
HOW TO DISCOVER OPTIMAL ROUTES IN
WIRELESS MULTIHOP NETWORKS

Michael Gerharz, Christian de Waal, and Peter Martini
University of Bonn, Roemerstr. 164, 53117 Bonn, Germany
{gerharz, dewaal, martini} ©cs.uni-bonn.de

Abstract In this paper, we introduce a distributed algorithm that is able to discover opti
mal routes in mobile wireless multihop networks using reactive routing proto
cols. The algorithm is based on Dijkstra's shortest-path algorithm and maps the
quality of a path to a delay of the corresponding route request to allow high-
quality paths to surpass low-quality paths. With a proper selection of the delay
mapping, this approach yields a low overhead and interoperable integration of
maximisable routing metrics into existing protocols like AODV and DSR while
keeping the route setup delay at a moderate level.

Keywords: Ad hoc networks, Routing, Quality-of-Service, Dijkstra

1. Introduction
Reactive routing protocols provide a ressource efficient solution to the rout

ing challenge in highly dynamic network topologies by discovering a route
only when it is actually needed. The source node floods across the network a
route request (RREQ) which is unicast back as a route reply from the destina
tion to the source along the discovered route.

In the recent past, much effort has been spent on integrating all kinds of dif
ferent routing metrics into reactive routing protocols. Motivations come e.g.
from QoS-considerations (e.g. maximising the route reliability or the bottle
neck capacity) as well as power aware protocols (e.g. minimising the sender-
receiver distance in terms of a distance metrics such as energy consumption or
number of weak links).

By default, common reactive routing protocols like AODV and DsR [Perkins,
2001] do not support sophisticated metrics, because they process only the first
arriving RREQ. While DsR provides limited support by replying to multiple

This work was supported in part by NOKIA and the German Federal Ministry of Education & Research
(BMBF) as part of the IPonAir project.

324 Gerharz, de Waal, and Martini

RREQs, this approach is still not able to discover optimal routes, but merely
selects the best of several short-delay paths. There are several approaches to
incorporate optimal route discovery into reactive routing protocols. However,
these approaches focus on special metrics or suffer from high overhead.

In this paper, we will present a generic algorithm applicable to a wide range
of diverse routing metrics with very low overhead. The main idea is to use a
distributed version of Dijkstra's shortest path algorithm. The key is to schedule
the transmission of RREQS in an order that is equivalent to the treatment of the
stations in Dijkstra's algorithm.

There are several requirements to an algorithm supposed to discover optimal
routes according to some routing metric. Firstly, the overhead of the route dis
covery should be as low as possible compared to conventional reactive routing
protocols. Two competing goals are to minimise the number of messages sent
over the medium and to minimise the route setup delay. Our algorithm, just
like conventional reactive routing protocols, requires exactly one broadcast per
station while adding a slight delay to distinguish paths of different quality.

Secondly, the route discovery process should be interoperable to the plain
routing protocol. This allows for gradual deployment and enables different
devices to stress different requirements on the discovered route (whether this is
reasonable depends on the scenario). Our approach is fully interoperable with
AoDV and DSR, but the caching strategy of the latter protocol has to be chosen
with care in order not to base routing decisions on outdated information.

The rest of this paper is structured as follows. Section 2 provides prelim
inaries for the discussions to follow. In section 3, we present related work.
Section 4 describes our generic approach to optimal routing and outlines sev
eral design choices. After discussing implementational aspects in section 5,
we draw conclusions and outline perspectives for further research in section 6.

2. Shortest Path Algorithms & Routing Metrics
A thorough discussion of maximisable routing metrics may be found in

[Gouda and Schneider, 2003]. The authors define a routing metric as a 5-
tuple (M, W, MET,PO5 ^) where M is the set of all possible metric values,
W is the set of possible edge weights. M E T : M X VF —̂ M is a metric func
tion which calculates metric values cumulatively, ^ = max(M) is used as
the initial path metric of a route discovery, and ^ is a less-than total order
relation over M so that the routing metric selects the paths of maximal met
ric values. Sometimes, we will use MET(CI , . . . , C)̂ as an abbreviation for
M E T (M E T (. . . (MET(PO, c i) , . . .) , Ci).

According to this we define a distance metric as the 5-tuple (R, TF; +, 0, >).
A reliability metric is given by {M = {x e (Q|0 <x<l},W = M,', 1, <).
A flow metric is defined as (M c IN, PF = M, min, max(M), <). Defining

How to Discover Optimal Routes in Wireless Multihop Networks 325

a maximal weight for the source station has technical reasons as required in
section 4. Interestingly, this requirement may be relaxed for a practical imple
mentation (cf. section 5). Anyway, the maximally recordable weight will be
limited by a finite value in any real implementation.

Numerous examples for these routing metrics exist in the literature. Power
consumption is a frequently used distance metric, flow metrics are commonly
used when minimum bandwidth requirements have to be met, and the expected
packet loss rate is a typical reliability metric. Further examples for all of these
metrics can be found in [Gerharz et al., 2003].

In the following, we will provide a short overview of Dijkstra's single source
shortest paths algorithm [Dijkstra, 1959], because it forms the basis for our
distributed approach. Consider a network G with a weight function w and a
source node s. The shortest paths to all other nodes in the network are basically
calculated by the following procedure (cf. [Gormen et al., 1990]):

D I J K S T R A (G , I (; , 5) :

INITIALIZE(G, S)

Q - V[G]
while Q / 0

u ^ E X T R A C T - M A X (Q)

for each vertex v G Adj[u\
do RELAX('U, V, w)

The set Q contains all nodes for which the optimal path is not yet known.
E X T R A C T - M A X selects the node u whose currently best known path is max
imal of all nodes in Q. For this node u the maximal metric value is already
found. We will denote this maximal value as OPT(U).

The central task of the DIJKSTRA algorithm is the RELAX procedure. It
takes three parameters: the two endpoints of a link u,v as well as the weight
function w and calculates the metric value d[v]:

RELAX{U,V,W) :

ifd[v] ^ MET{d[u],w{u,v))
Thend[v] ^ MET{d[u],w{u,v))

nexthop{v) ^— u

The important property of Dijkstra's algorithm in our context is that the
RELAX procedure is called exactly once for every edge. This property permits
a distributed computation of the algorithm if the distributed calls to RELAX
follow an equivalent order as in the centralised case.

3. Existing Distributed Algorithms for Optimal Routing
Ad Hoc Networks

A lot of previous work exists on the discovery of optimal routes with reactive
routing protocols which basically splits into two groups. The first group tries

326 Gerharz, de Waal, and Martini

to keep the route setup delay at a minimum at the price of an increased routing
load while the other group favours the opposite.

In DSR, a rudimentary support for optimal routing is provided by the des
tination which replies to all incoming RREQS. D S R itself uses this approach
to discover shortest paths. But, it has also been adopted by other publications,
sometimes with sUght modifications. In [Tickoo et al., 2003] e.g., the destina
tion does not send multiple route replies, but rather delays the reply in order to
answer to the best RREQ just once. This reduces the routing overhead but on
the other hand increases the route setup time.

While being very simple, this approach is unable to find the actual opti
mal route, because the destination is provided with only a subset of all paths.
Therefore, extensions were proposed (e.g. [Gupta and Das, 2002], [Bergamo
et al., 2004]) to have intermediate stations forward multiple RREQS instead of
just the first. While this approach may be able to find the optimal path with
low latency, it consumes a huge amount of capacity, because the inherently
harmful broadcast storm problem [Tseng et al., 2002] will even be augmented.
In contrast, our approach will even lessen the broadcast storm problem.

A different approach is proposed in [Cho and Kim, 2002] and [Chakeres
and Belding-Royer, 2003] which is based on the standard AODV discovery
scheme. But in contrast to the basic scheme, RREQS are delayed depending
on a local state maintained in every station. By this means, the probability for
the station to be on the selected route is influenced. Although this approach
is specified with weights being assigned to nodes rather than edges, a generic
mapping to edge weights is possible due to the fact that only the first arriving
RREQ is processed. With that transformation, this approach is merely a special
case of ours.

A related approach, also operating on a specific distance metric (power con
sumption) is described in [Aslam et al., 2003] with algorithm 5, this time using
edge weights and assuming a global clock. A station receiving a RREQ delays
the forwarding of this RREQ according to the accumulated distance.

In this paper, we will generalise this concept to arbitrary maximisable rout
ing metrics without requiring a global synchronisation of all stations.

4. A Distributed Version of Dijkstra's Shortest Path
Algorithm

In this section, we assume that neither the stations nor the medium introduce
any further latency other than the one enforced by the algorithm. Furthermore,
we assume that the clocks of all stations are synchronised and that without loss
of generality the clock starts at 0 for every route discovery. This synchronisa
tion requirement will be relaxed in later sections.

How to Discover Optimal Routes in Wireless Multihop Networks 327

4.1 Key Concepts & Basic Algorithm
The key idea is to make the E X T R A C T - M A X procedure imphcit by schedul

ing the broadcast of RREQS distributedly in an equivalent order as the nodes
are extracted from the set Q and distribute the computation of RELAX to those
nodes receiving the RREQ. In other words, the broadcast time BT{U) of a
RREQ at node u has to fulfil the following condition:

yu,u' G G : OPT('U) ^ OPT{U^) =^ BT{U) > BT{U^) (1)

To achieve this, we assign to every path in the network a total RREQ-delay
corresponding to the path's cost. Formally, we define a function D : M -^BQ
which is strictly monotonically decreasing. (Note that this is equivalent to find
ing a mapping of the routing metric to a distance metric.) Having this mapping,
a RREQ which is received along a path of value p, is scheduled to be forwarded
at global time D{p). Should a better RREQ arrive before D(p) has elapsed,
the transmission has to be re-scheduled to the earlier period. Worse RREQS
will be discarded. Ties are broken arbitrarily. Formally, we define BT{U) as
the minimal delay of all paths to u. In conjunction with D's monotonicity, it
immediately follows that BT{U) = D{OFT{U)).

This leads to a generic formulation of a distributed version of Dijkstra's
algorithm. The set Q is only maintained implicitly and not centrally admin
istered. By broadcasting a RREQ, a node is extracted from Q. Subsequently,
the relaxation of an edge is distributed to the broadcasting station's neighbours
and triggered by the reception of the RREQ. The RELAX procedure also needs
three parameters, however in an accumulated form: the id of the previous hop,
the cumulated pathcost p transmitted in the RREQ, and the linkcost c of the last
hop:

RELAX('U, _p,c):
if met -< M E T (P , c)

Then met ^ M E T (P , C)

nexthop ^^ u
RESCHEDULE-BT(D(met))

Under the assumption that no additional delay is introduced by the medium
or the stations, this algorithm is able to discover optimal routes which follows
immediately from Dijkstra's optimality, because the stations broadcast their
RREQ in an equivalent order as the nodes would be extracted from Q. The
effect of increasing medium and station latency is out of scope of this paper.
However, note that although additional delays lead to suboptimal route assign
ments this is not necessarily a drawback in practice. By Hmiting the detour of
an optimal route compared to the shortest path, the capacity of the network as
well as the energy resources are potentially spared.

328 Gerharz, de Waal, and Martini

As already mentioned in section 3, to discover optimal routes with reac
tive protocols, a tradeoff has to be found between overhead and route setup
delay. Our algorithm does not introduce any overhead in terms of packet trans
missions. In terms of byte-overhead, RREQS need to be extended with a met
field which on the one hand is quite negligible in size and on the other may be
spared completely if certain conditions are met (cf. section 5.2). Additionally,
note that delaying some of the RREQS stretches the route discovery broadcast
storm in time and thereby reduces the peak load on the network.

4.2 Mapping Metric Values to RREQ-Delays

In this section, we will take a look at some example delay mappings, namely
linear and logarithmic transformations.

Linear Transformation. In general, a linear transformation of metric val
ues to delays will look like this:

D{p) = mp + o (2)

where m > 0, if -̂ actually is a greater-than operator and m < 0 otherwise.
In general, o 7̂ 0 for m < 0 or min(M) > 0. Reasonably, we require o to be
chosen such that D(max(M)) == 0 in order to guarantee that optimal paths do
not experience any delay at all.

For distance metrics, this leads to delays proportional to the distance (note
that this is the special case of algorithm 5 in [Aslam et al., 2003], cf. sec. 3):

D{p) = kp (3)

where A: G N, A: > 0 which we will assume throughout the rest of the paper.
For reliability metrics, we have ^ = < and thus m < 0. Consequently, with
m == — fc we define o = k in order to guarantee D{1) = 0 which leads to
delays proportional to the fragility of the path:

D{p) = -kp + k = k{l-p) (4)

Similarly, for flow metrics we define m = —k and o = kmax{M) to get
delays proportional to the unused or preoccupied resources:

D{p) = k{meix{M) - p) (5)

We observe that the maximal delay a RREQ may experience is bounded by k
for reliability metrics and by k max(M) for flow metrics while it is unbounded
for distance metrics.

How to Discover Optimal Routes in Wireless Multihop Networks 329

This means, with distance metrics a RREQ may in principle travel through
the network arbitrarily long which seems undesirable at first sight. Firstly,
RREQs should arrive in a timely manner, because old RREQS will possibly carry
outdated information. Furthermore, late RREQS may increase the route setup
delay if a better route is not available. However, it may be doubted that this has
a great impact in practice. The use of a performance metric in scenarios where
a good performance may not be expected in the first place, may be doubted at
all. It should be expected that usually a better path is available whose delay is
accordingly short.

Logarithmic Transformation. An alternative approach is to use a logarith
mic delay transformation which provides underproportional growth of delay
for high-quality paths and overproportional growth of delay for lower-quality
ones. As an example, we will look at reliability metrics and define:

D{p) = klogp-^ , P ^ 0
D{p) = (X) ,p = 0 ^^

In principle, a logarithmic transformation is also possible for other routing
metrics, but care has to be taken to keep the delay positive.

As with a linear transformation, this mapping guarantees a zero delay for
100% reliable paths. But different to linear transformations, 0% reliable paths
will be totally discarded (which is a reasonable thing to do). Furthermore, the
delay is not bounded but approaches infinity for reliabilities close to zero.

Depending on the number of alternative paths, two pragmatic solutions ex
ist to this problem: unreliable paths below a certain threshold may be totally
discarded or delayed by a constant upper limit. The latter approach disregards
differences in the reliability of a path and leads to sub-optimal routes while
the former approach in effect reduces the connectivity of the network. Which
solution is preferable depends on the scenario.

Fig. 1 provides a comparison of linear and logarithmic transformations for
reliability metrics. The log-transformation is D{p) = ^log^oP"^ while the
linear transformation is D{p) = ^p. Thereby, paths with a reUability of at least
10% will be discovered within 300ms (plus medium and station latency).

Although many more special mappings may be chosen, we refrain from
discussing details here.

5. Implementational Aspects
Until now, we have assumed to have the clocks of all stations globally syn

chronised which is clearly undesirable in real implementations. This may be
avoided by computing delays incrementally.

330 Gerharz, de Waal, and Martini

Figure 1. Comparison of linear and logarithmic transformation of reliability metrics

In section 5.1, we describe a straightforward approach that makes use of
the path metric value propagated in the RREQ. If this value is implemented
as an optional field which is not modified by stations not supporting the exten
sion, this will allow an interoperable integration of routing metrics into existing
routing protocols, which is generally desirable. Section 5.2 will show that the
message format may even be left unchanged when utilising special delay map
pings which allows a fully backwards compatible implementation of routing
metrics.

While this approach allows for gradual deployment of novel routing met
rics and permits different devices and applications to focus on different per
formance aspects, having only parts of the stations support a routing metric
certainly yields suboptimal routes. Be aware that a partial approach will for
some metrics lead to wrong and sometimes even counterproductive decisions
(if in particular those stations with high quality links support this and in partic
ular those with bad quality links do not).

5,1 Differential Delay Mapping
In this section, we assume that the pathcost is propagated in the RREQ. With

Pi_i we denote the metric value contained in the RREQ transmitted on the i-th
hop of a path, Q denotes the linkcost of that link. Additionally, we do not
require a global synchronisati on but assume that the deviation of the stations
clocks remains in sensible bounds. We formally define:

DEFINITION 1 Differential Delay Mapping
A differential delay mapping is a function d\ M xW

a delay mapping D \ M ^^ R .̂*
RQ" such that for

How to Discover Optimal Routes in Wireless Multihop Networks 331

ypeM.ceW : D{p) + d(p, c) - D (M E T (P , C)) (7)

The application of this definition to previously introduced delay mappings
provides some interesting insights. For Unear delay mappings e.g. we get:

d{pn-l, Cn) = {mpn + o) - {mpn-1 + o)

= m{pn-Pn-l) (8)

We observe that the delay calculation comes with very low computational
overhead. The procedure requires only two arithmetic operations, because pk
has to be calculated anyway to measure the quality of the path and pti-i is
extracted from the RREQ.

Additionally, we notice that d is independent of o. Note that although the
local delay is proportional to the absolute difference of the pathcosts, this does
not generally imply that d is proportional to the linkcost. This is however true
for linear differential mappings of distance metrics which deserves a closer
look (recall that D{p) = kp, pn = YAI Q)-

d{pn-l,Cn) = k{pn-Pn-l) (9)
n n—1

i=l i=l

= kCn (10)

Obviously, the local delay that a RREQ experiences in a station is indepen
dent of the path cost and depends only on the local linkcost which means that
it is actually redundant to include the pathcost in the RREQ. This leads us to
the notion of local mappings, defined in the following section.

5.2 Local Delay Mapping
In the previous sections, the delay mapping has been calculated from the

pathcost. But for distance metrics, it has been shown that this is actually re
dundant. In this section, we will see that also for other metrics it is possible
to make the calculation of the pathcost implicit and to compute the delays of
RREQs directly from the linkcosts. Formally, we define:

DEFINITION 2 Local Delay Mapping
A local delay mapping is a function d : W -^ EQ" such that (n, m G INj,-

M E T (C I , . . . , Cn) ^ MET(C; , . . . , 4) -^ X)c!(ci) > Y^d{c'^ (11)
i=l i=l

332 Gerharz, de Waal, and Martini

/
3 f

\
Figure 2 Flow metrics in
general are not local

Note that a local delay mapping as defined here is not a special case of
a differential delay mapping. Two paths with the same pathcost may arrive
at different delays with local mappings whereas they will be guaranteed to
experience the same delay with differential mappings by definition.

Reliability metrics may be implemented with a local delay mapping using
a logarithmic mapping of reliabilities to delays which we will derive from the
differential mapping of a logarithmic transformation (cf. equation 6):

= log (ft^r^)-log (n^.-^)
= Eiog(crO-Eiog(crO

2 = 1 i=l

^ logc"^

Since the delay is independent of the pathcost, a local delay mapping for
reliability metrics exists via d{c) = log c~^.

For flow metrics, we state the following theorem:

THEOREM 1 A local delay mapping for flow metrics exists if and only if the
size of the network is bounded by a constant N which is known in advance or
\W\ < 3.

P R O O F We will first prove that flow metrics are not local if neither of the
two conditions is met by providing a counter-example:

The delay mapping shall impose a lower delay on any path with lower cost,
regardless of how much longer this path is. It is easy to see that this is not
generally possible: Consider a network of size n + l ,n G N with circular
shape as depicted in figure 2. Let Q be the linkcost of link (i, i + 1) and Cn
be the cost of Unk (n,0). Furthermore, let ĉ = min(M^) and Cn < Ci <
max(W), 0 <i <n (recall that | 1 ^ | > 3). Then, by definition:

n - l

J2d(ci)<d{cn) (12)
2=0

How to Discover Optimal Routes in Wireless Multihop Networks 333

However:

n - l

y^d{ci)>{n-l)mm{d{ci)) (13)

Since \/i < n : Ci < max{W), we have mini<n((i(ci)) > 0. Furthermore,
mmi<:n{d{ci)) and c^ are constant. This leads to a contradiction to eq. 12, if n
is large enough. In general:

n - l

3n G IN : d{cn) < (n - 1) min(d(q)) < V d{ci) (14)

On the other hand, if the network size is bounded by a constant N e ^
which is known in advance, a local delay mapping for flow metrics exists:

d{cn) - kN-'^ (15)

Consider a network of size A .̂ Consider a Hnk (0, Â - 1) of cost c. In the
worst case, a path 0 , . . . , A/' - 1 of length N-l exists that just contains links
of linkcost c/ only marginally better than c, i.e. d = c-\-l. Then:

(A^ - 1) • c/(c') < d{c)

^N-1 < d{c)d{c')-^

^N-1 < AT-̂ AT^+i

< ^ A r - l < Â

Furthermore, if | W| = 1, a valid local delay mapping is trivially defined by
d{c) = 0. If 114̂1 = 2, a valid local delay mapping is defined by d{cmin) = k
mdd{cmax) = 0. qed.

At first sight, it might seem straightforward to simply choose N large enough
to meet any imaginable realistic scenario. However, this would require us to
increase k as well in order to be able to distinguish also small differences in
path quality. But, a large choice of k may result in very large delays even for
high quality paths.

6. Conclusions & Further Work
In this paper, we have presented a generic approach to discover optimal

routes with reactive routing protocols. The key idea is to delay the forwarding
of RREQs according to the pathcost of the discovered path which was used to
develop a distributed version of Dijkstra's shortest path algorithm.

This approach does not increase the routing load in terms of packet trans
missions and in fact even reduces the peak load during a broadcast storm. On

334 Gerharz, de Waal, and Martini

the other hand, the route setup delay is increased. Thus, the delay of RREQS
has to be chosen carefully in order to find a good tradeoff between a minimal
route setup time and a reliable distinction of high-quality from lower-quality
paths. Finally, we have presented a local version of our algorithm which is
fully backwards compatible to existing reactive protocols.

Future work will focus on several aspects. First of all, the impact of medium
and station latency on a sensible choice of the RREQ delay has to be analysed.
Possible improvements may be achieved by using the plain reactive routing
protocol to quickly discover some route and refine this route selection by addi
tionally running our proposed algorithm. A similar approach would be to limit
the maximal RREQ-delay to a relatively short period, but as a compensation
forward multiple RREQS if one arriving late yields a significantly better path.

References
[Aslam et al., 2003] Aslam, J., Li, Q., and Rus, D. (2003). A lifetime-optimizing approach to

routing messages in ad-hoc networks. In Cheng, X., Huang, X., and Du, D.-Z., editors. Ad
Hoc Wireless Networking, pages 1-43. Kluwer Academic Publishers.

[Bergamo et al., 2004] Bergamo, P., Giovanardi, A., Travasoni, A., Maniezzo, D., Mazzini, G.,
and Zorzi, M. (2004). Distributed power control for energy efficient routing in ad hoc net
works. Wireless Networks, 10(l):29-42.

[Chakeres and Belding-Royer, 2003] Chakeres, I. D. and Belding-Royer, E. M. (2003). Re
source biased path selection in heterogeneous mobile networks. Technical Report 2003-18,
UCSB, Santa Barbara.

[Cho and Kim, 2002] Cho, W. and Kim, S.-L. (2002). A fully distributed routing algorithm for
maximizing lifetime of a wkeless ad hoc network. In Proc. 4th IEEE Conf. on Mobile and
Wireless Communication {MWCN2002).

[Gormen et al., 1990] Gormen, T. H., Leiserson, G. E., and Rivest, R. L. (1990). Introdcution
to Algorithms, chapter 25 Single-Source Shortest Paths, pages 514-527. The MIT Press.

[Dijkstra, 1959] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269-271.

[Gerharz et al., 2003] Gerharz, M., de Waal, G., Martini, R, and James, R (2003). Strategies
for finding stable paths in mobile wireless ad hoc networks. In Proc. 28th IEEE Conf. on
Local Computer Networks (LCN'03), Bonn, Germany.

[Gouda and Schneider, 2003] Gouda, M. G. and Schneider, M. (2003). Maximizable routing
metrics. IEEE/ACM Transactions on Networking, ll(4):663-675.

[Gupta and Das, 2002] Gupta, N. and Das, S. R. (2002). Energy-aware on-demand routing for
mobile ad hoc networks. In Proc. 4th Intl. Workshop on Distributed Computing (IWDC
2002), pages 164-173.

[Perkins, 2001] Perkins, C., editor (2001). Ad Hoc Networking. Addison-Wesley.

[Tickoo et al., 2003] Tickoo, O., Raghunath, S., and Kalyanaraman, S. (2003). Route fragility:
A novel metric for route selection in mobile ad hoc networks. In Proc. 11th IEEE Intl. Conf.
on Networks (ICON 2003).

[Tseng et al., 2002] Tseng, Y.-G., Ni, S.-Y., Ghen, Y.-S., and Sheu, J.-R (2002). The broadcast
storm problem in a mobile ad hoc network. Wireless Networks, 8(2/3): 153-167.

