Skip to main content

Part of the book series: Advances in Global Change Research ((AGLO,volume 7))

Abstract

Snow cover fraction (SCF) has a significant influence on the surface albedo and thus on the radiation balance and surface climate. Long-term three dimensional simulations with General Circulation Models (GCMs) showed that the SCF greatly affects the climate in the Northern Hemisphere.

By means of both ground observations and remotely sensed data, several deficiencies in the SCF parameterization used in the current ECHAM4 GCM were identified: over mountainous areas a substantial overestimation in the SCF was found whereas flat areas showed a distinctly underestimated SCF. This paper proposes a new parameterization of the SCF for use in GCMs. Evaluations illustrate that it is beneficial to include the effects of (i) flat, non-forested areas, (ii) mountainous regions and (iii) forests.

A new SCF parameterization for flat, non-forested areas was derived by using global datasets of ground-based snow depth and remote sensing observations of snow cover data. A 3-dimensional Echam4 simulation showed that this modification raises the SCF by up to approximately 20%, mainly in areas with a relatively thin snow cover.

The comparison between remotely sensed and simulated mean monthly surface albedo revealed a significant overestimation of the surface albedo in snow covered mountainous areas. The extension of the current SCF parameterization in Echam4, according to the French climate model Arpège, yielded a close agreement with satellite-derived surface albedo.

Using remotely-sensed SCF data in Echam4 over forested areas produced unrealistic results due to the masking of snow cover on the ground underlying the canopy. Therefore, we adopted the submodel for snow albedo as used in the Canadian Land Surface Scheme (Class) to simulate the SCF of snow-covered canopies. This model combined with a newly-developed simple snow interception model demonstrated the ability to capture the main physical processes of snow covered canopies, including the albedo. This modification has a beneficial impact on the delayed snow melt in spring, a well-known problem in many current GCMs: The simulated surface albedo over the boreal forests decreases by approximately 0.1 during winter and spring, which is in better agreement with ground-based observations. This induces a significant rise in the surface temperature over extended parts of Eurasia and North America in late spring, which subsequently yields a faster snowmelt and an accelerated retreat of the snow line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, D., R. Skaggs, and D. Ruschy, 1991: Snow depth required to mask the underlying surface. J. Appl. Meteor. 30, 387–392.

    Article  Google Scholar 

  • Barker, H. and J. Davies, 1989: Surface albedo estimates from Nimbus-7 ERB data and a two-stream approximation of the radiative transfer equation. J. Climate 2, 409–418

    Article  Google Scholar 

  • Barker, H., Z. Li, and J.-P Blanchet, 1994: Radiative characteristics of the Canadian Climate Centre second-generation general circulation model. J. Climate 7, 1070–1091

    Article  Google Scholar 

  • Barnett, T., L. Dtimenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci. 46, 661–685.

    Article  Google Scholar 

  • Betts, A. and J. Ball, 1987: Albedo over the boreal forest. J. Geophys. Res. 102, 28901–28909.

    Article  Google Scholar 

  • Bliss, N. and L. Olson, 1996: Development of a 30-arc-second digital elevation model of South America. In Pecora thirteen, hitman interactions with the environment-perspectivesfrom space. Sioux Falls, South Dakota.

    Google Scholar 

  • Bonan, B., F.C. Ill, and S. Thompson, 1995: Boreal forest and tundra ecosystems as components of the climate system. Clim. Change 29, 145–167.

    Article  Google Scholar 

  • Chang, A., J. Foster, and D. Hall, 1987: Nimbus-7 SMMR derived global snow cover parameters. Annals of Glaciology 9, 39–44.

    Google Scholar 

  • Claussen, M., U. Lohmann, E. Roeckner, and U. Schulzweida, 1994: A global data set ofland-surface parameters Max Planck Institute for Meteorology, Report No. 135, MPI for Meteorology, Hamburg.

    Google Scholar 

  • Darnell, W., W. Staylor, S. Gupta, N. Ritchey, and A. Wilber, 1992: Seasonal variation of surface radiation budget derived from International Satellite Cloud Climatology Project C1 Data. J. Geophys. Res. 92, 15741–15760.

    Article  Google Scholar 

  • Dickinson, R., 1983: Land surface processes and climate-surface albedos and energy balance. In B. Saltzman (Ed.), Theory of climate, Volume 25 of Advances in Geophysics, pp. 305–353. Academic press.

    Google Scholar 

  • Dickinson, R., A. Henderson-Sellers, and P. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) Version le as coupled to the NCAR Community Climate Model. In NCAR/TN-387+STR. National Center for Atmospheric Research, Boulder, Colorado.

    Google Scholar 

  • Douville, H., J.-F. Royer, and J.-F. Mahfouf, 1995a: A new parameterization for the Météo-France climate model, Part 1: Validation in stand-alone experiments. Climate Dynamics 12, 21–35.

    Article  Google Scholar 

  • Douville, H., J.-F. Royer, and J.-F. Mahfouf, 1995b: A new parameterization for the Météo-France climate model, Part 2: Validation in a 3-D GCM experiment. Climate Dynamics 12, 37–52.

    Article  Google Scholar 

  • Edelmann, W., D. Majewski, E. Heise, P. Prohl, G. Doms, B. Ritter, M. Gertz, and T. Hanisch, 1995, Dokumentation des EM/DM-Systems. DWD.

    Google Scholar 

  • Foster, D. and R. Davy, 1988: Global snow depth climatology. In USAF publicationUSAFETAC/TN-88/006, pp. 48. Scott Air Force base, Illinois.

    Google Scholar 

  • Foster, J., G. Liston, R. Koster, R. Essery, H Behr, L. Dümenil, D. Verseghy, S. Thompson, D. Pollard, and J. Cohen, 1996: Snow cover and snow mass intercomparison of general circulation models and remotely sensed datasets. J. Climate 9, 409–426.

    Article  Google Scholar 

  • Garratt, J. 1993: Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments — a review. J. Climate 6, 419–449.

    Article  Google Scholar 

  • Gates, W.L., 1992: AMIP: The atmospheric model intercomparison project Bull. Amer.Meteor. Soc. 73, 1962–1970.

    Article  Google Scholar 

  • Gutzler, D. and R. Rosen, 1992: Interannual variability of wintertime snow cover across the Northern Hemisphere. J. Climate 5, 1441–1447.

    Article  Google Scholar 

  • Hall, F., J. Townshend, and E. Engman, 1995: Status of remote sensing algorithms for estimation of land surface state parameters. Remote Sens. Environ. 51, 138–156.

    Article  Google Scholar 

  • Harding, R. and J. Pomeroy, 1996: The energy balance of the winter boreal landscape. J.Climate 9, 2778–2787.

    Article  Google Scholar 

  • Hedstrom, N. and J. Pomeroy, 1998: Measurements and modelling of snow interception in the boreal forest. J. Hydrol. Processes 12, 1611–1625.

    Article  Google Scholar 

  • Iwasaki, T., 1991: Year-to-year variation of snow cover area in the Northern Hemisphere. J.Meteor. Soc. Japan 69, 209–217.

    Google Scholar 

  • Joseph, J., J. Iaquinta, and B. Pinty, 1996: The use of two-stream approximations for the parameterization of solar radiative energy fluxes through vegetation. J. Climate 9, 2326–2336.

    Article  Google Scholar 

  • Kukla, G. and D. Robinson, 1981: Accuracy of snow and ice monitoring. Snow watch 1980, Glaciological Data, Report GD-5.

    Google Scholar 

  • Kung, E., R. Bryson, and D. Lenschow, 1964: Study of a continental surface albedo on the basis of flight measurements and structure of the earth’s surface cover over North America. Monthly Weather Review 92, 543–564.

    Article  Google Scholar 

  • Marquardt, 1963: An algorithm for least-squares estimation of nonlinear parameters. J. Soc.Ind. Appl. Math. 11, 431–441.

    Article  Google Scholar 

  • Marshall, S., J. Roads, and G. Glatzmaier, 1994: Snow hydrology in a general circulation model. J. Climate 7, 1251–1269.

    Article  Google Scholar 

  • Masuda, K., Y. Morinaga, A. Numaguti, and A. Abeouchi, 1993: The annual cycle of snow cover extent over the Northern Hemisphere as revealed by NOAA/NESDIS satellite data, Volume 28 of Geographical Reports of Tokyo Metropolitan University.

    Google Scholar 

  • Miller, D., 1962: Snow in trees — where did it go? In Proc. of the 30th annual meeting of the Western Snow Conference, Volume 30, pp. 21–29.

    Google Scholar 

  • Mylne, M. and P. Rowntree, 1991: Deforestation of Amazonia — modelling the effects of albedo change. Technical Report Clim. Res. Tech. Note CRTN 7, Hadley Centre, UK Met. Office, Bracknell.

    Google Scholar 

  • Nakai, Y., T. Sakamoto, T. Terajima, H. Kitahara, and T. Saito, 1994: Snow interception by forest canopies:weighing a conifer tree, meteorological observation and analysis by the Penman-Monteith formula. IAHS Publ. No. 223, pp. 227–236.

    Google Scholar 

  • Otterman, J., 1984: Albedo of a forest modeled as a plane with dense protrusions. J. Clim. Appl. Meteor. 23, 297–307.

    Article  Google Scholar 

  • Pomeroy, J. and K. Dion, 1996: Winter radiation extinction and reflection in a boreal pine canopy: measurements and modelling. J. Hydrol. Processes 10, 1591–1608.

    Article  Google Scholar 

  • Randall, D., R. Cess, J. Blanchet, S. Chalita, R. Colman, D. Dazlich, A.D. Genio, E. Keup, A. Lacis, H.L. Treut, X.-Z. Liang, B. McAvaney, J. Mahfouf, V. Meleshko, J.-J. Morcrette, P. Norris, G. Potter, L. Rikus, E. Roeckner, J. Royer, U. Schlese, D. Sheinin, A. Sokolov, K. Taylor, R. Wetherald, I. Yagai, and M.-H. Zhang, 1994: Analysis of snow feedbacks in 14 general circulation models. J. Geophys. Res. 99, 20757–20771.

    Article  Google Scholar 

  • Robinson, D., K. Dewey, and R. Heim, 1993: Global snow cover monitoring: an update Bull. Amer. Meteor. Soc. 74, 1689–1696.

    Article  Google Scholar 

  • Robock, A., K. Vinnikov, C. Schlosser, N. Speranskaya, and Y. Yue, 1995: Use of midlati-tude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J. Climate 8, 15–35.

    Article  Google Scholar 

  • Roeckner, E., K. Arpe, L Bengtsson, M. Christoph, M. Claussen, L. Dumenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present day climate. Max Planck Institute for Meteorology Report No. 218. MPI for Meteorology, Hamburg.

    Google Scholar 

  • Roeckner, E., K. Arpe, L. Bengtsson, L.D.S. Brinkop, M. Christoph, M. Esch, E. Kirk, F. Lunkeit, M. Ponater, B. Rockel, R. Sausen, U. Schlese, S. Schubert, and M. Windelband, 1992: Simulation of the present day climate with the ECHAM model: impact of model physics and resolution. Max Planck Institute for Meteorology Report No. 93. MPI for Meteorology, Hamburg.

    Google Scholar 

  • Roesch, A., 2000: Assessment of the land surface scheme in climate models with focus on surface albedo and snow cover. Zürcher Klima-Schriften No. 78. ETH Zürich.

    Google Scholar 

  • Roesch, A., H. Gilgen, M. Wild, and A. Ohmura, 1999: Assessment of GCM simulated snow albedo using direct observations. Climate Dynamics 15, 405–418.

    Article  Google Scholar 

  • Roesch, A., J.-P. Schulz, and M. Wild, 1997: Comparison and sensitivity studies of the land-surface schemes in the ECHAM General Circulation Model and the Europa-Modell. Max Planck Institute for Meteorology Report No. 244. MPI for Meteorolgy, Hamburg.

    Google Scholar 

  • Sellers, P., 1985: Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sensing 6, 1335–1372.

    Article  Google Scholar 

  • Sellers, P., D. Randall, G. Collatz, J. Berry, C. Field, D. Dazlich, C. Zhang, G. Collelo, and L. Bounoua, 1996a: A revised land surface parameterization (SiB2) for atmospheric GCMs, Part I: Model formulation. J. Climate 9, 676–705.

    Article  Google Scholar 

  • Sellers, P., B. Meeson, J. Closs, J. Collatz, F. Corprew, D. Dazlich, F. Hall, Y. Kerr, R. Koster, S. Los, K. Mitchell, J. McManus, D. Myers, K.-J. Sun, and P. Try, 1996b: The ISLSCP Initiative global datasets: Surface boundary conditions and atmospheric forcings for land-atmosphere studies Bull. Amer. Meteor. Soc. 77, 1987–2005.

    Article  Google Scholar 

  • Strahler, A., J.-P. Muller, W. Lucht, C. Schaaf, T. Tsang, F. Gao, X. Li, P. Lewis, and M Barnley, 1999: Modis BRDF/ Albedo Product: Algorithm theoretical basis document, pp. 53.

    Google Scholar 

  • Thomas, G. and P. Rowntree, 1992: The boreal forests and climate. Quart. J. R. Met. Soc. 118, 469–497.

    Article  Google Scholar 

  • Verseghy, D., 1991: Class — A Canadian Land Surface Scheme for GCMs. I Soil model. Int. J. Climatology 13, 11–133.

    Google Scholar 

  • Walland, D. and I. Simmonds, 1996: Sub-grid-scale topography and the simulation of Northern Hemisphere snow cover. Int. J. Climatology 16, 961–982.

    Article  Google Scholar 

  • Walsh, J. and B. Ross, 1988: Sensitivity of 30-day dynamical forecasts to continental snow cover. J. Climate 1, 739–754.

    Article  Google Scholar 

  • Whitlock, C., T. Charlock, W. Staylor, R. Pinker, I. Laszlo, A. Ohmura, H. Gilgen, T. Konzelmann, R. DiPasquale, C. Moats, S. LeCroy, and N. Ritchey, 1995: First global WCRP surface radiation data set Bull. Amer. Meteor. Soc. 76, 905–922.

    Article  Google Scholar 

  • Yamazaki, T., K. Fukabori, and J. Kondo, 1996: Albedo of forest with crown snow. J. Jpn. Soc. Snow and Ice 58, 11–18.

    Article  Google Scholar 

  • Yamazaki, T., J. Kondo, and T. Watanabe, 1992: A heat-balance model with a canopy of one or two layers and its application to field measurements. J. Appl. Meteor. 31, 86–103.

    Article  Google Scholar 

  • Yang, Z.-L., R. Dickinson, A. Hahmann, G.-Y. Niu, M. Shaikh, X. Gao, R. Bales, S. Sorooshian, and J. Jin, 1999: Simulation of snow mass and extent in general circulation models. Hydrol. Process. 13, 2097–2113.

    Article  Google Scholar 

  • Yang, Z.-L., R. Dickinson, A. Robock, and K. Vinnikov, 1997: Validation of the snow submodel of the bioshere-atmosphere transfer scheme with Russian snow cover and meteorological observational data. J. Climate 10, 353–373.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Roesch, A., Wild, M., Ohmura, A. (2001). Snow Cover Fraction In A General Circulation Model. In: Beniston, M., Verstraete, M.M. (eds) Remote Sensing and Climate Modeling: Synergies and Limitations. Advances in Global Change Research, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-48149-9_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-48149-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5648-1

  • Online ISBN: 978-0-306-48149-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics