
CHAPTER 8
SIMULATION AND ANALYSIS OF
CRYPTOGRAPHIC PROTOCOLS

M. Papa, O. Bremer, S. Magill, J. Hale and S. Shenoi

Abstract This paper integrates logic and process calculus components to permit
the comprehensive simulation and analysis of cryptographic protocols.
The approach permits proofs about the information transmitted in pro-
tocols as well as the behavior of participating principals.

Keywords: Cryptographic protocols, simulation, verification, logics, process calculi

1. INTRODUCTION
Cryptographic protocols are unambiguous, mutually subscribed se-

ries of steps, involving the exchange of messages between communicating
agents (principals). They are indispensable to distributed computing ap-
plications ranging from electronic commerce to national defense [14,15].

Most protocols fail due to design flaws, not because of weaknesses in
encryption [3,8,9,14]. A subtle flaw in the Needham-Schroeder protocol
[8] went undiscovered for nine years, potentially allowing malicious enti-
ties to steal keys, corrupt sensitive data, even sabotage military systems.

Higher order logics [3,5,15] are used to reason about protocols. BAN
logic [3] is a many-sorted modal logic for analyzing authentication pro-
tocols. It assumes that authentication is a function of integrity and
freshness of messages. Inference rules are specified for tracing these at-
tributes through all the steps of a protocol. BAN also defines inference
rules for reasoning about the information held by principals (“beliefs”).
BAN has detected flaws and exposed redundancies in several protocols,
including Needham-Schroeder, Yahalom and Kerberos protocols [3,14].

Despite their success, BAN logic and its derivatives (e.g., GNY [5]
and SVO logics [15]) have two major limitations. First, protocols must
be idealized prior to analysis. The translation of a real protocol to its
idealized counterpart is a difficult process, susceptible to misinterpreta-
tion and errors [5,14]. Moreover, a single protocol may have multiple
idealized representations, each with slightly different properties. The
second limitation arises from the logics’ inability to express the actions

90 DATA AND APPLICATIONS SECURITY

and evolution of principals. Message passing is modeled as an atomic
event; the exchange of a message only affects the information held by
the principals. When the actions and evolution of principals are ignored,
it is not possible to make formal guarantees about their behavior.

Another promising approach to protocol verification involves model-
ing principals as agents using a process calculus [1,2,10-12]. An axiom-
atization of the process calculus is then used to obtain proofs about
agent behavior. The [11,12] exemplifies this approach. It
models distributed systems as primitive concurrent agents with complex
message passing. Computation is simulated by agent communication:
agents exchange messages and evolve to simpler forms, until all com-
munication ceases. A deep embedding of using Higher Order
Logic (HOL) [6] permits proofs about agents, distributed systems, and
the itself [10]. The ROC process calculus [7] extends the

for distributed objects with complex message passing. The
Spi-calculus [2] augments the with cryptographic primitives,
permitting encrypted messages.

Process calculi give the ability to comprehensively model and reason
about the behavior of principals (agents) without protocol idealization.
However, process calculi lack constructs for reasoning about messages.
While the Spi-calculus can model principals exchanging encrypted mes-
sages, it can neither model nor reason about the information held by
principals. Thus, only limited properties can be proven about protocols.

This paper integrates logic and process calculus components, combin-
ing their strengths to permit the comprehensive simulation and analysis
of cryptographic protocols. Protocols need not be idealized prior to
modeling and verification. Moreover, it is possible to prove properties
about individual messages, principals, and the protocol itself.

2. MESSAGE MODELING
Following the style of process calculi [7,11,12], we model message pass-

ing using synchronous communication. Asynchronous communication
protocols can be constructed with synchronously communicating agents.

Communication occurs when a message output by one agent matches
a pattern exposed by another. This section describes the syntax of
messages and patterns, and the pattern-matching conventions.

Simulation and Analysis of Cryptographic Protocols 91

Definition 2.1: A key (k key) is a public/private key
a shared or secret key the concatenation of two keys a
placeholder for a key that is not yet known (k?), or nokey, corresponding
to a cleartext message:

We assume the existence of an infinite set of names (n name) as a
basic type. It is used to create unique keys, and data items for messages
and patterns.

Definition 2.2: A message (m message) is a tuple
encrypted under key k. A value (v value) is a key (k), a message (m),
a name (n) or a fresh name (#n):

To permit complex structures, messages are defined as nested tuples of
“values” (v value). Note that fresh names (nonces and time stamps)
are also incorporated in the BAN and GNY logics [3,5]. A newly gen-
erated value is considered to be fresh throughout a protocol run. A list
of fresh names associated with each run must be maintained to permit
reasoning about freshness.

Patterns permit the capture of messages and their contents. A pattern
exposed by a receiver expresses the information it has about message
format and content.

Definition 2.3: A pattern (p pattern) is a tuple en-
crypted under key k, a key (k), a wildcard (n?) for capturing values, or
a datum (n):

Figure 1 illustrates the modeling of messages and patterns. In the ex-
ample, the Law Enforcement Agency Field (LEAF) for a Clipper trans-
mission [14,15] is output by Phone as
where is the session key encrypted under the Clipper
chip’s unit key ID is the Clipper serial number, and AUTH
is the escrow authenticator. All these items are encrypted under the
Clipper family key

Since the law enforcement agency knows the LEAF format and the
family key it can expose the pattern to receive

92 DATA AND APPLICATIONS SECURITY

Figure 1. Modeling message passing.

the message as input. The wildcards ekey?, id? and auth? are place-
holders for receiving the individual LEAF items. Communication occurs
when the message output by Phone in Figure 1 matches the pattern
exposed by Police.

The following rules define the matching of messages and patterns.
First, we define the matching of keys. Intuitively, the key matching
operator establishes that an agent can decrypt an encrypted message if
it possesses the right key.

Definition 2.4: Key matching is defined by the following rules:

Definition 2.5: The matching of messages and patterns is defined
by the following rules (v value, p pattern, k key, m message
and n name):

Communication occurs only when a message is matched by an exposed
pattern. Free occurrences of a wildcard n? in the pattern p are replaced
with the corresponding matching value v throughout the pattern. For ex-
ample, in Figure 1, the message is matched by
the pattern exposed by Police, causing
ID and AUTH to be bound to ekey, id and auth, respectively.

Simulation and Analysis of Cryptographic Protocols 93

3. PROTOCOL MODELING
Protocols are modeled as sequences of messages exchanged by agents.

We model the messages exchanged and the behavior of the agents.
The starting point is a sequence of messages or patterns that are

output or input by an agent. Note that the term a seq
denotes that agent a outputs the message m. Likewise, a seq
denotes that a first outputs the message m and then exposes the pattern
p for input.

Definition 3.1: Let m message, p pattern and Istn : List of
n name. Then, sequences (seq), annotated sequences (aseq) and con-
current sequences (cseq) of messages and/or patterns are defined by:

where nil is the empty list, is an infinite sequence, and is the
commutative concurrency operator for sequences.

A sequence (seq) is defined as a sequence with an output message
or an input pattern or empty (nil). An annotated

sequence (aseq) is a sequence of messages and/or patterns followed by a
list of names ([seg].[lstn]); the list [lstn] stores fresh names for the cor-
responding sequence ([seg]). The term for an annotated sequence
denotes a sequence that has to be executed repeatedly, e.g., to model
a server. A concurrent sequence (cseq), the concurrent composition
of an annotated sequence and a concurrent sequence, models threads of
execution for a single agent. It can express multiple runs of one protocol
or parallel runs of different protocols.

Definition 3.2: The following property holds for an infinite sequence

Definition 3.3: An agent a is defined by:

where c cseq, id name and lstv : List of v value.

The term id identifies the agent a, lstv is a list of values representing
the information possessed by the agent. As in the BAN and GNY logics

94 DATA AND APPLICATIONS SECURITY

Figure 2. Simplified Clipper protocol.

[3,5], maintaining the list lstv permits reasoning about agents, especially
about what they know, say and have been told.

The modeling of cryptographic protocols with this syntax is high-
lighted using the simplified Clipper protocol in Figure 2.

Four agents participate in the protocol: a Clipper telephone (Phone),
a law enforcement agent (Police) and two key escrow agents (Escrow1
and Escrow2). The protocol has six steps. Police exposes patterns to
capture the LEAF (Step 1) and the encrypted message (Step 2) from
Phone. Next, Police transmits Phone’s identification and a court order
to Escrow1 and Escrow2 (Steps 3 and 4), each of which hold one-half
of Phone’s unit key. In Steps 5 and 6, Escrow1 and Escrow2 transmit
one-half of Phone’s unit key to Police.

Figure 3 shows the formal model of the protocol. Phone is defined
as: cseq(PhoneId, lstv). cseq is composed of two output messages, the
LEAF and a message M encrypted un-
der session key No fresh names are used in this particular
protocol, thus lstn = [nil]. List lstv = contains all
the the keys required for Phone to implement Clipper transmissions.
Note that the concatenation of the key halves yields
Phone’s unit key.

Police is defined by cseq(PoliceId, lstv). Its lstv only contains the
Clipper family key and two keys: and for communicat-
ing with Escrowl and Escrow2, respectively. Police’s cseq contains
two patterns: to capture the LEAF and emsg? to
capture Phone’s encrypted message The cseq also contains
two more concurrent sequences, each with a message output followed
by a pattern exposure. The first is
directed at Escrow1 to send Phone’s ID and AUTH (which were pre-
viously bound to the wildcards id? and auth?) and the court order (CO)

Simulation and Analysis of Cryptographic Protocols 95

Figure 3. Formal model of Clipper protocol.

and to receive the first half of Phone’s unit key (stored in the wildcard
Similarly, the second sequence is directed at Escrow2 to receive

the second half of Phone’s unit key (stored in Since no fresh names
are used, lstn = [nil] for the current sequence.

The definitions of Escrow1 and Escrow2 are similar to each other.
Escrow1 is defined by cseq(E1Id, where isused to commu-
nicate with Police. Escrow1’s cseq contains to
receive information from Police and the message to send
one-half of Phone’s unit key to Police. The pattern
exposed by Escrow1 ensures that Police submits a verifiable (id, escrow
authenticator, court order) tuple corresponding to Phone.

4. PROTOCOL SIMULATION
Most techniques for formally modeling protocols only consider the

messages exchanged by principals. We adopt an integrated approach
that models messages and principal behavior. Principals are formally
modeled as concurrent agents that exchange complex messages and re-
duce to simpler forms. A virtual machine has been designed to simulate
protocols by applying inference rules defined for agent communication
and reduction [7]. This permits the comprehensive simulation of proto-
cols – essential to their analysis and verification.

4.1. INFERENCE RULES FOR AGENT
BEHAVIOR

Inference rules governing agent communication and reduction provide
an unambiguous semantics for simulating agent behavior. Actions de-
fined for agents include communication, reduction and binding.

96 DATA AND APPLICATIONS SECURITY

Definition 4.1: Agent communication and reduction are defined
by the following inference rules. Communication offers are denoted by

where is m (input) or (output):

The In rule defines the semantics for the receipt of a message us-
ing a pattern. The precondition m p specifies that the message
m must match the pattern p exposed by agent (id, lstv) with com-
munication sequence [p seg].[lstn] cseq(id,lstv). The postcondi-
tion states that after the message is accepted, the agent reduces to

All free ocurrences of wildcards in p
are replaced by the corresponding values in m in the remaining sequences
of messages and/or patterns; this is specified by [seg].[lstn] cseq{m/p}.
The agent’s lstv is updated with the message that has just been ac-
cepted. The new list of values is denotes concatenation).

The Out rule has no preconditions. On offering message m, the com-
munication sequence of agent (id, lstv) reduces to
[seq].[lstn fresh(m)] cseq. The list of names lstn associated with the
remaining sequence of messages and/or patterns seq is updated with the
set of fresh names in m (fresh(m)); this is expressed by lstn fresh(m).
Similarly, the list of values lstv held by the agent is updated with the
offered message to produce lstv m.

Comm governs agent reduction. Two preconditions must hold for
a & b, the concurrent composition of agents a and b, to reduce to &
after communicating message m. First, agent a must be able to reduce
to agent with output Second, agent 6 must be able to reduce to
agent with input m.

4.2. CLIPPER PROTOCOL SIMULATION
We illustrate the simulation of the Clipper protocol in Figure 2 by

presenting the agent reductions for the first step. The agent definitions
in Figure 3 serve as the starting point for the simulation.

Step 1 implements the LEAF Transmission. Phone outputs the LEAF
as: Police exposes

Simulation and Analysis of Cryptographic Protocols 97

Note that Police knows the Clipper family key used to encrypt the
LEAF, i.e., lstv of Police. The message and pattern match ac-
cording to Definitions 2.4 and 2.5. Using Comm and chaining to Out
for Phone and In for Police, the agents reduce to:

Note that ID and AUTH are bound to Police’s wild-
cards ekey?, id? and auth?, respectively. Furthermore, the lists lstv of
Phone and Police are updated to include

The remaining steps proceed similarly. Two communicating agents
always reduce according to the Comm rule which requires Out to be
applied to the sender and In to be applied to the receiver. When no
further communication is possible the protocol run is complete.

5. PROTOCOL ANALYSIS
The agent inference rules in Section 4 formalize agent behavior, i.e.,

how agents exchange messages and evolve. To analyze protocols, it is
also necessary to specify how agents can infer new information from
exchanged messages. Inference rules are required for reasoning about the
information held by agents, the freshness of the information, and whether
or not agents can communicate. This section specifies inference rules for
messages and illustrates their application in the Clipper example.

5.1. INFERENCE RULES FOR AGENT
KNOWLEDGE

The rules in Definition 5.1 are used to determine: (i) what an agent
knows, (ii) what it can infer, and (iii) what messages it can produce.

Definition 5.1: The inference rules Knows, Extract and Construct
are defined by:

98 DATA AND APPLICATIONS SECURITY

The Knows rule expresses predicates of the form “agent id knows
value v;” this is written as “id knows v.” This predicate is true only
if v lstv or if v can be derived using the Extract and Construct
rules. The function Name(A) returns the id of an agent A from the
agent description, i.e., Name(cseq(id,lstv)) = id.

The Extract rule helps extract the components of a message held
by an agent in its lstv. The list Istv is augmented with the extracted
components according to the rule conclusion. For example, if an agent
holds the encrypted message and the key in lstv, then the
agent can obtain X and, therefore, X is added to lstv. Note that
denotes the concatenation of a value list and a value.

Construct creates new values from values held in lstv; these new
values are added to lstv. For example, if an agent’s lstv holds the values
X, Y and Z, and the key then it can construct the encrypted
message this encrypted message is added to the agent’s
lstv. Altering lstv using Extract and Construct does not change agent
behavior, only what the agent knows.

Variations of Extract, Construct andKnows are used in the GNY
logic [5] as the “Being-Told” and “Possession” rules.

5.2. CLIPPER PROTOCOL ANALYSIS
The Clipper protocol in Figures 2 and 3 is used to illustrate the ap-

plication of the message inference rules. We prove that at the end of the
protocol, the Police agent “knows” the message M that is encrypted as

and output by Phone in Step 2. The configuration of the Police
agent after the protocol is completed serves as the starting point for the
analysis. Since the Police’s knowledge (lstv) is of special importance,
the analysis focuses on it.

To Extract M from (1), Police must know which can be Ex-
tracted from (2). To do so, Police must Extract (2) from (3) requiring
knowledge of (4), and The latter two must be Extracted
from (5) and (6), requiring Police to know (7) and (8).

Simulation and Analysis of Cryptographic Protocols 99

Since Police Knows (4), (7) and (8) the
Extract-rule can be applied several times and finally M lstvPolice.
This completes the proof of “PoliceId knows M.”

6. AUTOMATING PROOFS
The inference rules defined in the previous sections provide the foun-

dation for verification. A significant advantage is that the rules governing
agent communication and reduction (used for simulation) can be inte-
grated with the inference rules for messages (used for analysis) to reason
about the properties of protocols and participating agents.

Proofs are automated using a translation (mechanization) [4] of the
agent reduction and message inference rules into Higher Order Logic
(HOL) [6], an interactive theorem proving environment. A HOL session
results in a theory – an object containing sets of types, constants, defini-
tions, axioms and theorems (logical consequences of the definitions and
axioms). As new theorems are proved, they are added to the theory and
may be used to develop additional results. Only well-formed theories can
be constructed because formal proofs are required for all new theorems.

Automating proofs in HOL involves incorporating type definitions,
function definitions, inference rules, tactics, and conversions.

Four types are defined in the HOL Protocol Theory: key, value,
message and pattern, the last three being mutually recursive.

Then, functions are implemented to manipulate the specified types.
E.g., functions for matching keys and matching messages and patterns,
and the Name function for obtaining an agent’s id.

Next, inference rules are defined for reasoning about agent behavior
and knowledge (In, Out, Comm, Knows, etc.). This implements a
HOL theory supporting basic proofs via manual rule application.

Tactics and conversions are required to automate proofs. A tactic
tranforms a goal into an equivalent goal that is easier to prove. Tactics
are introduced to selectively apply the inference rules governing agent
behavior and knowledge to facilitate theorem proving.

The final step is to create conversions for transforming propositions
into theorems. A conversion must establish the truth value for every
expression of the form it is designed to handle. Although it is not feasible
to develop conversions for all types of propositions, their introduction,
even to a limited degree, can facilitate the automation of proofs.

7. CONCLUSIONS
The integration of logic and process calculus provides a powerful

framework for simulating and analyzing cryptographic protocols. The

100 DATA AND APPLICATIONS SECURITY

approach advances logic techniques by not requiring protocols to be ide-
alized before analysis. It improves on process calculi by permitting the
exhaustive modeling of messages and principals. Novel features include
an expressive message passing semantics, sophisticated modeling of con-
currency, and seamless integration of inference rules for agent behavior
and knowledge. Furthermore, no assumptions are made about the hon-
esty of communicating agents. This facilitates the analysis of crypto-
graphic protocols in open, potentially hostile environments.

References
[1] Abadi, M. and Cardelli, L. (1995) An imperative object calculus, Proceedings of

the Conference on Theory and Practice of Software, 471-485.
[2] Abadi, M. and Gordon D. (1997) Reasoning about cryptographic protocols in

the Spi calculus. Proceedings of the Fourth ACM Conference on Computer and
Communications Security,, 36-47.

[3] Burrows, M., Abadi, M. and Needham, R. (1990) A logic of authentication. ACM
Transactions on Computer Systems, 8(1), 18-36.

[4] Galiasso, P. (1998) Mechanization of ROC in Higher Order Logic. M.S. Thesis,
Computer Science Department, University of Tulsa, Tulsa, Oklahoma.

[5] Gong, L., Needham, R. and Yahalom, R. (1990) Reasoning about belief in cryp-
tographic protocols. Proceedings of the IEEE Symposium on Research in Security
and Privacy, 234-248.

[6] Gordon, M. and Melham, T. (1993) Introduction to Higher Order Logic (HOL).
Cambridge University Press, Cambridge, U.K.

[7] Hale, J., Threet, J. and Shenoi, S. (1997) A framework for high assurance security
of distributed objects, in Database Security, X: Status and Prospects (eds. P.
Samarati and R. Sandhu), Chapman and Hall, London, 101-119.

[8] Lowe G. (1995) An attack on the Needham-Schroeder public key authentication
protocol. Information Processing Letters, 56(3), 131-133.

[9] Lowe G. (1996) Some new attacks upon security protocols. Proceedings of the
Ninth IEEE Computer Security Foundations Workshop.

[10] Melham, T. (1992) A mechanized theory of the π-calculus in HOL. Technical
Report 244, University of Cambridge Computer Laboratory, Cambridge, U.K.

[11] Milner, R. (1989) Communication and Concurrency. Prentice-Hall, New York.
[12] Milner, R., Farrow, J. and Walker, D. (1989) A calculus of mobile processes.

Report ECS-LFCS-89-85&86, University of Edinburgh, Edinburgh, U.K.
[13] Pfleeger, C. (1997) Security in Computing. Prentice Hall, Upper Saddle River,

New Jersey.
[14] Schneier, B. (1996) Applied Cryptography. John Wiley, New York.
[15] Syverson, P. and van Oorschot, P. (1994) On unifying some cryptographic pro-

tocol logics, Proceedings of the IEEE Symposium on Research in Security and
Privacy, 165-177

