Skip to main content

Density Functional Calculations

  • Chapter
Computational Chemistry
  • 1083 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (a) A. Whitaker, “Einstein, Bohr and the Quantum Dilemma,” Cambridge University Press, 1996. (b) P. Yam, Scientific American, June 1997, p. 124. (c) D. Z. Albert, Scientific America, May 1994, 58. (d) D. Z. Albert, “Quantum Mechanics and Experience,” Harvard University Press, Cambridge, MA, 1992. (e) D. Bohm and H. B. Hiley, “The Undivided Universe,” Routledge, New York, 1992. (f) J. Baggott, “The Meaning of Quantum Theory,” Oxford University Press, New York, 1992. (g) M. Jammer, “The Philosophy of Quantum Mechanics,” Wiley, New York, 1974.

    Google Scholar 

  2. R. F. W. Bader, “Atoms in Molecules,” Oxford, New York, 1990.

    Google Scholar 

  3. Reference [2], pp. 7–8.

    Google Scholar 

  4. G. P. Shusterman and A. J. Shusterman, J. Chem. Educ., 1997, 74, 771.

    CAS  Google Scholar 

  5. R. G. Parr and W. Yang, “Density-Functional Theory of Atoms and Molecules,” Oxford, New York, 1989, p. 53.

    Google Scholar 

  6. E. Wilson, Chem. Eng. News, 1998, October 19, 12. (b) D. Malakoff, Science, 1998, 282, 610.

    Google Scholar 

  7. Cf. I. N. Levine, “QuantumChemistry,” 5the dn, Prentice Hall, Upper Saddle River, New Jersey, 2000, p. 422, equation (13.130); cf. p. 624, problem 15.67, for the KS orbitals. The multielectron wavefunction is treated on pp. 421-423.

    Google Scholar 

  8. P.-O. Löwdin, Phys. Rev., 1955, 97, 1474.

    Google Scholar 

  9. R. G. Parr and W. Yang, “Density-Functional Theory of Atoms and Molecules,” Oxford University Press, New York, 1989.

    Google Scholar 

  10. W. Koch and M. Holthausen, “A Chemist’s Guide to Density Functional Theory,” Wiley-VCH, New York, 2000.

    Google Scholar 

  11. I. N. Levine, “Quantum Chemistry,” 5th edn, Prentice Hall, Upper Saddle River, New Jersey, 2000.

    Google Scholar 

  12. R. A. Friesner, R. B. Murphy, M. D. Beachy, M. N. Ringnalda, W. T. Pollard, B. D. Dunietz, and Y. Cao, J. Phys. Chem. A, 1999, 103, 1913.

    Article  CAS  Google Scholar 

  13. W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 1996, 100, 12974.

    Article  CAS  Google Scholar 

  14. R. G. Parr and W. Yang, Annu. Rev. Phys. Chem., 1995, 46, 701.

    Article  CAS  Google Scholar 

  15. E.g. D. J. Griffiths, “Introduction to Quantum Mechanics,” Prentice-Hall, Engelwood Cliffs, NJ, 1995.

    Google Scholar 

  16. Earlier work (1927) by Fermi was published in Italian and came to the attention of the physics community with a paper in German: E. Fermi, Z. Phys., 1928, 48, 73. This appears in English translation in N. H. March, “Self-Consistent Fields in Atoms,” Pergamon, New York, 1975.

    CAS  Google Scholar 

  17. L. H. Thomas, Proc. Camb. Phil. Soc., 1927, 23, 542; reprinted in N. H. March, “Self-Consistent Fields in Atoms,” Oxford: Pergamon, New York, 1975.

    CAS  Google Scholar 

  18. Reference W. Yang, “Density-Functional Theory of Atoms and Molecules,” Oxford University Press, New York, 1989 [9], chapter 6.

    Google Scholar 

  19. J. C. Slater, Int. J. Quantum Chem. Symp., 1975, 9, 7.

    CAS  Google Scholar 

  20. Reviews: (a) J. W. D. Connolly in “Semiempirical Methods of Electronic Structure Calculations Part A: Techniques,” G. A. Segal, Ed., Plenum, New York, 1977. (b) K. H. Johnson, Adv. Quantum Chem., 1973, 7, 143.

    Google Scholar 

  21. J. C. Slater, Phys. Rev., 1951, 81, 385.

    Article  CAS  Google Scholar 

  22. For a personal history of much of the development of quantum mechanics, with significant emphasis on the Xα method, see: J. C. Slater, “Solid-State and Molecular Theory: A Scientific Biography,” Wiley, New York, 1975.

    Google Scholar 

  23. Reference [11], pp. 573–577.

    Google Scholar 

  24. P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 136, 864.

    Google Scholar 

  25. Reference W. Yang, “Density-Functional Theory of Atoms and Molecules,” Oxford University Press, New York, 1989 [9], section 3.4.

    Google Scholar 

  26. W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140, 1133. Reference[11], section 13.14.

    Google Scholar 

  27. Reference [11], section 13.14.

    Google Scholar 

  28. F. Jensen, “Introduction to Computational Chemistry,” Wiley, New York, 1999, p. 180.

    Google Scholar 

  29. Reference W. Yang, “Density-Functional Theory of Atoms and Molecules,” Oxford University Press, New York, 1989 [9], sections 7.1–7.3.

    Google Scholar 

  30. Reference [11], section 11.8.

    Google Scholar 

  31. Reference W. Yang, “Density-Functional Theory of Atoms and Molecules,” Oxford University Press, New York, 1989. [9], pp. 145–149, 151, 165.

    Google Scholar 

  32. Reference W. Yang, “Density-Functional Theory of Atoms and Molecules,” Oxford University Press, New York, 1989. [9], appendix A.

    Google Scholar 

  33. Reference [11], p. 580.

    Google Scholar 

  34. G. N. Merrill, S. Gronert, and S. R. Kass, J. Phys. Chem. A, 1997, 101, 208.

    Article  CAS  Google Scholar 

  35. Reference [11], pp. 581–584.

    Google Scholar 

  36. Reference W. Yang, “Density-Functional Theory of Atoms and Molecules,” Oxford University Press, New York, 1989. [9], section 7.4 and appendix E.

    Google Scholar 

  37. Reference W. Yang, “Density-Functional Theory of Atoms and Molecules,” Oxford University Press, New York, 1989. [9] pp. 173–174.

    Google Scholar 

  38. F. Jensen, ‘Introduction to Computational Chemistry,’ Wiley, New York, 1999, section 6.1.

    Google Scholar 

  39. Reference W. Yang, “Density-Functional Theory of Atoms and Molecules,” Oxford University Press, New York, 1989. [9], chapter 8.

    Google Scholar 

  40. In mathematics the term ‘local’ is used in much the same sense in which computational chemists speak of a local minimum: a minimum in that region, in contrast to a global minimum, the lowest point on the whole potential energy surface. A property of a mathematical set (which might have one member, a single function) at a point P which can be defined in terms of an arbitrarily small region around P is said to be a local property of the set. Thus, a derivative or gradient at a point is a local property of any function that is differen-tiable at the point (this is clear from the definition of a derivative as the limit of a ratio of finite increments, or as a ratio of infinitesimals). Mathematicians sometimes use ‘relative’ and ‘absolute’ instead of ‘local’ and ‘global’. See books on mathematical analysis, e.g. T. M. Apostol, ‘Mathematical Analysis,’ Addison-Wesley, Reading, MA, 1957, p. 73; R. Haggarty, ‘Fundamentals of Mathematical Analysis,’ Addison-Wesley, Reading, MA, 1989, p. 178. The word is also used in quantum physics to denote phenomena, or entities (‘hidden variables’), that do not, or do not seem to, violate relativity. See e.g. A. Whitaker, ‘Einstein, Bohr and the Quantum Dilemma,’ Cambridge University Press, Cambridge, 1996; V. J. Stenger, ‘The Unconscious Quantum,’ Prometheus, Amherst, New York, 1995.

    Google Scholar 

  41. A. St.-Amant, Chapter 5 in Reviews in Computational Chemistry, Volume 7, K. B. Lipkowitz and D. B. Boyd, Eds., VCH, New York, 1996, p. 223.

    Google Scholar 

  42. Reference [11], p. 587.

    Google Scholar 

  43. A. D. Becke, Phys. Rev. A, 1988, 38, 3098.

    Article  CAS  Google Scholar 

  44. M. Head-Gordon, J. Phys. Chem., 1996, 100, 13213.

    Article  CAS  Google Scholar 

  45. E.g., Gaussian 98, revision A.6, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb. J. R. Cheeseman, V. G. Zakrzewski. J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich. J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas. J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford. J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari. J. B. Foresman. J. Cioslowski. J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong. J. L. Andres, C. Gonzalez, M. Head-Gordon, E. Repogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.

    Google Scholar 

  46. B. Delley and D. E. Ellis. J. Chem. Phys., 1982, 76, 1949.

    Article  CAS  Google Scholar 

  47. W. J. Hehre and L. Lou, ‘A Guide to Density Functional Calculations in Spartan,’ Wavefunction Inc., Irvine CA, 1997.

    Google Scholar 

  48. P. J. Stephens, F. J. Devlin, C. F. Chablowski, and M. J. Frisch. J. Phys. Chem., 1994, 98, 11623, and references therein.

    Article  CAS  Google Scholar 

  49. L. Fan and T. Ziegler. J. Chem. Phys., 1991, 94, 6057.

    Article  CAS  Google Scholar 

  50. Reference [11], chapter 17.

    Google Scholar 

  51. W. J. Hehre, ‘Practical Strategies for Electronic Structure Calculations,’ Wavefunction, Inc., Irvine, CA, 1995.

    Google Scholar 

  52. Gaussian 94 for Windows (G94W): Gaussian 94, Revision E.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb. J. R. Cheeseman, T. Keith, G. A. Petersson. J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.

    Google Scholar 

  53. A. C. Scheiner. J. Baker, and J. W. Andzelm. J. Comput. Chem., 1997, 18, 775.

    Article  CAS  Google Scholar 

  54. A. St.-Amant, W. D. Cornell, P. A. Kollman, and T. H. Halgren. J. Comput. Chem., 1997, 16, 1483.

    Google Scholar 

  55. A. A. El-Azhary. J. Phys. Chem., 1996, 100, 15056.

    Article  CAS  Google Scholar 

  56. C. W. Bauschlicher, Jr., A. Ricca, H. Partridge, and S. R. Langhoff, in ‘Recent Advances in Density Functional Methods. Part II,’ D. P. Chong, Ed., World Scientific, Singapore, 1995.

    Google Scholar 

  57. Reference [52] chapter 2.

    Google Scholar 

  58. W. J. Hehre, L. Radom, P. v. R. Schleyer. J. A. Pople, ‘Ab initio Molecular Orbital Theory,’ Wiley, New York, 1986.

    Google Scholar 

  59. H2C-CHOH treaction E. Lewars and I. Bonnycastle. J. Mol. Struct. (Theochem), 1997, 418, 17 and references therein. The experimental barrier could be significantly in error. (b) HNC reaction V. S. Rao, A. Vijay, A. K. Chandra, Can. J. Chem., 1996, 74, 1072. (c) CH 3 NC reaction The reported experimental activation energy is 161 kJ mol−1 F. W. Schneider and B. S. Rabinovitch. J. Am. Chem. Soc., 1962, 84, 4215; B. S. Rabinovitch and P. W. Gilderson. J. Am. Chem. Soc., 1965, 87, 158. The energy of CH3CN relative to CH3NC by a high-level (G2) calculation is −98.3 kJ mol−1 (E. Lewars). An early ab initio study of the reaction: D. H. Liskow, C. F. Bender, and H. F. Schaefer. J. Am. Chem. Soc., 1972, 95, 5178. A comparison of CH3CN, CH3NC, other isomers and radicals, cations and anions: P. M. Mayer, M. S. Taylor, M. Wong, and L. Radom. J. Phys. Chem. A, 1998, 102, 7074. (d) Cyclopropylidene reaction H. F. Bettinger, P. R. Schreiner, P. v. R. Schleyer, H. F. Schaefer. J. Phys. Chem., 1996, 100, 16147.

    Article  CAS  Google Scholar 

  60. A. P. Scott and L. Radom. J. Phys. Chem., 1996, 100, 16502.

    CAS  Google Scholar 

  61. J. M. Martell. J. D. Goddard, and L. Eriksson. J. Phys. Chem., 1997, 101, 1927.

    Google Scholar 

  62. K. B. Wiberg and J. W. Ochterski. J. Comp. Chem., 1997, 18, 108.

    CAS  Google Scholar 

  63. E. Rousseau and D. Mathieu. J. Comp. Chem., 2000, 21, 367.

    CAS  Google Scholar 

  64. O. N. Ventura, M. Kieninger, and R. E. Cachau. J. Phys. Chem. A, 1999, 103, 147.

    Article  CAS  Google Scholar 

  65. 368 kJ mol−1: R. T. Morrison and R. N. Boyd, “Organic Chemistry,” 6th edn, Prentice Hall, Engelwood Cliffs, New Jersey, 1992, p. 21; 377 kJ mol−1: K. P. C. Vollhardt and N. E. Schore, “Organic Chemistry,” 2nd edn, Freeman, New York, 1987, p. 75.

    Google Scholar 

  66. Reference [52]. The data are from pp. 54, 58, 64, and 70. In each case the first 10 examples were used.

    Google Scholar 

    Google Scholar 

  67. D. A. Singleton, S. R. Merrigan, J. Liu, and K. N. Houk, J. Am. Chem. Soc., 1997, 119, 3385.

    Article  CAS  Google Scholar 

  68. M. N. Glukhovtsev, R. D. Bach, A. Pross, and L. Radom, Chem. Phys. Lett., 1996, 260, 558.

    Article  CAS  Google Scholar 

  69. R. L. Bell, D. L. Tavaeras, T. N. Truong, and J. Simons, Int. J. Quantum Chem., 1997, 63, 861.

    Article  CAS  Google Scholar 

  70. T. N. Truong, W. T. Duncan, and R. L. Bell, in “Chemical Applications of Density Functional Theory,” B. B. Laird, R. B. Ross, and T. Ziegler, Eds., American Chemical Society, Washington, DC, 1996.

    Google Scholar 

  71. Q. Zhang and R. L. Bell, J. Phys. Chem., 1995, 99, 592.

    CAS  Google Scholar 

  72. F. Eckert and G. Rauhut, J. Am. Chem. Soc., 1998, 120, 13478.

    Article  CAS  Google Scholar 

  73. J. Baker, M. Muir, and J. Andzelm, J. Chem. Phys., 1995, 102, 2063.

    CAS  Google Scholar 

  74. B. S. Jursic, in “Recent Developments and Applications of Modern Density Functional Theory,” J. M. Seminario, Ed., Elsevier, Amsterdam, 1996.

    Google Scholar 

  75. S. W. Brown, J. C. Rienstra-Kiracofe, and H. F. Schaefer, J. Phys. Chem. A, 1999, 103, 4065.

    CAS  Google Scholar 

  76. Reference L. Lou, ‘A Guide to Density Functional Calculations in Spartan,’ Wavefunction Inc., Irvine CA, 1997 [48], pp. 25, 27.

    Google Scholar 

  77. Calculated by the author from J. B. Anderson, J. Phys. Chem., 1996, 100, 12960. (b) A historical review: P.-O. Löwdin, Int. J. Quantum Chem., 1995, 55, 77. (c) Fermi and Conlomb holes and correlation: [1c], pp. 296–297 ref. 56, Table VII.

    Article  CAS  Google Scholar 

  78. P. Geerlings, F. De Profit, and J. M. L. Martin, in “Recent Developments and Applications of Modern Density Functional Theory,” J. M. Seminario, Ed., Elsevier, Amsterdam, 1996.

    Google Scholar 

  79. G. Lendvay, J. Phys. Chem., 1994, 98, 6098.

    CAS  Google Scholar 

  80. R. J. Boyd, J. Wang, and L. A. Eriksson, in “Recent Advances in Density Functional Methods. Part I,” D. P. Chong, Ed., World Scientific, Singapore, 1995.

    Google Scholar 

  81. Reference [11], sections 9.9, 9.10.

    Google Scholar 

  82. M. E. Casida in “Recent Developments and Applications of Modern Density Functional Theory,” J. M. Seminario, Ed., Elsevier, Amsterdam, 1996, and references therein.

    Google Scholar 

  83. R. E. Stratman, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys., 1998, 109, 8218.

    Google Scholar 

  84. K. B. Wiberg, R. E. Stratman, and M. J. Frisch, Chem. Phys. Lett., 1998, 297, 60.

    Article  CAS  Google Scholar 

  85. J. B. Foresman and Æ. Frisch, “Exploring Chemistry with Electronic Structure Methods,” Gaussian Inc., Pittsburgh, PA, 1996, p. 218.

    Google Scholar 

  86. M. J. Frisch, G. W. Trucks, and J. R. Cheeseman, in “Recent Developments and Applications of Modern Density Functional Theory,” J. M. Seminario, Ed., Elsevier, Amsterdam, 1996. (b) Accurate 1H NMR spectra have been reported for DFT calculations with empirical corrections: P. R. Rablen, S. A. Pearlman, and J. Finkbiner, J. Phys. Chem. A, 2000, 103, 7357.

    Google Scholar 

  87. R. M. Silverstein, G. C. Bassler, and T. C. Morrill, “Spectrometric Identification of Organic Compounds,” 4th edn, Wiley, New York, 1981, pp. 226–270.

    Google Scholar 

  88. G. C. Levy and G. L. Nelson, “Carbon-13 Nuclear Magnetic Resonance for Organic Chemists,” Wiley, New York, 1972.

    Google Scholar 

  89. H. M. Muchall, N. H. Werstiuk, and B. Choudhury, Can. J. Chem., 1998, 76, 227.

    Google Scholar 

  90. E. J. Baerends and O. V. Gritsenko, J. Phys. Chem., 1997, 101, 5383.

    CAS  Google Scholar 

  91. R. Stowasser and R. Hoffmann, J. Am. Chem. Soc., 1999, 121, 3414.

    Article  CAS  Google Scholar 

  92. U. Salzner, J. B. Lagowski, P. G. Pickup, and R. A. Poirier, J. Comp. Chem., 1997, 18, 1943.

    CAS  Google Scholar 

  93. W. J. Hunt and W. A. Goddard, Chem. Phys. Lett., 1969, 3, 414.

    CAS  Google Scholar 

  94. R. D. Levin and S. G. Lias, “lonization Potential and Appearance Potential Measurements, 1971–1981,” National Bureau of Standards, Washington, DC.

    Google Scholar 

  95. L. A. Curtis, R. H. Nobes, J. A. Pople, and I. Radom, J. Chem. Phys., 1992, 97, 6766.

    Google Scholar 

  96. J. J. Berzelius, “Essai sur la théorie des proportions chimiques et sur ľinfluence chimique de ľélectricité,” 1819; see M. J. Nye, “From Chemical Philosophy to Theoretical Chemistry,” University of California Press, Berkeley, CA, 1993, p. 64.

    Google Scholar 

  97. Reference [9]. pp. 92–95.

    Google Scholar 

  98. R. S. Mulliken, J. Am. Chem. Soc., 1952, 64, 811, 819.

    Google Scholar 

  99. R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533. (b) R. G. Pearson, Science, 1963, 151, 172.

    CAS  Google Scholar 

  100. R. G. Pearson, “Hard and Soft Acids and Bases,” Dowden, Hutchinson and Ross, Stroudenburg, PA, 1973. (b) T. L. Lo, “Hard and Soft Acids and Bases in Organic Chemistry,” Academic Press, New York, 1977.

    Google Scholar 

  101. M. J. S. Dewar, “A Semiempirical Life,” American Chemical Society, Washington, DC, 1992; p. 160.

    Google Scholar 

  102. R. G. Parr and W. Yang, J. Am. Chem. Soc., 1984, 106, 4049.

    Article  CAS  Google Scholar 

  103. Reference [9], chapters 4 and 5 in particular.

    Google Scholar 

  104. E.g. P. Atkins, “Physical Chemistry,” 6th edn, Freeman, New York, 1998, p. 132.

    Google Scholar 

  105. R. P. Iczkowski and J. L. Margrave, J. Am. Chem. Soc., 1961, 83, 3547.

    Article  CAS  Google Scholar 

  106. R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, J. Chem. Phys., 1978, 68, 3801.

    Article  CAS  Google Scholar 

  107. R. S. Mulliken, J. Chem. Phys., 1934, 2, 782.

    CAS  Google Scholar 

  108. R. G. Pearson, J. Chem. Educ., 1999, 76, 267.

    CAS  Google Scholar 

  109. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc., 1983, 105, 7512.

    Article  CAS  Google Scholar 

  110. A. Toro-Labbé, J. Phys. Chem. A, 1999, 103, 4398.

    Google Scholar 

  111. L. T. Nguyen, T. N. Le, F. De Proft, A. K. Chandra, W. Langenaeker, M. T. Nguyen, and P. Geerlings, J. Am. Chem. Soc., 1999, 121, 5992.

    CAS  Google Scholar 

  112. K. Fukui, Science, 1987, 218, 747. (b) I. Fleming, “Frontier Orbitals and Organic Chemical Reactions” Wiley, New York, 1976. (c) K. Fukui, Acc. Chem. Res., 1971, 57, 4.

    Google Scholar 

  113. W. Yang and W. J. Mortier, J. Am. Chem. Soc., 1986, 108, 5708.

    CAS  Google Scholar 

  114. F. A. Carey and R. L. Sundberg, “Advanced Organic Chemistry,” 3rd edn, Plenum, New York, 1990, pp. 423–430.

    Google Scholar 

  115. F. Méndez and J. L. Gázquez, J. Am. Chem. Soc., 1994, 116, 9298.

    Google Scholar 

  116. S. Damoun, G. Van de Woude, K. Choho, and P. Geerlings, J. Phys. Chem. A, 1999, 103, 7861.

    Article  CAS  Google Scholar 

  117. J. L. Gázquez and F. Méndez, J. Phys. Chem., 1994, 98, 4591.

    Google Scholar 

  118. M. J. S. Dewar, “A Semiempirical Life,” American Chemical Society, Washington, DC, 1992, p. 162.

    Google Scholar 

  119. Z. Zhou and R. G. Parr, J. Am. Chem. Soc., 1989, 111, 7371. (b) Z. Zhou, R. G. Parr, and J. F. Garst, Tetrahedron Lett., 1988, 29, 4843.

    CAS  Google Scholar 

  120. Reference [9], p. 101.

    Google Scholar 

  121. Reference D. L. Beveridge, “Approximate Molecular Orbital Theory,” McGraw-Hill, New York, 1970, chapters 1 and 2 [10], part B, and references therein. (b) G. Frenking, J. Chem. Soc., Dalton Trans., 1997, 1653.

    Google Scholar 

  122. S. Kyistyan and P. Pulay, Chem. Phys. Lett., 1994, 229, 175. (b) J. M. Perez-Jorda and A. D. Becke, Chem. Phys. Lett., 1995, 233, 134.

    Google Scholar 

  123. M. Lozynski, D. Rusinska-Roszak, and H.-G. Mack, J. Phys. Chem. A, 1998, 102, 2899. (b) C. Adamo and V. Barone in “Recent Advances in Density Functional Methods. Part II,” D. P. Chong, Ed., World Scientific, Singapore, 1997. (c) F. Sim, A. St.-Amant, I. Papai, and D. R. Salahub, J. Am. Chem. Soc., 1992, 114, 4391.

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Density Functional Calculations. In: Computational Chemistry. Springer, Boston, MA. https://doi.org/10.1007/0-306-48391-2_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-48391-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7285-7

  • Online ISBN: 978-0-306-48391-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics