
CHAPTER 33

Authorization Model in Object-Oriented Systems

Keiji Izaki, Katsuya Tanaka, and Makoto Takizawa
Dept. of Computers and Systems Engineering Tokyo Denki University
{ izaki, katsu, taki}@takilab.k.dendai.ac.jp

Abstract In object-oriented systems, data and methods of a class are inherited by
lower-level classes according to the is-a hierarchy. It is difficult to specify
access rules for every class and object, because the system is composed
of various types of classes, and objects which are dynamically created
and dropped. If access rules on some class could be reused for other
classes, the access rules are easily specified. This paper discusses how
to inherit access rules in hierarchical structure of classes and objects.

Keywords: Access Control, Inheritance, Object-oriented systems

Introduction
Various kinds of distributed applications (Dittrich et al. 1989) are

required to be realized in secure information systems. Various kinds of
access control models are discussed so far, e.g. basic model (Lampson et
al. 1971) and lattice-based model (Bell et al. 1975, Denning et al. 1982).
An access rule means that a subject s is allowed to manipulate
an object o by an operation op. An access rule which a subject granted
can be granted the to another subject in the discretionary model like
relational database systems (Oracle et al. 1999). In the role-based model
(Sandhu et al. 1996), a role is modeled to be a collection of access rights.
A subject is granted a role.

Distributed systems are now being developed according to object-
oriented frameworks like CORBA (Object et al. 1997). The papers
(Dittrich et al. 1989, Samarati et al. 1997) discuss a message filter
in an object-oriented system to prevent illegal information flow. The
paper (Spooner et al. 1989) points out some problems to occur in the
inheritance hierarchy, but does not discuss to make the system secure.

362 DATA AND APPLICATIONS SECURITY

The paper (Yasuda et al. 1989) discusses the purpose-oriented access
control model in an object-based system.

The object-oriented system is composed of various kinds of classes and
objects which are dynamically created and destroyed. It is cumbersome
to specify access rules for all classes and objects. If access rules for a class
are inherited by subclasses, access rules are easily specified for classes.
We discuss how to inherit access rules on classes and objects structured
the is-a relation in a discretionary way.

In section 2, we briefly review the object-oriented model. In section
3, we discuss how to inherit access rules in the object-oriented model.

1. OBJECT-ORIENTED MODEL
The object-oriented system is composed of multiple classes and ob-

jects. A class c is composed of a set of attributes
and a set of methods An object o is cre-

ated from the class c by allocating memory area for storing values of the
attributes. Let be a set of methods of o. The methods are inherited
from c, i.e. The object o is allowed to be manipulated only
through methods in o is referred to as instance of the class c.

Figure 1 Classes and objects. Figure 2 Part-of relation.

Classes and objects are hierarchically structured with is-a and part-
of relations. A new class d is derived from an existing class c, where
d inherits attributes and methods from c. Here, d is in an is-a relation
with c, i.e. d is a subclass of c. Additional methods and attributes
can be defined for the subclasses. Furthermore, attributes and methods
inherited from c can be overridden for d. Figure 1 shows an is-a relation
between a pair of classes c and d, i.e. d is a subclass of c. d inherits
attributes and methods from c. In addition, the object y is in an is-a
relation with x, i.e. the values of x are inherited by y. and

Let y.c denote values of y inherited from x. The object y in fact
does not have the value of x, in order to reduce the storage space. A
class c can be composed of other classes Here, each class is
a part or component class of c. Let d be a component class of a class c
[Figure 2], Let x and y be objects of the classes c and d, respectively.

Authorization Model in Object-Oriented Systems 363

y is also a component object of x. However, there is neither is-a nor
part-of relation between objects in the traditional systems.

A manipulation method manipulates values of attributes in the ob-
ject. Another one is a schema method, by which classes and objects are
created and destroyed, e.g. create object.

2. INHERITANCE OF ACCESS RULES

2.1. INSTANCE-OF RELATION
First, suppose an object x is created from a class c. An owner of the

class c grants a subject an access right to create an object from c. Then,
the subject creates an object x from c and is an owner of x. Suppose a
set of access rules are specified for c. The object x inherits the access
rules from c in addition to the attributes and methods. Here, a set

of access rules for the object x is and op is
manipulation method}.

Every subject s granted an access right is granted for
every objet x of the class c. Only access rules on manipulation methods
are inherited by the object x. The owner of x can define additional
access rules and can revoke the access rules inherited from c.

There are class and object access rules. A class access rule
is specified for a class c. Here, every object x of c inherits the rule

If is revoked from s, is automatically revoked
from s. If a new class rule is specified, is also inherited
by every object x of c. The class access rules are allowed to be changed
only by the owner of the class c. On the other hand, the object access
rules of a class c are inherited by the objects created from c, but can be
changed by the owner of the object. In fact, the object access rules of
c are copied to the object x while the class rules are maintained in the
class c [Figure 4(1)].

Figure 3 Access rules. Figure 4 Inheritance of access rules.

2.2. IS-A RELATION OF CLASSES
Suppose a class d is a subclass of a class c as shown in Figure 1.

The access rules of c are inherited by d. Let and be sets of access

364 DATA AND APPLICATIONS SECURITY

rules of c and d, respectively. There are following ways on how to inherit
access rules from c to d [Figure 4]; (1) the access rules are inherited
by d, (2) the access rules are copied to d, and (3) no access rule is
inherited by d. In the first case, the access rules inherited by the subclass
d depend on c. Values of attributes of c are manipulated through a
manipulation method op. Here, op is also performed on the attribute d.c
in the class d. If the access rules in are changed in c, the access rules
in d are also changed. If a new rule is specified for c, is
automatically authorized. The access rules are in fact maintained only
in the class c and are not in the subclass d. c is referred to as home class
of the access rule. Next, let us consider how to inherit access rights on
a schema method op of the class c. For example, suppose an access rule

is specified for the class c. Here, is inherited by d. If
d is derived from c, the subject s can create an object from d.

In the second case, the access rules of the class c are copied in the
subclass d [Figure 4 (2)]. The access rules of d are independent of c. For
example, even if a new access rule is authorized for c, the access rule
is not authorized for d. In the last case, the access rules of c are not
inherited by d. The access rules of d are defined independently of c.

Suppose an access rule is specified for a class c. There are
mandatory and optional access rules. Suppose a class d is derived from
c. If an access rule is mandatory, d is required to inherit an
access rule from c. The rule cannot be changed for
d. Each time the class d and its objects are manipulated, the access
rules of the class c are checked. Next, let us consider an optional rule

Here, every subclass d of the class c can decide whether or not
d inherits The rule can be one of the types inherit
and copy in the subclass d. If is inherit type, cannot
be changed. is not maintained in d as discussed for mandatory
inheritance for c. If is a copy type, is independent of

Every mandatory rule cannot be specified as copy in
d. The mandatory access rule is automatically an inherit type in d.

In Figure 5, an access rule is mandatory while and are normal
for the class c. The classes d and e inherit from c. c is the home class
of is a copy type and is an inherit type for d. If and are
changed for c, for d and e and for d are also changed. However, even
if is changed for c, of d is not changed. If of d is changed, of e
is changed. The home class of of e is d.

Authorization Model in Object-Oriented Systems 365

Figure 6 Multiple inheritance.
Figure 5 Types of Inheritance.

2.3. MULTI-INHERITANCE
Let us consider novel and science-book classes each of which supports

a manipulation method reading. An SF (science fiction) class is de-
rived from novel and science-book. SF inherits reading from novel and
science-book. Suppose a subject s is granted an access right

but not Question is whether or not s
can read SF. The subject s cannot read science-book while it can read
novel. Thus, the access rights from science-book and novel conflict.
Here, let show that an access rule is not authorized
for a class c. is negative rule of a positive one If
a subclass c inherits a pair of access rules and from
classes, the inheritance is referred to as conflict.

If is not specified for a class c, a negative rule is as-
sumed to be authorized. There are two types of inheritance of negative
rules as discussed for positive rules. We have to specify which nega-
tive rules are mandatory. In addition, negative rules can be explicitly
specified for each class. If is mandatory in a class c, every
subclass d is required to inherit from c. Here, if d inherits
both and through the mandatory type of classes,
the inheritances conflict in d. Suppose a subclass d is derived for classes

and d inherits an access rule for and for Suppose
and conflict. If is mandatory in and is optional in d

inherits If and are optional in and the subclass d can
inherit either or but not both. If and are mandatory in c
and d cannot be defined from and

3. CONCLUDING REMARKS
This paper discussed a discretionary access control model in the object-

oriented system. The object-oriented system supports inheritance of

366 DATA AND APPLICATIONS SECURITY

properties. We made clear how to inherit the access rules in the instance-
of and is-a relations. By using the inheritance of the access rules, it is
easy to grant and revoke access rules in systems which are composed of
various kinds of classes and objects.

References
Bell, D. E. and LaPadula, L. J., “Secure Computer Systems: Mathe-

matical Fousdations and Model,” Mitre Corp. Report, No.M74-244,
1975.

Dittrich K R, Haertig M, Pfefferle H., “Discretionary Access Control in
Structurally Object-Oriented Database Systems,” Database Security
2, ppl05-121, 1989.

Grosling, J. and McGilton, H., “The Java Language Environment,” Sun
Microsystems, Inc., 1996.

Lampson, B. W., “Protection,” Proc. of the 5th Princeton Symp. on
Information Sciences and Systems, 1971, pp.437-443.

Thuraisingham, M. B., “Mandatory Security in Object-Oriented Database
Systems,” ACM Sigplan Note, Vol. 24, No. 10, 1989 pp.203-210.

Object Management Group Inc., “The Common Object Request Broker
: Architecture and Specification,” Rev. 2.1, 1997.

Oracle Corporation,“Oracle8i Concepts”, Vol. 1, Release 8.1.5, 1999.
Samarati, P., Bertino, E., Ciampichetti, A., and Jajodia, S., “Infor-

mation Flow Control in Object-Oriented Systems,” IEEE Trans. on
Knowledge and Data Engineering, Vol. 9, No. 4, 1997, pp. 254–238.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E., “Role-
Based Access Control Models,” IEEE Computer, Vol. 29, No. 2, 1996,
pp. 38–47.

Spooner, D., “The Impact of Inheritance on Security in Object-Oriented
Database System,” Database Security 2, 1989, pp. 141–150

Stroustrup, B., “The C++ Programming Language (2nd ed.),” Addison-
Wesley, 1991.

Yasuda, M., Higaki, H., and Takizawa, M., “A Purpose-Oriented Access
Control Model for Information Flow Management,” Proc of 14th IFIP
Int’l Information Security Conf. (IFIP’98), 1998, pp. 230–239.

