Skip to main content

Introduction to Quantum Mechanics in Computational Chemistry

  • Chapter
Computational Chemistry
  • 1080 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For general accounts of the development of quantum theory see: J. Mehra and H. Rechenberg, “The Historical Development of Quantum Theory”, Springer-Verlag, New York, 1982; T. S. Kuhn, “Black-body Theory and the Quantum Discontinuity 1894–1912”, Oxford University Press, Oxford, 1978. (b) An excellent historical and scientific exposition, at a somewhat advanced level: M. S. Longair, “Theoretical Concepts in Physics”, Cambridge University Press, Cambridge, 1983, chapters 8–12.

    Google Scholar 

  2. A great deal has been written speculating on the meaning of quantum theory, some of it serious science, some philosophy, some mysticism. Some leading references are: (a) A. Whitaker, “Einstein, Bohr and the Quantum Dilemma”, Cambridge University Press, 1996; (b) V. J. Stenger, “The Unconscious Quantum”, Prometheus, Amherst, NY, 1995; (c) P. Yam, Scientific American, June 1997, p. 124; (d) D. Z. Albert, Scientific American, May 1994, p. 58; (e) D. Z. Albert, “Quantum Mechanics and Experience”, Harvard University Press, Cambridge, MA, 1992; (f) D. Bohm and H. B. Hiley, “The Undivided Universe”, Routledge, New York, 1992; (g) J. Baggott, “The Meaning of Quantum Theory”, Oxford University Press, New York, 1992; (h) M. Jammer, “The Philosophy of Quantum Mechanics”, Wiley, New York, 1974.

    Google Scholar 

  3. I. N. Levine, “Quantum Chemistry”, 5th Ed., Prentice Hall, Upper Saddle River, NJ, 2000.

    Google Scholar 

  4. Sitzung der Deutschen Physikalischen Gesellschaft, 14 December 1900, Verhandlung 2, p. 237. This presentation and one of October leading up to it (Verhandlung 2, p. 202) were combined in: M. Planck, Annalen. Phys., 1901, 4(4), 553.

    Google Scholar 

  5. M. J. Klein, Physics Today, 1966, 19, 23.

    CAS  Google Scholar 

  6. For a good and amusing account of quantum strangeness (and relativity effects) and how things might be if Planck’s constant had a considerably different value, see G. Gamov and R. Stannard, “The New World of Mr Tompkins”, Cambridge University Press, Cambridge, 1999. This is based on the classics by George Gamow, “Mr Tompkins in Wonderland” (1940) and “Mr Tompkins Explores the Atom” (1944), which were united in “Mr Tompkins in Paperback,” Cambridge University Press, Cambridge, 1965.

    Google Scholar 

  7. A. Einstein, Ann. Phys., 1905, 17, 132. Actually, the measurements are very difficult to do accurately, and the Einstein linear relationship may have been more a prediction than an explanation of established facts.

    CAS  Google Scholar 

  8. For an elementary treatment of Maxwell’s equations and the loss of energy by an accelerated electric charge, see R. K. Adair, “Concepts in Physics,” Academic Press, New York, 1969, chapter 21. (b) For a brief historical introduction to Maxwell’s equations see M. S. Longair, “Theoretical Concepts in Physics”, Cambridge University Press, Cambridge, 1983, chapter 3. For a rigorous treatment of the loss of energy by an accelerated electric charge see Longair, chapter 9.

    Google Scholar 

  9. N. Bohr, Phil. Mag., 1913, 26, 1.

    CAS  Google Scholar 

  10. For example, S. T. Thornton and A. Rex, “Modern Physics for Scientists and Engineers”, Saunders, Orlando, FL., 1993, pp. 155–164.

    Google Scholar 

  11. See, e.g. Ref. [2a], loc. cit.

    Google Scholar 

  12. E. Schrödinger, Ann. Phys., 1926, 79, 361. This first Schrödinger equation paper, a nonrelativistic treatment of the hydrogen atom, has been described as “one of the greatest achievements of twentieth-century physics” (Ref. [13], p. 205).

    Google Scholar 

  13. W. Moore, “Schrödinger. Life and thought,” Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  14. L. de Broglie, “Recherche sur la Theorie des Quanta”, thesis presented to the faculty of sciences of the University of Paris, 1924.

    Google Scholar 

  15. Ref. [13, chapter 6].

    Google Scholar 

  16. For example, Ref. [3, pp. 410–419, 604–613].

    Google Scholar 

  17. V. I. Minkin, M. N. Glukhovtsev, and B. Ya. Simkin, “Aromaticity and Antiaromaticity: Electronic and Structural Aspects,” Wiley, New York, 1994.

    Google Scholar 

  18. Generalized VB method: R. A. Friesner, R. B. Murphy, M. D. Beachy, M. N. Ringnalda, W. T. Pollard, B. D. Dunietz, Y. Cao, J. Phys. Chem. A, 1999, 103, 1913, and references therein; (b) J. G. Hamilton and W. E. Palke, J. Am. Chem. Soc., 1993, 115, 4159.

    Article  CAS  Google Scholar 

  19. The pioneering benzene paper: E. Hückel, Z. Physik, 1931, 70, 204. Other papers by Hückel, on the double bond and on unsaturated molecules, are listed in his autobiography, “Ein Gelehrtenleben. Ernst und Satire,” Verlag Chemie, Weinheim, 1975, pp. 178–179.

    Google Scholar 

  20. L. Pauling, “The Nature of the Chemical Bond,” 3 Ed., Cornell University Press, Ithaca, NY, 1960, pp. 111–126.

    Google Scholar 

  21. A compact but quite thorough treatment of the SHM see Ref. [3], pp. 629–649. (b) A good, brief introduction to the SHM is: J. D. Roberts, “Notes on Molecular Orbital Calculations”, Benjamin, New York, 1962. (c) A detailed treatment: A. Streitweiser, “Molecular Orbital Theory for Organic Chemists,” Wiley, New York, 1961. (d) The SHM and its atomic orbital and molecular orbital background are treated in considerable depth in H. E. Zimmerman, “Quantum Mechanics for Organic Chemists,” Academic Press, New York, 1975. (e) Perhaps the definitive presentation of the SHM is E. Heilbronner and H. Bock, “Das HMO Modell und seine Anwendung,” Verlag Chemie, Weinheim, Germany, vol. 1 (basics and implementation), 1968; vol. 2, (examples and solutions), 1970; vol. 3 (tables of experimental and calculated quantities), 1970. An English translation of vol. 1 is available: “The HMO Model and its Application. Basics and Manipulation”, Verlag Chemie, 1976.

    Google Scholar 

  22. For example Ref. [21b pp. 87–90; [21c, pp. 380–391] and references therein; Ref. [21d, chapter 4].

    Google Scholar 

  23. Ref. [21c, chapter 1].

    Google Scholar 

  24. J. Simons and J. Nichols, “Quantum Mechanics in Chemistry,” Oxford University Press, New York, 1997, p. 133.

    Google Scholar 

  25. See, e.g. F. A. Carey and R. J. Sundberg, “Advanced Organic Chemistry. Part A,” 3rd Ed., Plenum, New York, 1990, pp. 30–34.

    Google Scholar 

  26. Y. Jean and F. Volatron, “An Introduction to Molecular Orbitals,” Oxford University Press, New York, 1993, pp. 143–144.

    Google Scholar 

  27. P. A. Schultz and R. P. Messmer, J. Am. Chem. Soc., 1993, 115, 10925. (b) P. B. Karadakov, J. Gerratt, D. L. Cooper, and M. Raimondi, J. Am. Chem. Soc., 1993, 115, 6863.

    CAS  Google Scholar 

  28. T. H. Lowry and K. S. Richardson, “Mechanism and Theory in Organic Chemistry”, Harper and Row, New York, 1981, pp. 26, 270. (b) A. Streiwieser, R. A. Caldwell and G. R. Ziegler, J. Am. Chem. Soc., 1969, 91, 5081, and references therein.

    Google Scholar 

  29. M. J. S. Dewar, “The Molecular Orbital Theory of Organic Chemistry,” McGraw-Hill, New York, 1969, pp. 92–98.

    Google Scholar 

  30. For a short review of the state of MO theory in its early days see R. S. Mulliken, J. Chem Phys., 1935, 3, 375. (b) A personal account of the development of MO theory: R. S. Mulliken, “Life of a Scientist: An Autobiographical Account of the Development of Molecular Orbital Theory with an Introductory Memoir by Friedrich Hund,” Springer-Verlag, New York, 1989. (c) For an account of the “tension” between the MO approach of Mulliken and the VB approach of Pauling see A. Simões and K. Gavroglu in “Conceptual Perspectives in Quantum Chemistry,” J.-L. Calais and E. Kryachko, Eds., Kluwer Academic Publishers, London, 1997.

    CAS  Google Scholar 

  31. L. Pauling, Chem. Rev., 1928, 5, 173.

    Article  Google Scholar 

  32. J. E. Lennard-Jones, Trans. Faraday Soc., 1929, 25, 668.

    Article  CAS  Google Scholar 

  33. C. A. Coulson and I. Fischer, Philos. Mag., 1949, 40, 386.

    CAS  Google Scholar 

  34. Ref. [21d, pp. 52–53].

    Google Scholar 

  35. As Dewar points out in Ref. [30], this derivation is not really satisfactory. A rigorous approach is a simplified version of the derivation of the Hartree-Fock equations (section 5.2.3). It starts with the total molecular wavefunction expressed as a determinant, writes the energy in terms of this wavefunction and the Hamiltonian and finds the condition for minimum energy subject to the molecular orbitals being orthonormal (cf. orthogonal matrices, section 4.3.3). The procedure is explained in some detail in section 5.2.3).

    Google Scholar 

  36. See, e.g. D. W. Rogers, “Computational Chemistry Using the PC,” VCH, New York, 1990, pp. 92–94.

    Google Scholar 

  37. R. B. Woodward and R. Hoffmann, “The Conservation of Orbital Symmetry,” Verlag Chemie, Weinheim, Germany, 1970.

    Google Scholar 

  38. (a) For a nice review of the cyclobutadiene problem see B. K. Carpenter in “Advances in Molecular Modelling,” JAI Press, Greenwich, Connecticut, 1988. (b) Calculations on the degenerate interconversion of the rectangular geometries: J. C. Santo-García, A. J. Pérez-Jim6néz, and F. Moscardó Chem. Phys. Letter, 2000, 317, 245.

    Google Scholar 

  39. Strictly speaking, cyclobutadiene exhibits a pseudo-Jahn-Teller effect: D. W. Kohn and P. Chen, J. Am. Chem. Soc., 1993, 115, 2844. (b) For “A beautiful example of the Jahn-Teller effect” MnF3 see M. Hargittai, J. Am. Chem. Soc., 1997, 119, 9042. (c) Review: T. A. Miller, Angew. Chem. Int. Ed., 1994, 33, 962.

    Article  CAS  Google Scholar 

  40. A. A. Frost and B. Musulin, J. Chem. Phys., 1953, 21, 572.

    CAS  Google Scholar 

  41. W. E. Doering and L. H. Knox, J. Am. Chem. Soc., 1954, 76, 3203.

    CAS  Google Scholar 

  42. M. J. S. Dewar, “The Molecular Orbital Theory of Organic Chemistry,” McGraw-Hill, New York, 1969, pp. 95–98.

    Google Scholar 

  43. M. J. S. Dewar, “The Molecular Orbital Theory of Organic Chemistry,” McGraw-Hill, New York, 1969, pp. 236–241.

    Google Scholar 

  44. (a) Ref. M. N. Glukhovisev, and B. Ya. Simkin, “Aromaticity and Antiaromaticity: Electronic and Structural Aspects,” Wiley. New York, 1994. 17, pp. 157–161]. (b) K. Krogh-Jespersen, P. von R. Schleyer, J. A. Pople, and D. Cremer, J. Am. Chem. Soc., 1978, 100, 4301. (c) The cyclobutadiene dianion, another potentially aromatic system, has recently been prepared: K. Ishii, N. Kobayashi, T. Matsuo, M. Tanaka, A. Sekiguchi, J. Am. Chem. Soc., 2001, 123, 5356.

    Google Scholar 

  45. S. Zilberg and Y. Haas, J. Phys. Chem. A, 1998, 102, 10843, 10851.

    CAS  Google Scholar 

  46. The most rigorous approach to assigning electron density to atoms and bonds within molecules is the atoms-in molecules (AIM) method of Bader and coworkers: R. F. W. Bader, “Atoms in Molecules,” Clarendon Press, Oxford, 1990.

    Google Scholar 

  47. Various approaches to defining bond order and atom charges are discussed in F. Jensen, “Introduction to Computational Chemistry”, Wiley, New York, 1999, chapter 9.

    Google Scholar 

  48. Ref. M. N. Glukhovisev, and B. Ya. Simkin, “Aromaticity and Antiaromaticity: Electronic and Structural Aspects,” Wiley. New York, 1994. 17, pp. 177–180].

    Google Scholar 

  49. For leading references see: (a) B. A. Hess and L. J. Schaad, J. Chem. Educ., 1974, 51, 640; (b) B. A. Hess and L. J. Schaad, Pure and Appl. Chem., 1980, 52, 1471.

    Google Scholar 

  50. See, e.g. Ref. [21c, chapters 4 and 5].

    Google Scholar 

  51. See, e.g. Ref. [21c, pp. 13, 16].

    Google Scholar 

  52. R. Hoffmann, J. Chem. phys., 1963, 39, 1397; (b) Hoffmann, J. Chem. Phys, 1964, 40, 2474;(c) R. Hoffmann, J. Chem. Phys., 1964, 40, 2480; (d) R. Hoffmann, J. Chem. Phys., 1964, 40, 2745; (e) R. Hoffmann, Tetrahedron, 1966, 22, 521; (f) R. Hoffmann, Tetrahedron, 1966, 22, 539; (g) P. J. Hay, J. C. Thibeault, R. Hoffmann J. Am. Chem. Soc., 1975, 97, 4884.

    Article  CAS  Google Scholar 

  53. M. Wolfsberg and L. Helmholz, J. Chem. Phys., 1952, 20, 837.

    Article  CAS  Google Scholar 

  54. Actually, valence state ionization energies are usually used; see H. O. Pritchard, H. A. Skinner, Chem. Rev., 1955, 55, 745; J. Hinze, H. H. Jaffe, J. Am. Chem. Soc., 1962, 84, 540; A. Stockis, R. Hoffmann J. Am. Chem. Soc., 1980, 102, 2952.

    Article  CAS  Google Scholar 

  55. F. L. Pilar, “Elementary Quantum Chemistry,” McGraw-Hill, New York, 1990, pp. 493–494.

    Google Scholar 

  56. A. Szabo and N. S. Ostlund, “Modern Quantum Chemistry,” McGraw-Hill, 1989, pp. 168–179. This describes an ab initio (chapter 5) calculation on HeH but gives information relevant to our EHM calculation.

    Google Scholar 

  57. C. C. J. Roothaan, J. Chem. Phys., 1951, 19, 1445.

    Article  CAS  Google Scholar 

  58. R. Hoffmann, “Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures.” VCH publishers, 1988.

    Google Scholar 

  59. A polymeric rhenium compound: H. S. Genin, K. A. Lawlwr, R. Hoffmann, W. A. Hermann, R. W. Fischer, and W. Scherer, J. Am. Chem. Soc., 1995, 117, 3244. (b) Chemisorption of ethyne on silicon: Q. Liu and R. Hoffmann, J. Am. Chem. Soc., 1995, 117, 4082. (c) A carbon/sulfur polymer: H. Genin and R. Hoffmann. J. Am. Chem. Soc., 1995, 117, 12328.

    CAS  Google Scholar 

  60. IjH2(SC5H5N2)(PH3)2: Q Liu, and R Hoffmann, J. Am. Chem Soc., 1995, 117, 10108. (b) [Ni(SH)2]6: P. Alemany and R. Hoffmann, J. Am, Chem Soc., 1993, 115, 8290; Mn clusters: D. M. Proserpio, R. Hoffmann, G. C. Dismukes, J. Am, Chem Soc., 1992, 114, 4374.

    CAS  Google Scholar 

  61. J. H. Ammeter, H.-B. Bürgi, J C. Thibeault, R. Hoffmann, J. Am, Chem Soc., 1978, 100, 3686.

    Article  CAS  Google Scholar 

  62. Superior results from EHM compared to MINDO/3 and MNDO, for nonplanarity of certain C/C double bonds: J. Spanget-Larsen and R Gleiter, Tetrahedron, 1983, 39, 3345.

    CAS  Google Scholar 

  63. EHM modified to give good geometries: S. L Dixon and P. C. Jurs, J. Comp. Chem., 1994, 15, 733.

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Introduction to Quantum Mechanics in Computational Chemistry. In: Computational Chemistry. Springer, Boston, MA. https://doi.org/10.1007/0-306-48391-2_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48391-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7285-7

  • Online ISBN: 978-0-306-48391-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics