
LJ HOLONIC MANUFACTURING
CONTROL:

A PRACTICAL IMPLEMENTATION

Paulo ~ e i t z o ' , Francisco ~ a s a i s ' , Francisco ~ e s t i v o ~
' ~ o l ~ t e c h n i c Institute o f Bragan~a , Quinta Sta Apolbnia, Apartado 134, 5301-857 Bragan~a ,

PORTUGAL, (pleitaofcasais}@ipb.pt
Z ~ a c u l t y o f Engineering o f University o f Porto, Rua Dr. Roberto Frias, 4200-465 Porto,

PORTUGA'L, jr@fe.up.pt

The ADACOR holonic architecture for manufacturing control addresses the
agile reaction to unexpected disturbances at the shop floor level, by
introducing supervisor entities in decentralised systems characterised b y the
self-organisation capabilities associated to each ADACOR holon. The result is
an adaptive control architecture that balances dynamically between a more
centralised structure and a more decentralised one, allowing the combination
of global production optimisation with agile reaction to unexpected
disturbances. The validation of the proposed architecture is required to verify
the correctness and the applicability of its concepts. This paper describes the
implementntion of ADACOR concepts using multi-agent systems, especially
through the use of the JADE agent development platform.

1. INTRODUCTION

Companies, to remain competitive, need to answer more closely to the customer
demands, by improving their flexibility and agility while maintaining their
productivity and quality. The traditional manufacturing control systems respond
weakly to the emergent challenges faced by the manufacturing systems, given their
poor capability to adapt with agility to unexpected internal disturbances and to
external environment volatility. This weakness is mainly due to the rigidity of the
current control archtectures.

Several manufacturing control architectures using emergent paradigms and
technologies, such as multi-agent and holonic manufacturing systems, have been
proposed (see [I-51). One of the proposed holonic architecture is the ADACOR
(ADAptive holonic Control aRchitecture for distributed manufacturing systems)
architecture [6], which addresses the agile reaction to disturbances at the shop floor
level, increasing the agility and flexibility of the enterprise.

3 4 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

ADACOR architecture is build upon a set of autonomous and cooperative
holons, each one being a representation of a manufacturing component that can be
either a physical resource (numerical control machines, robots, pallets, etc.) or a
logic entity (products, orders, etc.). The holon is a concept first introduced by
Koestler [7] to represent the interactions in social organisations, later introduced in
manufacturing by the HMS consortium (see http://hms.ifw.uni-hannover.de/).

A generic ADACOR holon comprises the Logical Control Device (LCD) and, if
exists, the physical resource, capable to perform the manufacturing task. The LCD is
responsible for regulating all activities related to the holon and comprises three main
components: decision, communication and physical interface [8]. In ADACOR
agents are used to implement the logical part of the holon, i.e. the LCD device.

ADACOR architecture defines four manufacturing holon classes: product, task,
operational and supervisor. The product, task and operational holons are quite
similar to the product, order and resource holons defined in PROSA reference
architecture [2], while the supervisor holon presents characteristics noot found in the
PROSA staff holon. The supervisor holon introduces coordination and global
optimisation in decentralised control and is responsible for the formation and
coordination of groups of holons.

The ADACOR adaptive production control approach is neither completely
decentralised nor hierarchical, but balances between a more centralised approach to
a more flat approach, passing through other intermediate forms of control [6], due to
the self-organisation capability associated to each ADACOR holon, translated in the
autonomy factor and in the propagation mechanisms [8]. For this purpose,
ADACOR evolves in time between two alternative states: the stationary state, where
the sy stem c ontrol relies o n supervisors and c oordination 1 evels t o a chieve g lobal
optimisation of the production process, and the transient state, triggered with the
occurrence of disturbances and presenting a behaviour quite similar to the
heterarchical architectures in terms of agility and adaptability.

The validation of these concepts requires their implementation and testing, to
analyse their correctness and applicability. This paper describes the implementation
of ADACOR concepts, at the Laboratory of Automation in the Polytechnic Institute
of Braganqa, Portugal, to verify their applicability and if the system works as
specified, either in normal operation or in presence of disturbances.

Along the paper, the implementation of the behaviour of each ADACOR holon
class, communication infra-structure, manufacturing ontology, decision-making
mechanisms, graphical user interfaces, customisation of manufacturing holons and
connection between the holonic control system and the physical manufacturing
devices will be described.

2. AGENT DEVELOPMENT PLATFORM

The development of holonic manufacturing control systems based in the ADACOR
architecture requires the previous implementation of their concepts in a prototype.

The ADACOR prototype uses agent technology to implement each holon. Multi-
agent systems can be adequately developed using object-oriented languages, such as
Java. However, the development of multi-agent systems requires the implementation
of features usually not supported by programming languages, such as message

Holonic manufacturing control: A practical implementation 3 5

transport, encoding and parsing, yellow and white pages services, ontologies for
common understanding and agent life-cycle management services, which increases
the programming effort. The use of agent development platforms which implement
these features makes the development of agent-based applications easier and reduces
the programming effort.

A significant set of platforms environments for agent development is available
for commercial and scientific purposes, providing a variety of services and agent
models, which differences reflect the philosophy and the target problems envisaged
by the platform developers. Surveys of some agent development platforms can be
found in [9- 101.

The choice of an agent development platform obeyed to a set of criteria: to be an
open source platform with good documentation and available support, ease to use,
low programming e ffort, use of s tandards, features t o support the management o f
agent communities like white pages andlor yellow pages and facilities to implement
rule oriented programming.

The chosen platform was JADE (Java Agent Development Framework),
provided by CSELT and available on http://jade.cselt.it/, because it responds better
to the mentioned requirements. In fact, JADE simplifies the development of multi-
agent systems by providing a set of system services and agents in compliance with
the FIPA (Foundation for Intelligent Physical Agents) specifications: naming,
yellow-page, message transport and parsing services, and a library of FIPA
interaction protocols [l 11. JADE uses the concept of behaviours to model concurrent
tasks in agent programming and all agent communication is performed through
message passing, using FIPA-ACL as the agent communication language. JADE
provides the FIPA SL (Semantic Language) content language and the agent
management ontology, as well as the support for user-defined content languages,
which can be implemented, registered, and automatically used by the agents.

The agent platform provides a Graphical User Interface (GUI) for the remote
management, allowing to monitor and control the status of agents, for example to
stop and re-start agents, and also a set of graphical tools to support the debugging
phase, usually quite complex in distributed systems, such as the Dummy, Sniffer and
Introspector agents.

JADE offers also a n e asy and full integration with other useful tools, su ch a s
JESS (Java Expert S ystem Shell) and P rotegC 2 000 (for knowledge b ased sy stem
development and management), and provides other features such as an active
mailing list to support technical problems.

3. GENERAL ADACOR IMPLEMENTATION

In this section, the main issues related to the implementation of the ADACOR
architecture prototype using the JADE framework will be described.

3.1 Internal Architecture of an ADACOR Holon

An ADACOR holon is a simple Java class that extends the Agent class provided by
the JADE framework, inheriting its basic functionalities, such as registration
services, remote management and sendinglreceiving ACL messages 1111. These

3 6 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

basic functionalities were extended with features that represent the specific
behaviour of the A DACOR h olon, like the HandleReceiveMessages, AllocateTask
and many other behaviours.

The start-up of an ADACOR holon comprises its initialisation (read the
configuration files and load the behaviours) and its registration according to the
initial organisational structure, defined by the configuration files, and is followed by
the actual start-up of the holon's components, i.e. the communication, decision and
physical interface components.

The behaviour of each ADACOR holon uses multi-threading programming, over
the concept of JADE'S behaviour, allowing to execute several actions in parallel. The
behaviours launched at the start-up and those which can be invoked afterwards are
provided in the form of Java classes.

The communication between holons is done over the Ethernet network, using
TCPIIP protocol and is asynchronous, i.e. the holon that sends a message continues
the execution of its tasks without the need to wait for the response. The messages
specified in the ADACOR architecture are encoded using the FIPA-ACL agent
communication language, the content of the messages being formatted according to
the FIPA-SLO language. The meaning of the message content is standardised
according to the ADACOR ontology.

One of the holon's concurrent tasks (behaviour) waits continuously for the
arrival of messages using the block() method to block the behaviour until a message
arrives. The arrival of a message triggers a new behaviour to handle the message
(the HandleReceiveMessages behaviour), thus implementing an asynchronous
communication mechanism over the JADE platform.

Each supervisor holon has embodied a DF (Directory Facilitator) that provides
yellow pages fimctionalities, allowing to locate holons within its group by their
capabilities.

3.2 ADACOR Ontology

ADACOR defines its own manufacturing control ontology, expressed in an object-
oriented frame-based manner, as recommended by FIPA Ontology Service
Recommendations (see http:llwww.fipa.orgl). Thls recommendation refers to the
development of classes describing concepts and predicates, and their registration as
a part of the application ontology, allowing a practical and fast way of creating an
ontology with an immediate underlying implementation.

Holonic manufacturing control: A practical implementation

Figure 1 - ADACOR Ontology for Manufacturing Control

The manufacturing control ontology used in ADACOR is based in the definition
of a taxonomy of manufacturing components, which contributes to the formalisation
and understanding of the manufacturing control problem. These components are
mapped in a set of objects, illustrated in the Figure 1, which defines the vocabulary
used by distributed entities over the ADACOR platform, and indicates the concepts
(classes), the predicates (relation between the classes), the terms (attributes of each
class), and the meaning of each term (type of each attribute).

The ADACOR ontology was translated to Java classes according to the JADE
guidelines that follow the FIPA specifications for the development of ontologies.
The main class of the ADACOR ontology describes the concepts and predicates
defined in the ontology, indicating its ontological role. Each ontological role is
characterised by a name and a structure defined in terms of a number of slots that
represent the attributes of the concept or predicate.

Instances of the ontological roles can be conveniently represented inside an agent
as instances of application-specific Java classes each one representing a role. The
methods defmed in each individual class used to describe each concept or predicate,
allow to handle the data related to the object.

3.3 Decision-Making Mechanisms

The ADACOR decision component, illustrated in Figure 2, uses declarative and
procedural approaches to represent knowledge and to regulate the holons behaviour.
The knowledge base of each ADACOR holon is dependent of its type, objectives,
skills and behaviour.

38 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

Figure 2 - Decision Component Architecture

The central element in the decision component is the rule-based system, which
applies declarative knowledge, expressed in a set of rules. The advantage of this
type o f knowledge-based system i s related t o the simple and very comprehensive
way to represent the reasoning capability of one holon. The simplicity and the
associated high abstraction level of this approach compensates the typical
weaknesses of these systems to handle incomplete, incorrect and uncertain
information, or to implement complex systems, that require a large number of rules
and can become very slow.

The rule-base system uses the JESS tool, which is a rule oriented programming
infrastructure (Java based and JADE compatible) developed using the CLIPS (C
Language Integrated Production System) language and uses the Rete algorithm as
inference engine [12]. JESS handles data structures, functions and rules, requiring
the use of a clp file to store the application knowledge base.

Each ADACOR holon class has its own clp file containing its knowledge base.
The decision mechanisms that are common to all the ADACOR holons classes, such
as the active notification, are placed in a special common clp file. The local database
stores the short-term memory, i.e. the facts that represent the current state of the
holon at a particular moment.

The set of rules defined in the knowledge base represents the behaviour of the
ADACOR holon. As an example, the behaviour rule illustrated in Figure 3 is
defined in the implementation of the task holon knowledge base.

(d e f r u l e Transport "Wi 11 s t a r t t h e t r a n s p o r t of t h e p a r t u
? f a c t 1 c - (Transport)
? fac t 2 < - (execut ing (jobInExecut ion ?wo))
? f a c t 3 < - (WorkOrder (woID ?wo) (s t a t e ? s t a t e) (resName ? r e s)

(l o c a t ion ? l o c a t i o n) (precedence ?precedent))
=>

(r e t r a c t ? f a c t 1 ? f a c t 3)
(a s s e r t (Workorder (woID ?wo) (s t a t e TRANSPORT) (resNarne ? r e s)

(1 oca t ion ? l o c a t i o n) (precedence ?precedent)))
(ExecuteTransport ?wo ?*transport -path*)

)

Figure 3 - Invoking JADE Procedures from the JESS Environment

Holonic manufacturing control: A practical implementation 3 9

This rule has three conditions: the first condition is satisfied if the fact Transport is
true; the second condition determines the name of the work order that is currently in
execution; at last the third condition gets the information related to the operation in
execution. When the three conditions are satisfied, the rule is selected and three
actions are executed: first, the facts fact1 and fact3 are removed from the knowledge
base; then the state of the work order is changed to Transport; finally, a behaviour
in the JADE environment (linked to a simple Java class) that will be in charge to
execute the transportation of the part is triggered.

Another type of connection supports the invocation of JESS commands from the
JADE environment. This is done by introducing commands lines embedded in the
Java program. In Figure 4, the extract of code illustrates the assertion of a new fact
in the knowledge base, in this case a new work order.

. . .
decEngine.executeCommand("(assert (Workorder (woID " t value1 t ")

(state " + value2 + ") (precedence " + value3 + "))) " I ;
. . .

Figure 4 - Involng JESS Commands from the JADE Environment

ADACOR holons also use procedural knowledge to represent knowledge. This type
of k nowledge i s e mbodied i n procedures, which a re triggered a s actions b y s ome
rules, each one being responsible for the execution of a particular set of actions. The
scheduling algorithm is an example of this type of knowledge representation. Some
other procedures are related to the acquisition of information by handling the arrival
of messages from other holons or getting local information through the access to the
physical manufacturing resource.

3.4 Graphical User Interfaces

In the ADACOR prototype, the operational and supervisor holons have graphical
user interfaces to support the interaction with the user, illustrated in Figure 5.

The graphical user interface for the operational holons allows to visualise the
local schedule, using a Gantt chart to show the work orders executed by the
resource, to configure some operational holon parameters, such as the scheduler type
or the activation of the autonomy factor, and to display statistical information related
to the resource performance, such as the degree of utilisation, the number of work
orders executed and the number of work orders delayed.

The graphical user interface for the supervisor holon allows to visualise the
global schedule, using a Gantt chart to show the work orders executed by each
lower-level resource, to display the resources under its coordination domain and
their characteristics, and to configure some holon parameters, such as the schedule
algorithm.

40 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

Figure 5 - Graphical User Interface of an Operational and a Supervisor Holon

Each ADACOR holon uses log files to store the relevant data during its life cycle, to
support posterior analysis or to execute backup procedures in case of holon crash. In
case of operational holons, this log file stores information about rejected, cancelled,
failed and executed work orders. The task holon uses a log file to store the relevant
information associated to the execution of the production order and to store the
statistical report about the performance of the execution of the production order,
such as the manufacturing lead time, tardiness, processing time and idle time.

4. APPLICATION SPECIFIC COMPONENTS

The holonification of the manufacturing components requires the configuration and
customisation of the ADACOR holons and the development of wrappers that allow
the connection between the control system and the physical devices.

4.1 Configuration Files of ADACOR Holons

The characteristics of each manufacturing holon are configured using a XML
(extensible Markup Language)-based configuration file.

In case of the product holon it is necessary to introduce the product data model
and the process plan. The description of the product structure is represented by a list
of objects formatted according to a data structure, which includes the name of the
sub-part, the number o f p arts necessary t o produce the product and the e stimated
time to produce the part. The process plan defines the sequence of operations that
must be executed to produce the product, containing a list of operations formatted
according to an appropriated data structure, which mainly describes the name of the
operation, a brief description about the operation, the estimated time to execute the
operation, the reference to the part, a list of requirements associated to the operation,
and the name of the operations that have precedence over this operation.

The characteristics of each resource are mapped in a XML-based configuration
file that will be read by the operational holon. The data structure represents the
resource model, which attributes reflect mainly the type of resource, the list of skills
that the resource possesses and its location.

Holonic manufacturing control: A practical implementation 4 1

The organisational structure of the factory plant is defined in a XML-based
configuration file that comprises the information related to the cell organisation and
to the shop-floor layout. This organisational structure describes the possible
manufacturing cells and associated coordinator entities, which will be converted into
supervisor holons. With thls organisational structure XML-based file, the
operational holons can find their supervisor holons and their auxiliary resources, and
the supervisor holons can find the list of holons that are in its coordination domain.

4.2 Physical Resource Interfaces

The implementation of operational holons that represent physical manufacturing
resources requires the development of wrapper interfaces, supporting the integration
of those resources. In the ADACOR architecture, the virtual resource concept was
introduced to make transparent the intra-holon interaction [13].

The development of a virtual resource for each manufacturing device
encompasses the implementation of the services at the server side, which will be
invoked on the client side (PIC component from the operational holon). The client
ignores the details of this implementation and each virtual resource can be re-used
by other similar resources or holonic control applications.

Leitiio et al. [13] describe the implementation of two different virtual resources
to integrate two different automation resources, a PLC and an industrial robot. These
two virtual resources implement the same services so that from the client side,
whatever the resource is accessed, the invocation made is unique.

Here the virtual resource for a n A BB I RB 1400 1 oadlunload industrial robot i s
briefly described, by the illustration of the implementation of the read service, as
showed in the ~ i ~ u r k 6.

public int read (String var, String type) {
String [I vname=new String [ll ;
vname [Ol =var;
short [I progNo=new short I l l ;
progNo [OI =0 ;
short varvalue=O;

;& {
varvalue=h.s4Program~umVarRead(vname,progNo) ;

)catch(IOException ioe) {~ystem.out .println ("Problem: I' + ioe) ;)
return ((new Short(varva1ue)) .int~alueO) ;

1

Figure 6 -Read Service for the ABB IRB 14000 Virtual Resource

The services provided by the virtual resource were developed using the
RobComm ActiveX supplied by ABB [14], and accessed through TCPIIP. The
major problem was the access to ActiveX from a Java program, since the ActiveX
components are adequate to be manipulated by Windows-based programming
environments. To overcome this problem, it was used the Jintegra tool (see http:/lj-
integra.intrinsyc.com/) to convert the ActiveX component into a Java package [13].

The platform used to support the client-server interaction was CORBA. The
analysis of the experimental implementation of the resource integration, by
comparing the performances of CORBA, RMI and RMI-IIOP, is described in [13].

42 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

5. AUXILIARY TOOLS

During the implementation of the ADACOR prototype, a set of auxiliary tools was
developed to support the configuration, operation and debugging of manufacturing
control applications, providing functionalities to configure products and to supervise
the factory plant in an integrated and global view.

As the global visualisation of all activities in the factory plant is difficult due to
the use of multiple graphical user interfaces, the ADACOR Factory Plan Supervisor
(AFPS) is used to monitor the production activities in the factory plant. Its graphical
user interface is represented in Figure 7.

This tool allows to visualise the production process by enabling the visualisation
of the manufacturing resources present in the factory plant, indicating their state and
characteristics. In this tool, the visualisation of the transport resource has animation
capabilities to help understanding of the material flow in the factory plant, indicating
the direction of the movement and its actual load.

Figure 7 - Graphical User Interface of the Auxiliary ADACOR Agents

Holonic manufacturing control: A practical implementation 43

The ADACOR Product Manager (APM) agent, which graphical user interface is
also represented in the Figure 7, allows defining new products in the system, by
introducing the structure of the product and the process plan that defines the
sequence of operations to execute the product. It also allows launching individual or
pre-defined sequences of production orders to the factory plant, making easier the
execution of experimental tests.

6. CONCLUSIONS

This p aper described the implementation o f t he ADACOR h olonic manufacturing
control architecture concepts into a prototype.

Firstly, the implementation showed the capability of ADACOR architecture to
represent and control a real environment. An application to a flexible manufacturing
system was completed as a part of the doctoral thesis of an of the authors. The
experience gained during the prototype implementation, debugging and testing,
allowed proving essentially the applicability of the ADACOR concepts and the
merits of the ADACOR collaborative/holonic approach.

The use of agent technology to implement the holonic manufacturing control
prototype brings some important benefits: the software necessary to develop the
application is simpler to write, to debug and to maintain, due to the smaller size of
each distributed component. The use of Java language contributes for the platform
independency, which is mandatory in manufacturing environment, due to its
heterogeneous environment.

The use of JADE agent development tool brings several advantages in the
development of holonic and multi-agent systems, such as the reduction of the
development time and complexity. For this fact contributes the good documentation,
efficient technical support and the set of functionalities provided by the platform that
simplifies the development of multi-agent systems, such as the communication
infra-structure, yellow and white pages and debugging tools.

7. REFERENCES

1. Parunak, H. Van Dyke, Baker A. and Clark S. The AARIA Agent Architecture: from Manufacturing
Requirements to Agent-based System Design, Workshop on Agent-based Manufacturing, 1998.

2. Van Brussel, H ., Wyns J ., Valckenaers P ., B ongaerts L. and P eeters P. Reference Architecture for
Holonic Manufacturing Systems: PROSA, Computers In Industry, vol. 37, 1998, pp. 255-274

3. Brennan, R., Balasubramanian, S . and Norrie, D ., A dynamic control architecture for metamorphic
control of advanced manufacturing systems. Proceedings of the International Symposium on
Intelligent Systems and Advanced Manufacturing, 1997, pp. 213-223.

4. --: Special Issue on Industrial Applications of Multi-Agent and Holonic Systems. Journal of Applied
Systems Studies, 2(1),2001.

5. Deen S.M. (ed.): Agent-Based Manufacturing: Advances in the Holonic Approach. Springer Verlag
Berlin Heidelberg, 2003.

44 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

6. LeitXo P. and Restivo F.: Holonic Adaptive Production Control Systems. Proceedings of the 28th
Annual Conference of the IEEE Industrial Electronics Society, Sevilla, Spain, 2002, pp. 2968-2973.

7. Koestler, A,: The Ghost in the Machine. Arkana Books, London, 1969.

8. LeitXo P. and Restivo F.: Agent-based Holonic Production Control. Proceedings of the 3'* International
Workshop on Industrial Applications of Holonic and Multi-Agent Systems (HoloMAS), Aix en
Provence, France, 2-6 September, 2002, pp. 589-593.

9. Vrba P.: Java-Based Agent Platform Evaluation. In V. Marik, J. Muller and M. Pechoucek (eds), Multi-
Agent Systems and Applications 111, Volume 2691 of LNAI, Springer-Verlag, 2003, pp. 47-58.

10. Barata, J., Camarinha-Matos, L., Boissier, R., LeitXo, P., Restivo, F. and Raddadi, M.: Integrated and
Distributed Manufacturing, a Multi-agent Perspective. Proceedings o f 3 rd Workshop on European
Scientific and Industrial Collaboration, Enschede, Netherlands, 27-29 June 2001, 145-1 56.

11. Bellifemine F., Caire G., Trucco T. and Rimassa G.: JADE Programmer's Guide. 2002.

12. Friedman-Hill E.J.: JESS, The Java Expert System Shell. Sandia National Laboratories, 1999.

13. LeitZo P ., Boissier R., Casais F . and Restivo F.: Integration o f Automation Resources i n Holonic
Manufacturing Applications. In V. Marik, D. McFarlane e P. Valckenaers (eds), Holonic and Multi-
Agent Systems for Manufacturing, Volume 2744 of LNAI, Springer-Verlag, 2003, pp. 35-46

14. --: RobComm User's Guide, version 3.013. ABB Flexible Automation, 1999

