Skip to main content
  • 184 Accesses

Summary

The next several years should see a significant increase in the amount of data. Precise semi-inclusive data is expected from HERMES. CEBAF 39 has an extensive program of measurements planned at large x and low Q 2. The new CERN proposal COMPASS 32 will extend the high Q 2 data and provide information on semi-inclusive charm production, that may shed light on the contribution of gluons to the nucleon’s spin. RHIC30 (via polarized proton-proton collisions) also has great potential to provide direct information on the gluon contribution. In addition an improved theoretical understanding may be forthcoming with further improvements in the most advanced QCD calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. X. Ji, contribution to these proceedings.

    Google Scholar 

  2. J. Ashman et al., Phys. Lett. B 206, 364 (1988).

    Article  ADS  Google Scholar 

  3. J. Ashman et al., Nucl. Phys. B 328, 1 (1989).

    Article  ADS  Google Scholar 

  4. M. J. Alguard et al., Phys. Rev. Lett. 37, 1261 (1976), Phys.Rev. Lett. 41, 70 (1976).

    Article  ADS  Google Scholar 

  5. G. Baum et al., Phys. Rev. Lett. 51, 1135 (1983), Phys. Rev. Lett. 45, 2000 (1980).

    Article  ADS  Google Scholar 

  6. K. Abe et al., Phys. Rev. Lett. 74, 346 (1995).

    Article  ADS  Google Scholar 

  7. K. Abe et al., Phys. Rev. D 58, 112003 (1998).

    Article  ADS  Google Scholar 

  8. E. Hughes, private communication for the E155 collaboration.

    Google Scholar 

  9. D. Adams et al., Phys. Lett. B 329, 399 (1994).

    Article  ADS  Google Scholar 

  10. B. Adeva et al., Phys. Lett. B 320, 400 (1994).

    Article  ADS  Google Scholar 

  11. B. Adeva et al., Phys. Lett. B 412, 414 (1997).

    Article  ADS  Google Scholar 

  12. D. Adams et al., Phys. Rev. D 56, 5330 (1997).

    Article  ADS  Google Scholar 

  13. B. Adeva et al., Phys. Lett. B 58, 112001 (1998).

    Google Scholar 

  14. A. Airapetian et al., PLB 442, 484 (1998).

    Article  Google Scholar 

  15. P. L. Anthony et al., Phys. Rev. Lett. 71, 959 (1993).

    Article  ADS  Google Scholar 

  16. P.L. Anthony et al., Phys. Rev. D 54, 6620 (1996).

    Article  ADS  Google Scholar 

  17. K. Abe et al., Phys. Rev. Lett. 75, 25 (1995).

    Article  ADS  Google Scholar 

  18. K. Abe et al., Phys. Rev. Lett. 79, 26 (1997).

    Article  ADS  Google Scholar 

  19. B. Adeva et al., Phys. Lett. B 302, 533 (1993).

    Article  ADS  Google Scholar 

  20. D. Adams et al., Phys. Lett. B 357, 248 (1995).

    Article  ADS  Google Scholar 

  21. D. Adams et al., Phys. Lett. B 396, 338 (1997).

    Article  ADS  Google Scholar 

  22. K. Ackerstaff et al., PLB 404, 383 (1997).

    Article  Google Scholar 

  23. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 138 (1972), Yu. L. Dokahitzer, Sov. Phys. JETP 16, 161 (1977), G. Altarelli and G. Parisi, Nucl. Phys.B 126, 298 (1977).

    Article  Google Scholar 

  24. K. Abe et al., Phys. Lett. B 405, 180 (1997).

    Article  ADS  Google Scholar 

  25. G. Altarelli, R.D. Ball, and S. Forte, Acta Phys. Polon. B 29, 1145 (1998).

    ADS  Google Scholar 

  26. B. Adeva et al., Phys. Lett. B 58, 112002 (1998).

    Google Scholar 

  27. B. Adeva et al., Phys. Lett. B 369, 93 (1996).

    Article  ADS  Google Scholar 

  28. B. Adeva et al., Phys. Lett. B 420, 180 (1998).

    Article  ADS  Google Scholar 

  29. C. A. Miller, Proceedings of the ICHEP98.

    Google Scholar 

  30. Relativistic Heavy Ion Collider (RHIC) Project (www.rhic.bnl.gov).

    Google Scholar 

  31. J. Moss, Contribution to these proceedings.

    Google Scholar 

  32. COMPASS Proposal, CERN/SPSLC 96-14 (1996).

    Google Scholar 

  33. A. Bravar, D. von Harrach, and A. Kotzinian, Phys. Lett. B 421, 349 (1998).

    Article  ADS  Google Scholar 

  34. D. Adams et al., Phys. Lett. B 336, 125 (1994).

    Article  ADS  Google Scholar 

  35. K. Abe et al., Phys. Rev. Lett. 76, 587 (1996).

    Article  ADS  Google Scholar 

  36. K. Abe et al., Phys. Lett. B 404, 377 (1997).

    Article  ADS  Google Scholar 

  37. J. Ralston and D. E. Soper, NPB 152, 109 (1979).

    Article  Google Scholar 

  38. R. L. Jaffe, Xuemin Jin, and Jian Tang, Phys. Rev. Lett. 80, 1166 (1998).

    Article  ADS  Google Scholar 

  39. CEBAF Experiments 89-042, 91-023, 93-009, 94-010, (www.cebaf.gov).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Filippone, B.W. (2002). Spin Structure with Lepton Beams. In: Kursunoglu, B.N., Mintz, S.L., Perlmutter, A. (eds) Confluence of Cosmology, Massive Neutrinos, Elementary Particles, and Gravitation. Springer, Boston, MA. https://doi.org/10.1007/0-306-47094-2_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-47094-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46208-5

  • Online ISBN: 978-0-306-47094-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics