. Two clients are non-homogeneous if they employ
different demand distributions. In the presented results each client j references
N objects; f3N objects are common to all clients while the remaining (1 — (3)N
are only referenced by client j . A Zipf-like distribution is created for each
client by randomly choosing an object from its reference set and assigning
it the next higher value from a Zipf-like distribution and then repeating the
same action until all objects have been assigned probabilities. The parameter
(5 will be referred to as the overlap degree] values of (3 approaching 1 mean
tha t most objects are common to all clients (although each client may request
a common object with a potentially different probability) while small values
of (3 mean tha t each client references a potentially different set of objects.
Figure 3 shows that the root level (level-3) of a hierarchical system is assigned
more storage when there is a substantial amount of overlap in client reference
patterns. Otherwise most of the storage goes to the lower levels. This behavior
is explained as follows. Storage is effectively utilized at the upper levels when
each placed object receives an aggregate request stream from several clients.
Such an aggregation may only exist when a substantial amount of objects are
common to all clients; otherwise it is better to allocate all the storage to the
lower levels - thus sacrificing the (ineffective) aggregation effect - and instead
reduce the distance between clients and objects.

190 Nikolaos Laoutaris, Vassilios Zissimopoulos and Ioannis Stavrakakis

4. CONCLUSIONS

In this paper the storage capacity allocation problem has been considered
and a linear time efficient heuristic algorithm, iGreedy, has been developed
for its solution. iGreedy has been shown to provide for a good approximation
of the optimal by means of numerical comparison against the bound of the
optimal (obtained using LP-relaxations).

R E F E R E N C E S

Bartal, Y. (1996). On approximating arbitrary metrics by tree metrics. In Proceedings of the
37th Annual IEEE Symposium on Foundations of Computer Science (IEEE FOCS).

Breslau, Lee, Cao, Pei, Fan, Li, Philips, Graham, and Shenker, Scott (1999). Web caching
and Zipf-like distributions: Evidence and implications. In Proceedings of the Conference
on Computer Communications (IEEE Infocom), New York.

Cao, Pei and Irani, Sandy (1997). Cost-aware WWW proxy caching algorithms. In Proceed­
ings of the USENIX Symposium on Internet Technologies and Systems, pages 193-206.

Chesire, Maureen, Wolman, Alec, Voelker, Geoffrey M., and Levy, Henry M. (2001). Mea­
surement and analysis of a streaming-media workload. In Proceedings of US ITS.

Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., and Stein, Clifford (2001).
Introduction to Algorithms, 2nd Edition. MIT Press, Cambridge, Massachusetts.

Cronin, Eric, Jamin, Sugih, Jin, Cheng, Kurc, Anthony R., Raz, Danny, and Shavitt, Yuval
(2002). Constraint mirror placement on the internet. IEEE Journal on Selected Areas in
Communications, 20(7).

Fan, Li, Cao, Pei, Almeida, Jussara, and Broder, Andrei Z. (2000). Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM Transactions on Networking, 8(3):281-
293.

Gadde, Syam, Chase, Jeff, and Rabinovich, Michael (2002). Web caching and content distri­
bution: A view from the interior. Computer Communications, 24(2).

Garces-Erice, Luis, Biersack, Ernst W., Ross, Keith W., Felber, Pascal A., , and Urvoy-Keller,
Guillaume (2003). Hierarchical P2P systems. In Proceedings of ACM/IFIP International
Conference on Parallel and Distributed Computing (Euro-Par), Klagenfurt, Austria.

Kangasharju, Jussi, Roberts, James, and Ross, Keith W. (2002). Object replication strategies
in content distribution networks. Computer Communications, (4):376-383.

Kelly, T. and Reeves, D. (2001). Optimal web cache sizing: scalable methods for exact solu­
tions. Computer Communications, 24(2): 163-173.

Korupolu, Madhukar R., Plaxton, C. Greg, and Rajaraman, Rajmohan (1999). Placement
algorithms for hierarchical cooperative caching. In Proceedings of the 10th Annual Sym­
posium on Discrete Algorithms (ACM-SIAM SODA), pages 586 - 595.

Krishnan, P., Raz, Danny, and Shavit, Yuval (2000). The cache location problem. IEEE/ACM
Transactions on Networking, 8(5):568-581.

Laoutaris, Nikolaos, Zissimopoulos, Vassilios, and Stavrakakis, Ioannis (2004a). Joint object
placement and node dimensioning for internet content distribution. Information Process­
ing Letters, 89(6):273-279.

Laoutaris, Nikolaos, Zissimopoulos, Vassilios, and Stavrakakis, Ioannis (2004b). On the op­
timization of storage capacity allocation for content distribution. Computer Networks.
[submitted].

Li, Bo, Golin, Mordecai J., Italiano, Giuseppe F., Deng, Xin, and Sohraby, Kazem (1999).
On the optimal placement of web proxies in the internet. In Proceedings of the Conference
on Computer Communications (IEEE Infocom), New York.

Storage Capacity Allocation Algorithms for HierarchicalContent Distribution 191

Pan, Jianping, Hou, Y. Thomas, and Li, Bo (2003). An overview DNS-based server selection
in content distribution networks. Computer Networks, 43(6).

Qiu, Lili, Padmanabhan, Venkata, and Voelker, Geoffrey (2001). On the placement of web
server replicas. In Proceedings of the Conference on Computer Communications (IEEE
Infocom), Anchorage, Alaska.

Rabinovich, Michael (1998). Issues in web content replication. Data Engineering Bulletin
(invited paper), 21(4).

Ranganathan, K. and Foster, I. (2001). Identifying dynamic replication strategies for a high
performance data grid. In Proceedings of the International Workshop on Grid Computing,
Denver, Colorado.

Rodriguez, Pablo, Spanner, Christian, and Biersack, Ernst W. (2001). Analysis of web caching
architectures: Hierarchical and distributed caching. IEEE/ACM Transactions on Network­
ing, 9(4).

Saroiu, Stefan, Gummadi, Krishna P., Dunn, Richard J., Gribble, Steven D., and Levy,
Henry M. (2002). An analysis of internet content delivery systems. In Proceedings of the
5th Symposium on Operating Systems Design and Implementation (OSDI 2002).

Wessels, Duane and Claffy, K. (1998). ICP and the Squid web cache. IEEE Journal on
Selected Areas in Communications, 16(3).

Williamson, Carey (2002). On filter effects in web caching hierarchies. ACM Transactions on
Internet Technology, 2(1).

