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Abstract: The infrastructure-less property of wireless ad hoc network makes the 
traditional central server based security management schemes unsuitable and 
requires the use of a distributed key management mechanism. In this paper, we 
propose a distributed pairwise key establishment scheme based on the concept 
of bivariate polynomials. In our method, any mobile node in an ad hoc network 
can securely communicate with other nodes just by knowing their 
corresponding IDs. The bivariate polynomials are shared in such a manner that 
the shares depend on the coefficient matrix of the polynomial, the requesting 
node's ID and the ID of the nodes that respond to the request. We study the 
behavior of our scheme through simulations and show that our scheme 
compares well with other schemes and has a much better performance when 
averaged over the lifetime of the network. 
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1. INTRODUCTION 

Security in ad hoc networks is riddled with a constant change in 
paradigms. Murphy et al. [6] defined ad hoc networks as "A transitory 
association of mobile nodes which do not depend on any fixed support 
infrastructure." Thus, an ad hoc network can be either a network of radios in 
a battlefield or a network of laptops in an office environment etc. This 
multitude of applications makes the deployment of a common security 
infrastructure a complex problem. In addition to the diversity in the kinds of 
applications, security in ad hoc networks is severely constrained due to the 
dynamic nature of the networks. Participants may join and leave the 
network at any time. The traditional central server based security 
management mechanism may not be directly applicable since the incoming 
participants need not have access to a central trusted server after the network 
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has been deployed. Thus, a distributed key management mechanism is 
necessary in securing wireless ad hoc networks. Several approaches towards 
implementing a distributed key management scheme have been proposed in 
literature. Zhou and Hass [9] use a partially distributed certificate authority 
system, in which a group of special nodes is capable of generating partial 
certificates using their shares of the certificate signing key. In [5], Kong et 
al. proposed another threshold cryptography scheme by distributing the RSA 
certificate signing key to all the nodes in the network. 

Both the approaches are based on asymmetric cryptosystem, which 
imposes a high processing overhead. In this paper, we consider a symmetric 
key based approach and focus on distributed pair-wise key generation. In a 
pairwise key scheme, each node pair shares a unique symmetric key. There 
are a number of applications for these types of keys. SRP for DSR [7] uses 
pair-wise keys for authentication. Also, any secure communication between 
two nodes in the absence of a public key system would require pair-wise 
symmetric keys between nodes. 

Before discussing any further, we would like to state our assumptions and 
the problem. We base our system on the following assumptions: 
- A trusted server is present which initializes a set of nodes before 

deployment. This server is not present after the nodes have been 
deployed. Any un-initialized node would need to get its keying material 
from the network. 

- An incoming node has the computational power to generate a temporary 
public key-private key pair. 

- A node that joins the network and tries to obtain keying material from its 
neighborhood has a mechanism to prove its authenticity to the nodes it 
requests the shares from. 

With the above assumptions in place, we state the problem as: Given an 
operational ad hoc network with a set of nodes initialized (by a central 
authority) with the keying material, a node that wishes to join the network 
needs to securely obtain its own keying material without the help of the 
central authority. 

Several solutions to the problem have been proposed in literature. In [4], 
the authors present a probabilistic key pre-distribution technique. This idea 
has been extended in [2] where the authors propose a q-composite key pre-
distribution. 

We propose a distributed mechanism to share keying material between n 
nodes such that any t nodes can get together and provide another incoming 
node with its keying material. At the same time, an adversary listening to all 
the ongoing conversation and having compromised less than t members 
would not be able to obtain any pairwise key. 

Our scheme is based on the concept of bivariate polynomials, first 
outlined in [1]. We extend this scheme to a distributed scenario by 
modifying Shamir's threshold scheme [8], so that incoming nodes can be 
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initialized by the network into getting the keying material from the network. 
To the best of our knowledge, no attempt has been made to share these 
polynomials in a secure and distributed manner. The proposed scheme has a 
number of attractive properties. First, in our scheme, any incoming node 
would be able to get its key shares from the network and need not rely on a 
central server. Second, the scheme is resilient to the compromise of t-l 
nodes. Third, a node which joins the network needs to communicate only 
with its immediate neighborhood in order to get all its keying material. 
Fourth, physical capture of a node would give away only the captured node's 
keying material without compromising the network. Finally, our scheme is 
simple and does not require complex protocols to be implemented. 

The rest of the paper is organized as follows. In Section 2 we introduce 
some background knowledge for our scheme. In Section 3 we present the 
proposed distributed pair-wise key generation scheme in detail. We give 
simulation results and discuss possible extensions to the work in Section 4. 
Finally, Section 5 concludes. 

2. BACKGROUND 

In this section, we first take a brief look at the bivariate polynomial 
scheme introduced in [1], and also at the concept of threshold secret sharing 
introduced in [8]. 

2.1 Bivariate polynomial-based key pre-distribution 

Consider a bivariate polynomials/(3c,ĵ ^ of degree t, defined as 

/ (x , j ; )= | ]a ,xy (1) 

where the coefficients a.j are randomly chosen over a finite field GF(q). The 

bivariate polynomial has a symmetric property such that 
f{x.y)^Ky.x) (2) 

An initial server first proceeds to initialize a set of nodes by giving each 
node m the polynomial g^ (;;) = /(w,>^), which is the polynomial obtained by 
evaluating/(x,3;) atx = m. That is, a deployed node would know 

gj=%a,j.{my {Q<j<t-\) (3) 

where m is identity of the node being deployed, and gj is coefficient of/ in 

the polynomial f(m,y). 
Thus, in order for a node with ID m to calculate the pairwise key with a 
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node with ID n, node m simply finds out the value of f(m,y) at y=n. 
Similarly, node n in turn evaluates the polynomial at y=m. Due to the 
symmetric property of the bivariate polynomial f(x,y), they manage to 
establish a pairwise secret key known only to them. 

The above procedure can be represented using a matrix notation as 

K„„=K„^=X^AY^Y''AX (4) 

where, 

A = Coefficient Matrix for f(x,y) 

Kmn = K„m = Shared Key between node m and n 
The deployed node m obtains the information G= X^A=[go, gi, ...gt-i]- Note 
that the elements of matrix A are not known to anyone except the initial 
server. 

2.2 Threshold secret sharing 

Secret sharing allows a secret to be shared among a group of users (also 
called shareholders) in such a way that no single user can deduce the secret 
from his share alone. One classical {t, n) secret sharing algorithm was 
proposed by Adi Shamir [8] in 1979, which is based on polynomial 
interpolation. In the scheme, the secret is distributed to n shareholders, and 
any t out of the n shareholders can reconstruct the secret, but any collection 
of less than t partial shares can not get any information about the secret. We 
use the scheme to share polynomials in such a manner that the coefficients 
of the polynomial would always remain secret. Any combination of t nodes 
would only derive the value of the polynomial at a certain point. 

3. PROPOSED DISTRIBUTED KEY GENERATION 
SCHEME 

In our scheme, we distribute the shares of the matrix A among n initial 
nodes such that: 
- Any combination of t nodes would be able to derive the keying material 

for an incoming node. (Note that this does not amount to the nodes 
getting to know the coefficients of the matrix A. Instead, the incoming 
node would only be able to derive X^A, as indicated in (4). 

- Any combination of less than t nodes would not be able to derive any 
portion of the keying material for an incoming node. 

- The central server initializes only a set of n nodes. A node which has 
not been initialized by the central server and which wishes to join the 
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network can do so without having to contact the central server provided 
at least t nodes send in keying material to this node. 
To achieve the above, we modify Shamir's t-threshold scheme as 

outlined below. Let the newly arrived requesting node have an id of a, and 
the responding nodes have their ids as ßi, ß2, and so on. 

We now present the scheme mathematically. In our discussion, we 
would also use an example to illustrate the steps. In the considered example, 
the node that wishes to join the network has an ID of 2, the responding nodes 
have IDs 1, 3 and 5 and the threshold value is 3 (i.e., t=2>). 

We first take a look at the shares of the key generation material that 
would be given to each of the initial set of nodes before deployment. The 
shares should have the property that no set of nodes less than or equal to t 
should be able to generate either the coefficient matrix A, or the vector X^A 
for any other node. 

Each node that is deployed would be initialized with a matrix Ai where 
Ai is of the following form: 

'^OO 

' ^ l O 

V-1)0 

'̂ Ol 

^11 • 

'^(/-1)1 

*^0(/-l) 1 

^1(/-1) 

^(/-l)(/-l)l_ 

Each element Sy is given by: 

m=\ 

Here bjjm are random numbers generated by the central server. These 
numbers are not known to anyone except the central server (Note that this 
central server is only present before deployment and would have no role to 
play after the network is in operation), ti is the threshold for sharing the 
matrix A. ß is the ID of the node. 

In our example, the above quantities for node 3 are given by: 
Soo ~ cioo'^3.booi + boo2'3 
Soi = cioi^S.bou-^ bo]2'3 

521 = a2i + 3.b2ii+ b2i2.3^ 
522 = Cl22^ 3.b221 + b222'3 

Also, note that ti and t are two separate quantities. While ti denotes the 
threshold for sharing each element of the matrix A, t denotes the number of 
terms in the vector X^A. For our purposes, we take ti=t, because both t and 
t] essentially represent the maximum number of members that can be 
compromised in a network. Although t and tj represent two different 
thresholds, we require them to be the same to have a consistent threshold 
value for the network. 
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As soon as a new node with ID a (node 'T in our example) joins the 
network, it sends out a temporary pubUc key, Pk to its immediate 
neighborhood. The format of the message sent is 

{REQJHARE, a, Pk, TTL } 
Here the field TTL specifies the number of hops that the message would 

be broadcasted to. We start with TTL = L If the required number of replies 
is obtained within a time given by Trep, the process is stopped. Otherwise a 
new request is sent out with TTL = 2 and so on. 

Any node (1,3 and 5 in our example) in the immediate neighborhood 
that receives a REQ_SHARE message responds in the following manner: 
The node first computes 

Sy=s^{ay {0<Uj<t-\) (6) 
The node now computes 

Hßj=t.s, (o<y<o (7) 
/=o 

and sends Epk(Hßo, Hßi, Hß2, ...., Hß(t.i)ß) to the node a. Here Epj^ implies 
encryption using the public key Pk. For example, the quantity H31 sent by 
node 3 to node 2 would be: 
(aoo+ 3^booi+3''boo2) 2'+(ajo+3-bioi + 3''bjo2) 2^+(a2o+3'b2oi+3''b202) '2' 
Let Vj denote the quantity 

w=0 

The row vector V = [Vo, Vj, , Vt.i] thus denotes the quantity X^A 
by substituting m=am Eq. (4). This is all that the node or would require in 
order to find out any pairwise key with any other node. 
In our example, the values F, for node 2 is given by: 

Vo= aoo2^+ aio2^-\- a2o2^ 
Vi= aoi2^+ ajj2^+ a2i2^ 
¥2= ao2 2^ + aj2 2^ + a22 2^ 

and the vector Kis [Vo, Vj, V2J. 
We now show how the node a computes V after it has obtained the 

shares from at least t nodes. Let VjßhQ the share of Vj obtained from node yß. 
Thus, rewriting Eq. (7), 

w=0 w=0 m=l 

as can be derived from Eqs. (5)-(7). 
Equation (9) has two terms. The first term is the quantity Vj, The second 

term constitutes a set of ^7 terms . Thus, t such equations would enable node 
a to calculate the value of each term. Node or would keep only the first term 
as the value of F/ and discard all other values. 
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Using the vector V = [Vo, Vi, Vt.i\, node a can now find out its 
pairwise key with any other node. (Note that solving for the vector V is only 
as complicated as finding t secrets in Shamir's threshold scheme). In the 
considered example, the above shares for Vo, Vi and V2 obtained by node 2 
are shown in Table 1. 

Shares 
forFo 

Shares 
forF ; 

Shares 
fo rF , 

N o d e l 
{aoo-^2-aio+2' -a.o)-^ 
1 ibooi+2 'bioi+2- 'b2oi) + 
J" '{boo2'^2 'bjo2-^2^ •b202) 

(aoj+2Mjj+2'M2j) + 
libon+2 'bui+2' 'b2u)+ 
l'iboi2+2.bn2+2'.b2i2) 

aoi+2Mu+2\a2i) + 
libon+2'bjn+2''b2jj) + 
J^'iboi2-^2 'bjj2+2 'b2i2) 

Nodes 
{aoo+2'aio+2' 'a.o)^ 
^'{boo&2 'bioi+2- 'b2oi)+ 
^'''{boo2'^2 'bjo2+2' •b202) 

{aoi+2.aii+2\a2i) + 
3.(bon+2'bjjj+2''b2n) + 

3\{boi2+2 'bu2+2' 'b2i2) 

'aoi+2 •au+2^ -021) + 
3ibou+2 •bui+2' 'b2ii) + 

^^'{boi2-^2 'bu2+2'' •b2i2) 

Node 5 
{aoo+2'aio+2' •a2o) + 
5'{booi+2 'bioi+2'- 'b2oi)+ 

5 'iboo2'^2 'bjo2+2^ •b202) 

{Go 1+2 -a 11+2' -a21) + 
5ibou+2 'biu+2'^b2u) + 
^ '{boi2+2 'bjj2+2 'b2i2) 

(aoj+2.ajj+2'.a2j)+ 
5iboii+2'bui+2''b2n) + 

^ 'iboi2+2'b 112+2^ 'b2j2) 

Table 1. Example scenario with threshold t=3; the requesting node with ID 2 and the 
responding nodes with IDs 1, 3 and 5. The values in the table indicate the shares for VQ, VI 
and V2 as sent by nodes 1, 3 and 5 to node 2. Using these values node 2 would be able to 
compute the values for VQ, VI and V2. 

In this manner, neither an eavesdropping node, nor the incoming node 
would have any knowledge about the matrix A since the coefficients of A 
are never revealed. Also, capture of a node simply compromises that node's 
pairwise keys and provides no information about the pairwise keys between 
any other two nodes. We thus have a fully distributed key generation scheme 
resilient to t-1 nodes getting compromised. 

4. PERFORMANCE EVALUATION 

In this section we compare the performance of our scheme with that of 
other key distribution schemes which employ similar messaging systems. 
Based on our observations, we also suggest a variation to the key exchange 
mechanism to optimize on the message overhead and latency. We first look 
at the number and length of messages that need to be sent to a node when it 
joins the network. 

Considering a finite field of length q, length of each share is log2(q). 
Number of shares sent by a node is t. Thus, the length of the message sent by 
a responding node is t*log2q. The number of such messages is at least t. We 
thus have a total of at iQast P log2q bits reaching the requesting node. 

We simulated the working of our scheme to measure the performance 
for various network densities and threshold values. The simulations were 
carried out in ns-2 with the number of nodes kept at 40 over an area of 
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1000x1000m. The communication range was 250m. The threshold values 
were varied from 3 to 11. 

We compared our scheme with the Threshold RSA (TRSA) scheme 
suggested in [5] and the ID-based scheme suggested in [3] to compare the 
performance in terms of the delay and message overhead. The basic idea 
behind the TRSA scheme is to generate authorized certificates in a 
distributed manner. A node joining the network requests for its share of the 
certificates from its neighbors and builds a certificate for its public key. The 
node now sends its public key along with the certificate to all the nodes in 
the network. In the ID based scheme, the node uses its ID as its public key 
and obtains shares for its private key from the network. For any 
communication, a session key is now established between a pair of nodes. 

Both the above schemes are similar to our scheme as far as the message 
overheads are concerned. In all the three schemes, a node joining the 
network requests for its keying material from its neighbors (immediate or 
multihop). The behavior of our scheme is different from that of the ID-based 
scheme or TRSA since in our scheme, the size of the packets depends on the 
value of the threshold. In the other two schemes, the message size is 
independent of the threshold values. Thus, for small values of ,̂ our scheme 
performs better and for large values, the performance of TRSA and ID-based 
schemes are better. 

Also, our scheme introduces minimal post-key-exchange overhead on 
the network since no key announcements or session key establishment is 
needed prior to communication. This means that the performance of our 
system would be much better when averaged over the lifetime of the 
network. 

We would like to note that although both the TRSA and the ID-based 
schemes deal with public key cryptosystems, we use them as metrics for 
comparison as these schemes give a good measure of the message overhead 
involved in obtaining keying material from the network. Also, for any 
communication to take place, a session key has to be established. 

Our simulation goals were as follows: 
- To observe the effects of the threshold values on the latency in obtaining 

the key shares 
- To observe the effects of the threshold values on the network overhead. 
- To see how our scheme performs under mobile conditions 

Compare our scheme with TRSA and the ID-based scheme while 
considering the above parameters. We first looked at the latencies involved 
in getting all the required shares for the keys. The speed of the nodes is kept 
fixed at 30 m/s and the value of Trep for our scheme was kept fixed at Is. 
Figure 1 shows the obtained results. We call our scheme DBK for 
Distributed Bivariate Keying. 
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Figure 1: Latencies involved in obtaining the entire 
keying material from the network. 

As can be seen, the latencies increase with an increase in the threshold 
values. An interesting point to be noted here is that as the threshold 
increases, the latency values for DBK approaches that of the TRSA scheme. 
This can be attributed to the fact that in DBK, the number of bytes being 
transmitted increases as the threshold values increase. 

We next varied the threshold values and tried to obtain an estimate of 
the message overhead involved in obtaining the keying material from the 
network. Figure 2 plots the number of replies obtained by the requesting 
node. Again here the performance of DBK is midway between the 
performance of TRSA and the ID-based scheme. As the packet sizes 
increase, the latencies involved in the network also go up. Thus, with 
everything else remaining the same, with an increase in the packet size, 
packets take longer to reach their destination. If this delay becomes more 
than Trep, a retransmission of the request packet happens and as a result, 
eventually more replies are obtained. 

Figure 2 also shows the plots for DBK with Trep = 2 and with T p̂ = 4. 
The number of replies obtained for Trep = 4 are much less than those 
obtained for Trep = 2. This is evident from the fact that a larger wait would 
allow the node to get more replies before deciding to send out more requests 
at a higher latency cost. 

We then see the effects of mobility on the latency. As can be seen in 
Figure 3, latency values drastically go down when the speeds are low. With 
an increase in speed, the latencies tend to become constant and stabilize to a 
value between 7 and 8. The reason for this is that with low mobility, nodes 
are able to obtain results faster from the two hop neighbors and do not send 
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out additional requests for key shares. However, since the mode of sending 
requests is an 2̂-hop broadcast (with n increasing from 1 onwards), the 
requesting node manages to obtain the repHes faster by physically moving to 
new locations and new neighbors. As can be seen in Figure 3, the obtained 
values for DBK are lesser than TRSA and more than the ID-based scheme. 
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Figure 2: Total number of replies obtained by a node 
after sending out the request. 
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Figure 3: Variation in the latencies with the average 
speed of the mobile nodes. 
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As shown by the simulations, lower the value of Trep, higher are the 
number of replies obtained and thus higher is the message overhead. 
However, increasing the value of Trep introduces higher latencies into the 
system. We also observe that with higher mobility, latencies go down 
drastically. 
- We end this section by noting the following: 
- The rate of increase of the TTL values should depend on the mobility of 

the nodes. Higher the mobility, lower should be the rate of increase. 
- The initialization of the TTL field should depend on the network density 

and the threshold value. For sparse networks and/or high threshold, TTL 
should be set to a high initial value to avoid sending multiple requests. 
For dense networks and/or low threshold values, TTL can be initialized 
to a low initial value as the replies can be obtained from the immediate 
neighborhood. 

- The Trep values should be fine tuned to meet specific network densities 
according to the required latencies and message overhead. 

- We have not investigated the above points in detail in this work and they 
constitute our future work. 

5. CONCLUSION 

In this work we have demonstrated a distributed symmetric key 
exchange mechanism by sharing polynomials at fixed points using Shamir's 
^threshold scheme. Using this we have shown how a distributed scheme can 
provide an incoming node with the keying material. Our scheme is secure to 
less than t+1 nodes getting compromised. We have shown through 
simulations that the message overhead and the latencies involved in the key 
exchange process is well within bounds of other similar protocols. Also, 
since no key announcements are needed and no session keys have to be 
established, our scheme has a much better runtime performance. 

Our idea can also be extended to provide a hierarchical key generation 
mechanism based on the level of trust that a node wishes to provide to 
another node. Although we have not developed this idea, it can provide 
grounds for future work. 
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