
SOFTWARE CONNECTORS AND THEIR ROLE
IN COMPONENT DEPLOYMENT*

1 Charles University,
Faculty of Mathematics and Physics, Department of Software Engineering,
Malostranské námìstí 25, 118 00 Prague 1, Czech Republic,

http://nenya.ms.mff.cuni.cz
2 Academy of Sciences of the Czech Republic, Institute of Computer Science,
Pod vodárenskou 180 00 Prague 8, Czech Republic,

http://www.cs.cas.cz

Abstract To support rapid software evolution, it is desirable to construct software systems
from reusable components. In this approach, the architecture of a system is de-
scribed as a collection of components along with the interactions among these
components. Whereas the main system functional blocks are components, the
properties of the system also strongly depend on the character of the compo-
nent interactions. This fact gave birth to the “connector” concept which is an
abstraction capturing the nature of these interactions. The problem tackled in
this paper is that even though the notion of connectors originates in the earliest
papers on software architectures [20, 15], connectors are currently far from be-
ing a typical first class entity in the contemporary component-based systems.By
articulating the “deployment anomaly”, the paper identifies the role connectors
should play when the distribution and deployment of a component-based appli-
cation is considered. Further, we introduce a connector model reflected at all the
key stages of an application’s development: ADL specification, deployment, and
implementation.

Keywords: Software component, deployment, connector

1. INTRODUCTION
A few years ago, the trend to construct software systems as a collection of

cooperating reusable components emerged and has become widely accepted

* This work is partially supported by the Grant Agency of the Academy of Sciences of the Czech Republic
(project number A2030902), the Grant Agency of the Czech Republic (project number 201/99/0244)

Dušan Bálek1, František Plášil1,2

http://dx.doi.org/10.1007/978-0-306-47005-9_29

70 INTEGRATION & INTEROPERABILITY

since. Influenced by the academic research projects focused on components [8,
19, 21, 7, 1, 14, 5], several industrial systems on the market [22, 23, 12, 13,
24] advertise support of component technology. As for components, there is
a broad agreement on grasping them as reusable black/grey-box entities with
well-defined interfaces and specified behavior. Usually, a component can have
multiple interfaces; some of them to provide services to the component’s clients,
other to require services from the surrounding environment. Components can
be nested to form hierarchies; a higher-level component can be composed of
several mutually interconnected, cooperating subcomponents. Serving as tools
for specifying component interfaces and architecture, a number architecture de-
scription languages (ADLs) [8, 21, 1, 14, 17] have been designed. To describe
component interactions, an ADL may encompass the connector concept: Typ-
ically, a connector is a first class architectural element that reflects the specific
features of interactions among components in a system [21, 1,14,10, 3]. Even
though the notion of a connector originates in the earliest papers on software
architectures [20, 15], no widespread consensus on how to incorporate it into
the existing application development systems and languages has been reached
until present.

1.1. Connectors: overview and related work

Studying the related work [8, 21, 1, 3, 14], the following basic approaches
to specifying component interactions can be identified: (1) using implicit con-
nections, (2) via connectors, which can be either built-in or user-defined.

The Darwin language [8] is a typical representative of ADLs that use implicit
connections. The connections among components are specified via direct bind-
ings of their requires and provides interfaces. The semantics of a connection
is defined by the underlying environment (programming language, operating
system, etc.), and the communicating components should be aware of it (to
communicate, Darwin components directly use ports of the underlying Regis
environment).

In addition to making system maintenance easier, letting components com-
municate via connectors has also other significant benefits: increased reusabil-
ity (the same component can be used in a variety of environments, each of
them providing specific communication primitives) direct support for distribu-
tion, location transparency and mobility of components in a system, support for
dynamic changes in the system’s connectivity, etc.

The UniCon language [21] is a representative of ADLs with (only) built-in
connectors. A developer is provided with a selection of several predefined built-
in connector types that correspond to the common communication primitives
supported by the underlying language or operating system (such as RPC, pipe,
etc.). However, the most significant drawback of a UniCon-like ADL is that

Software Connectors And Their Role In Component Deployment 71

there is no way to capture any interaction among components that does not
correspond to a predefined connector type.

User-defined connectors, the most flexible approach to specifying component
interactions, are employed, e.g., in the Wright language [1]. The interactions
among components are fully specified by the user (system developer). Complex
interactions can be expressed by nested connector types. However, the main
drawback of the Wright language is the absence of any guidelines as to how
to realize connectors in an implementation. (In Wright, connectors exist at the
specification level only, which results in the problem of how to correctly reflect
the specification of a connector in its implementation.)

Based on a thorough study of existing ADLs, Medvidovic et al. [10] pre-
sented a classification framework and taxonomy of software connectors. This
taxonomy is an important attempt to improve the current level of understanding
of what software connectors and their building blocks are. Not addressing all
the issues of designing connector types, it is focused mainly on classification
(thus better comprehension) of connector types. In addition, the selection of
basic connector types in [10] may be questionable, as not all of them seem
to be at the same abstraction level (e.g., adaptor, arbitrator and distributor vs.
procedure call, event, stream).

1.2. Challenges and the goals of the paper

Component-based systems and ADLs have become fields of study in their
own right, however their practical application is still to be demonstrated. Reuse
of components is an attractive idea, but the real life has proved many times that
to combine the business components provided by third parties into a running
application can be very demanding. The main problem of the current ADLs is
that they either do not capture component interactions at all, or they focus on
application design stages only. However, the component interactions have to
be reflected throughout the whole application lifecycle, otherwise they may be-
come a serious obstacle in component reusability. In particular, the deployment
phase has turned out to be critical in this respect.

The first goal of the paper is to bring an additional argument for considering
connectors as first class ADL entities by analyzing their role in component de-
ployment (deployment anomaly is articulated). The second goal of the paper is
to propose a connector model that allows to describe a variety of (possibly com-
plex) component interactions, helps system developers target the deployment
anomaly, and at the same time allows to generate the corresponding interaction
code (since none of the existing connector models/ADL systems provides a
sufficient support for that).

The paper has the following outline. Reviewing the basic ADL concepts for
illustration purpose, Section 2 briefly introduces a simple component model

72 INTEGRATION & INTEROPERABILITY

and introduces the deployment anomaly. The set of basic connector tasks and
requirements is identified and studied in Section 3. A new connector model
is proposed in Section 4. As a proof of the concept, it is integrated into the
SOFA/DCUP component model in Section 5. Finally, the main achievements
and future intentions are summarized in the concluding Section 6.

2. COMPONENTS AND THEIR LIFECYCLE

2.1. A component model

For the purpose of this paper we adopt the following component model (event
though based on [16,17] in some details, it very much follows the basic spirit
of most ADL languages): An application is viewed as a hierarchy of software
components. A software component is an instance of a component template
(template for short). A template is defined by a pair <component frame, com-
ponent architecture >. In principle, the component frame determines a com-
ponent type as the set of interfaces provided and required by every instance
of T (reflecting a blackbox view on T’s instances). Similarly, the component
architecture reflects a gray-box view of each of T’s instances by describing its
internal structure in the terms of its direct subcomponents and their interactions
(interface ties, “wiring”). A component architecture can be specified as primi-
tive which means that there are no subcomponents and the component frame is
directly implemented in the underlying implementation language, for example
as a set of Java classes, a shared library, or even a binary executable file. If a
component C is an instance of a template with a primitive architecture, we say
that C is a primitive component, otherwise C is a composed component.

Figure 1. BankingDemo Architecture

For illustration, consider a bank where tellers serve a number of customers.
Each customer requests a teller to perform a desired financial transaction(s) on

Software Connectors And Their Role In Component Deployment 73

an account(s). Certain transactions, such as an overdraft, require the teller to
ask the supervisor for an approval. Each of these entities can be modeled as a
component (Figure 1). The core of the application is the instance aBank of the
Bank template (Bank component for short). The Bank component internally
contains an array of Teller subcomponents (T[l], T[2], ... , T[N]), the Super-
visor subcomponent, and the DataStore subcomponent. The Bank component
features a number of provide interfaces, each of them being tied to a Customer
component’s requires interface, and internally tied (delegated) to the provides
interface of a Teller subcomponent. The remaining part of the application is
formed by the Customer and VisualLog Window components, the latter serv-
ing for system administration purposes. The communication of the Customer
components with the Bank component is based on procedure calls, while all the
interaction with the VisualLogWindow components relies on event delivery.

2.2. Component lifecycle

The lifecycle of a component is characterized by a sequence of design time,
deployment time, and run time phases (potentially repeated). In a more de-
tailed view, a design time phase is composed of the following design stages:
development and provision, assembly, and distribution.

Development and provision. The component is specified at the level of
its template, i.e. component frame and component architecture is specified in
an ADL; if the architecture is primitive, its implementation in an underlying
programming language/environment has to be also supplied. As a frame F can
be implemented by potentially several component architectures, each of such
templates can be viewed as a design version of components of the type F.

Assembly. An application is assembled by choosing one particular compo-
nent architecture for each frame involved recursively in the topmost frame of the
application. Consequently, an executable form of the application is based on all
the primitive architectures involved recursively in the component architecture
associated with the topmost frame.

Figure 2. Deployment boundaries crossing interface ties

74 INTEGRATION & INTEROPERABILITY

Distribution. To reflect its future distribution, the assembled application
is divided into deployment units. Here, two approaches are to be considered:
(1) Deployment unit boundaries can cross the component interface ties, but
not the component/frame boundaries (Figure 2, right part). Advantageously,
the deployment description of composed/nested components can be done on
a top-down basis, following the hierarchy of components. (2) Deployment
boundaries are orthogonal to component/frame boundaries. Thus, deployment
boundaries can cross a component/frame boundary. Assuming that a primitive
component cannot be distributed (see Deployment below), deployment bound-
aries can cross a component/frame boundary of compound components only
(the alternatives a), c) d) in the left part of Figure 2 are permitted, b) is not).
Thus there is no difference in comparison with (1) when deploying primitive
components. As to composed components, the following two problems are not
easy to overcome: (i) the deployment description cannot parallel the hierarchy
of component nesting, and (ii) the deployment of a composed component into
more deployments docks (see below) may be a complex process.

Deployment time. The goal is to achieve deployment of the application, i.e.
to associate each of its deployment units with a deployment dock and let these
deployment docks start the application. In principle, a deployment dock serves
as a component factory and a container which controls the lifecycle of running
components. A deployment dock may be an instance of Java Virtual Machine,
capable to load, instantiate, and run components written in Java, a processes
capable to load dynamically linked native libraries and instantiate components
into its address space, a daemon that instantiates components by starting new
processes from binary executables, etc. In such settings, it is natural to require
a primitive component not to be distributed.

2.3. Deployment anomaly

If a deployment unit boundary crosses the interface tie of two components
A and B, the actual deployment of A and B in general substantially influences the
communication of A and B. For example, in Figure 3a), the method calls on the
r and q interfaces have to be modified in order to use an appropriate middleware
technique of remote procedure calls (RPC), e.g. RMI stub and skeleton is to
be employed. These modifications include changes to the internal architectures
of A and B. Analogously with the inheritance anomaly concept [9, 18], we
refer to this kind of a post-design modification of a component enforced by its
deployment as deployment anomaly.

As a quick fix, one can imagine employing an ordinary component DC me-
diating the communication of A and B (Figure 3b)). In principle, however, this
leads to the deployment anomaly again: (1) If a component DC was added to
handle change in communication enforced by the deployment, the parent com-

Software Connectors And Their Role In Component Deployment 75

ponent of A and B would be modified by this adjustment of its architecture; (2)
As it is unrealistic to imagine a primitive component spanning more deployment
docks, DC has to be a composed component; this leads to the issue of adjusting
the internals of some inner components of DC.

To illustrate the deployment anomaly on the BankingDemo example, con-
sider the DataStore component is to be deployed in a separate deployment dock,
compared to the rest of the application. Thus, inside the Bank component, all
the interactions with DataStore have to be modified to be based on RPC. This
post-design modification affects the Teller, Supervisor, and DataStore compo-
nents.

Figure 3. Deployment anomaly

2.4. Targeting the deployment anomaly: connectors

Basically, the deployment anomaly could be addressed by introducing a first
class abstraction being: (a) inherently distributed, and (b) flexible enough to
accommodate changes to the component communication enforced by a particu-
lar deployment. The connector abstraction can meet this requirement if defined
accordingly: (1) It should be a part of the system architecture from the very
beginning (being a first class entity at the same abstraction level as a compo-
nent). (2) To absorb the changes in communication induced by the deployment
modification, a flexible parametrization system of the connector internals has to
be provided. (3) To reflect inherent distribution, the deployment of a connector
should not be specified explicitly, but inferred from the deployment description
of the components involved in the communication the connector conveys. As a
consequence, the lifecycle of a connector inherently differs from the lifecycle of
a component as its underlaying code has to be supplied (e.g. semiautomatically
generated) as late as its deployment is known (Section 4.3).

3. BASIC CONNECTOR TASKS

To understand the connector concept properly, it is useful to identify and
analyze the basic tasks a connector should perform; here, the taxonomy of
software connectors presented in [10] can be used for guidance. From the

76 INTEGRATION & INTEROPERABILITY

main service categories and the basic connector types of this taxonomy, we
have selected the connector tasks listed below that we generally consider the
key ones. In Section 5, we will show that most of the basic connector tasks
can be provided through a simple hierarchical composition of a few primitive
connector elements.

Control and data transfer. A connector specifies the mechanisms on which
possible control and/or data transfer is based (like procedure call, event han-
dling, and data stream). Each of these mechanisms has specific characteristics
and properties, e.g., a procedure call can be local or remote. As to RPC, various
kinds of middleware can be used to implement it. Similarly, event handling can
be based on an event channel, a centralized event queue, etc.

Interface adaptation and data conversion. When facing the need to tie two
(or more) components that have not been originally designed to interoperate, a
straightforward idea is to include an adaptor into the connector abstraction. As
mentioned in [16], there is the option (and challenge) to devise a mechanism
for automatic or semi-automatic generation of adaptors and/or data convertors.

Access coordination and synchronization. In principle, the ordering of
method calls on a component’s interface is important (the protocol concept in
[11]). The permitted orderings are usually determined by a behavioral speci-
fication of the component (e.g., interface, frame and architecture protocols in
SOFA [17], CSP-based glue and computation in Wright). Thus another connec-
tor task is access coordination and synchronization - enforcing compliance with
the protocol of an interface (set of interfaces). As an example, consider a server
component, implemented for a singe-threaded environment, to be deployed
into an environment with multiple client threads. The necessary serialization
of threads can be achieved by a connector mediating the clients’ access to the
component.

Communication intercepting. Since connectors mediate all interactions
among components in a system, they provide a natural framework for inter-
cepting component communication (without the participating components be-
ing aware of it) which might help implement various filters (with applications
in cryptography, data compression, load monitoring, debugging, etc.).

4. CONNECTOR MODEL

To reflect the variety of interactions among components in a hierarchically
structured system, a connector model supporting the creation of a connector
by a hierarchical composition of its internal elements is a natural choice. This
complies with the observation that the complexity of interactions among com-
ponents depends on the granularity of the system’s architecture description.
A finer granularity implies a larger number of components with simpler inter-

Software Connectors And Their Role In Component Deployment 77

actions, while a coarser granularity implies a smaller number of components
with more complex interactions.

In this section, we propose a connector model designed as follows: Every
interaction among components in an application is represented by a connector
which is an instance of a connector template. Being generic in principle, a con-
nector template is a pair < connector frame, connector architecture> that can
be parameterized by interface type and property parameters. Given a connector
template T, the connector frame specifies the black-box view of a T’s instance
(thus it can be referred to as connector type), while the connector architecture
specifies the structure of a T’s instance in terms of its internal elements (primi-
tive elements, component instances, and instances of other connector templates)
and their interactions (thus it can be referred to as connector implementation).

4.1. Connector frame
A connector frame is represented by a set of role instances. In principle, a

role is a generic interface of the connector intended to be tied to a component
interface. In a frame, a role is specified either as a provides role or requires
role. A provides role serves as an entry point to the component interaction
represented by the connector template instance and is intended to be tied to
a (single) requires interface of a component (or to a requires role of another
connector). Similarly, a requires role servers as an outlet point of the component
interaction represented by the connector template instance and is intended to
be tied to a (single) provides interface of a component (or to a provides role of
another connector). In general, a role is an entity of a generic interface type;
the actual interface type of a role R of a template T is implicitly determined
by the specific interface (of a component or another connector) tied to R at the
instantiation time of T.

4.2. Connector architecture

Depending on the internal elements employed, a connector architecture can
be simple or compound. The internal elements of a simple connector archi-
tecture are instances of primitive elements only (Figure 4a); some of them can
be specified as optional. Primitive elements are typed (usually generic types
are employed - both the interface type and property parameters are allowed).
For every primitive element type, in addition to functional specification in plain
English, a precise specification of its semantics is given by mappings to un-
derlying environments. For example: “Stub and skeleton elements provide the
standard marshaling and unmarshaling functionality of RPC”. Each of these
elements is parameterized by its remote interface type and by the underlying
implementation platform (specified as a property parameter). The mappings

78 INTEGRATION & INTEROPERABILITY

of the stub and skeleton element types exist for each of the implementation
platforms supported (CORBA, Java RMI, etc.).

Figure 4. Connector model: a) simple architecture, b) compound architecture

The internal elements of a compound connector architecture are instances
of other connector types and/or components (Figure 4b). This concept allows
for creating complex connectors with hierarchically structured architectures
reflecting the hierarchical nature of component interactions. For examples, we
refer the reader to Sections 5.1 and 5.2.

4.3. Connector lifecycle
The connector lifecycle substantially differs form the component lifecycle. It

can be viewed as a sequence of the design time, instantiation time, deployment
and generation time, and runtime phases.

Connector design. The connector is specified as a template in ADL. For
each of its primitive element types, a functional specification and definition of
corresponding mappings (at least one) are to be provided. Since connectors
are inherently distributed entities, the connector architecture is divided into a
number of disjoint deployment units. A deployment unit is formed by the role
instances and internal elements designed to share the same deployment dock.

Connector instantiation. The connector is instantiated within an appli-
cation. Since the actual interface types of the entities tied by the connector
instance become known at this point, the interface type parameters of the con-
nector’s roles can be resolved. Also the actual need for some of those primitive
elements specified as optional at the design time (e.g. interface adaptors) re-
veals. A part of the connector instance remains generic – due to the unresolved
property parameters related to a future deployment of the connector.

Connector deployment and generation. Connectors are deployed at the
same time as the components the interactions of which they convey. To each
of the connector’s deployment units, a specific deployment dock is assigned.
For a connector of simple architecture, the actual deployment docks of the

Software Connectors And Their Role In Component Deployment 79

connector’s deployment units can be inferred from the locations of the com-
ponents interconnected by the connector. The deployment of potential internal
components of a connector is specified in the same way as the deployment of
“ordinary” components in the application.

Once the deployment of a connector is known, the connector’s implemen-
tation code is (semi-automatically) generated to use the communication prim-
itives offered by the deployment docks’s underlying environments. Note that
the generated code of the primitive elements either follows their mapping to the
underlying programming environment, or it can be null (e.g., no need for an
adaptor). Note that the connectors with primitive architectures are considered
for code generation while the connectors of compound architectures are created
by composition of their internal elements.

A typical scenario of the code generation of a connector is as follows: (1)
Using a deployment tool, the deployment of components (the interaction of
which the connector conveys) is specified. (2) Each of the selected deployment
docks is then asked to automatically generate the implementation code of those
internal elements of the connector that are intended to be deployed in it. (3) The
deployment dock replies the list of technologies offered by its underlying envi-
ronment on which the generated implementation could be based (the returned
list can be empty). (4) All returned lists are examined by the deployment tool in
order to find a match in the offered technologies. (5a) If a matching technology
exists, the deployment docks are asked to generate the connector’s implemen-
tation code for the technology. (5b) If no matching technology exists, the user
is given the options to either change the application’s deployment, or to provide
the connector’s implementation manually.

5. CASE STUDY: SOFA/DCUP CONNECTORS

As a proof of the concept, the connector model described in Section 4 have
been integrated into the SOFA/DCUP component mode [16,17]. This section
describes this integration by introducing the SOFA/DCUP connector model.

5.1. Predefined connector templates

To avoid specifying the frequently used connector templates repeatedly,
SOFA/DCUP provides a set of predefined connector templates – CSProcCall,
EventDelivery, and DataStream. For brevity, only the CSProcCall connector
template (Figure 5a) will be described here (for details see [2]).

CSProcCall is the predefined connector template representing the (possibly
remote) procedure call interaction semantics. The interaction is based on the
existence of multiple caller entities (client components) invoking operations
on a definer entity (server component).

80 INTEGRATION & INTEROPERABILITY

Figure 5. a) CSProcCall connector template, b) EventChannelDelivery connector template

The CSProcCall frame consists of a requires role to connect a server compo-
nent (sRole), and of any number of provides roles to connect client components
(cRole). All of the roles are generic entities with interface type parameters.

The CSProcCall architecture is simple. It consists of several primitive el-
ements interconnected in the way illustrated in Figure 5a). The cInterceptor
and sInterceptor instances of TInterceptor provide a framework for plugging
in an additional connector functionality to support logging, debugging, etc. An
interface adaptor is (optionally) included in a connector instance if a particular
client’s interface does not match the server interface. A (TStub,TSkeleton) in-
stance pair is used if a remote invocation is needed. These primitive elements
provide the standard RPC marhalling and unmarshalling. A synchronizer is
(optionally) included if the server component requires client invocations to be
synchronized when accessing its interface.

There is an exactly one server deployment unit (composed of sRole, sInter-
ceptor, synchronizer, and skeleton) and any number of client deployment units
(each of them composed of cRole, cInterceptor, adaptor, and a stub). There is
one client deployment unit per connected client component.

The following fragment of source text illustrates the main parts of the CSProc-
Call specification using the modified SOFA CDL notation.

connector frame CSProcCall<CT, ST> (Properties properties){
provides: optional multiple Role<CT> Crole;
requires: Role<ST> Srole;

};
connector architecture CSProcCall {

inst optional multiple T Interceptor<CT> cInterceptor;
inst optional multiple TAdaptor<CT, ST> adaptor;
inst optional multiple TStub<ST> stub;
inst optional multiple TSkeleton<ST> skeleton;
inst optional TSynchronizer<ST> synchronizer;
inst optional TInterceptor<ST> sInterceptor;
delegate cRole to cInterceptor;
bind cInterceptor to adaptor;
bind adaptor to stub;

Software Connectors And Their Role In Component Deployment 81

bind stub to skeleton;
bind skeleton to synchronizer;
bind synchronizer to sInterceptor;
subsume sInteceptor to sRole;

};

5.2. User-defined connector templates
The process of creating a new connector template can be illustrated on the

example of EventChannelDelivery, a connector template reflecting event-based
communication via an event channel. Similarly to the CORBA Event Service,
this connector template allows multiple suppliers to send data asynchronously
to multiple consumers in both the push and pull modes.

The EventChannelDelivery frame consists of a number of roles to connect
supplier components in the push and pull modes (pushSRole and pullSRole) ,
and of a number of roles to connect consumer components in the push and
pull modes (pushCRole and pullCRole). All of the roles are generic entities with
interface type parameters.

The EventChannelDelivery architecture is compound. As depicted in Figure
5b), the core element of the EventChannelDelivery architecture is an instance of
the EventChannel component. The other internal elements of EventChannelDe-
livery are instances of the CSProcCall connector template to tie EventChan-
nelDelivery’s roles to the EventChannel’s interfaces.

The division into deployment units is illustrated in Figure 5b). It should be
emphasized that while the deployment of the internal CSProcCall connectors is
partially determined by the EventChannelDelivery’s roles, the deployment of
the EventChannel component (and related parts of CSPracCall connectors) has
to be stated explicitly as with “ordinary” components.

5.3. Using SOFA/DCUP connectors

To demonstrate how the SOFA/DCUP connectors can be used, consider the
DataStore and Supervisor components from the banking application introduced
in Section 2.1. The following fragment of CDL specification illustrates their
interconnection using the CSProcCall connector instance.

inst DataStore DS;
inst Supervisor Sup;
bind Sup.dsi to DS.dsi using CSProcCall;

Since the actual interfaces of the DataStore and Supervisor components are
known at this point, the interface type parameters of the conveying connector are
resolved. Assuming that the actual interfaces match, the interface adaptor (as

82 INTEGRATION & INTEROPERABILITY

an optional element of the CSProcCall architecture) will be omitted. However,
the rest of the connector architecture still remains generic due to the unresolved
property parameters related to future deployments of the application.

Consider a deployment scenario which assumes that the DataStore and Su-
pervisor components are to be deployed into separate deployment docks. Since
both components do not share an address space, a cross-address space com-
munication is needed. The stub and skeleton internal elements are therefore
generated and included in the resulting connector.

6. EVALUATION AND CONCLUSION

As the first goal of the paper, we articulated the deployment anomaly as
the necessity for a post-design modification of components caused by their
particular deployment. This is a serious obstacle in using component-based
real-life applications. In a practical setting, the deployment of a component-
based application can be efficiently done by system staff members, experts in
the underlying system environment (typically in the brands of middleware to be
employed). To realize the necessary deployment modifications, these people
would have to study the business logic details of the components subject to the
deployment. This is inherently inefficient, if not even impossible, since some
of the components may be of a third-party origin. A symmetrical inefficiency
would be to ask the business logic designers to deal with the local network-
ing/middleware details. For these reasons it is very desirable to separate the
business and communication part of the component-based application. This
issue can be addressed by the connector concept presented in the paper .

None of the current ADL languages/systems, such as [14, 19, 7, 21, 1], targets
the deployment issue directly nor combines it with connectors). The second goal
of the paper was therefore to propose a novel connector model allowing not only
to express and represent a variety of possible interactions among components
in an application at all key stages of the application lifecycle, but in particular
to reflect component distribution.

In summary, in the presented component model, the key difference between
a component and connector is in (1) distribution (a primitive connector can be
distributed, while primitive component cannot) and (2) in the lifecycle (parts of
the connector can be generated only after all component deployment has been
determined). In addressing the deployment anomaly, a connector helps in (3)
separation of concerns (by separating the business and communication part of a
component-based application), and in (4) reusability – if the primitive elements
are designed properly, they can be reused in many of the typical component
communication patterns. The important trick supporting the reusability is that
the primitive elements are very generic (work almost for “any interface”); the

Software Connectors And Their Role In Component Deployment 83

modification of the communication pattern for the actual interfaces is done in
an automatized way, i.e. it can be generated.

Having finished a pilot implementation of our connector model, we currently
focus on finding techniques for at least semi-automatic generation of primitive
elements, including interface adaptors, stubs and skeletons for remote com-
munication, etc. We believe this can be done by defining a mapping of every
primitive element type to the underlying programming environment. Another
future intention is to apply behavioral protocols [17] in connector specification
to express the interplay of its internal elements.

References
[1] Alien, R. J.: A Formal Approach to Software Architecture. Ph.D. Thesis, School of Com-

puter Science, Carnegie Mellon University, Pittsburgh, 1997.

[2] Balek, D., Plasil, F.: A Hierarchical Model of Software Connectors, Tech. Report No.
2000/2, Department of SW Engineering, Charles University, Prague, 2000.

[3] Bishop, J., Faria, R.: Connectors in Configuration Programming Languages: are They
Necessary? Proceedings of the 3rd International Conference on Configurable Distributed
Systems, 1996.

[4] Ducasse, S., Richner, T.: Executable Connectors: Towards Reusable Design Elements. In
Proceedings of ESEC/FSE’97, Lecture Notes in Computer Science no. 1301, Springer-
Verlag, 1997.

[5] Issarny, V., Bidan, C., Saridakis, T.: Achieving Middleware Customization in a
Configuration-Based Development Environment: Experience with the Aster Prototype.
In Proceedings of ICCDS ‘98, 1998, http://www.irisa.fr/solidor/work/aster.html.

[6] Leavens, G.T., Sitaraman,M.(eds.): Fundations of Component-Based Systems, Cambridge
University Press 2000.

[7] Luckham,D. C., Kenney, J. J., Augustin, L. M., Vera, J., Bryan, D., Mann, W.: Specifica-
tion and Analysis of System Architecture Using Rapide. IEEE Transactions on Software
Engineering}, 21(4), 1995.

[8] Magee, J., Dulay, N., Kramer, J.: Regis: A Constructive Development Environment for
Distributed Programs. In Distributed Systems Engineering Journal, 1(5), 1994.

[9] Matsuoka, S., Yonezawa, A.: Analysis of Inheritance Anomaly in Object-Oriented Con-
curent Programming Languages. Research Directions in Concurrent Object-Oriented Pro-
gramming, MIT Press, 1993.

[10] Mehta N. R., Medvidovic, N.,Phadke S.: Towards a Taxonomy of Software Connectors. In
Proceedings of the 22th International Conference on Software Engineering (ICSE 2000),
Limerick, Ireland, 2000.

[11] Nierstrasz, O.: Regular Types for Active Objects, In Proceedings of the OOPSLA ‘93,
ACM Press, 1993, pp. 1–15.

[12] OMG orbos/99-04-16, CORBA Component Model. Volume 1, 1999.
[13] OMG orbos/99-04-17, CORBA Component Model, Volume 2, 1999.

[14] Oreizy, P., Rosenblum, D. S., Taylor, R. N.: On the Role of Connectors in Modeling and
Implementing Software Architectures, Technical Report UCI-ICS-98-04, University of
California, Irvine, 1998.

84 INTEGRATION & INTEROPERABILITY

[15] Perry, D.E., Wolf, A. L.: Foundations for the Study of Software Architecture. ACM Soft-
ware Engineering Notes, vol. 17, no. 4, 1992.

[16] Plasil, F, Balek, D., Janecek, R.: SOFA/DCUP Architecture for Component Trading and
Dynamic Updating. In Proceedings of ICCDS ’98, Annapolis, IEEECS, 1998, pp. 43–52.

[17] Plasil, F., Besta, M., Visnovsky, S.: Bounding Component Behavior via Protocols. In
Proceedings of TOOLS USA ‘99, Santa Barbara, USA, 1999.

[18] Plasil, F, Mikusik, D.: Inheriting Synchronization Protocols via Sound Enrichment Rules.
In Proceedings of JMPLC, Springer LNCS 1204, March 1997.

[19] Purtilo, J. M.: The Polylith Software Bus. ACM Transactions on Programming Languages
and Systems, 16(1), 1994.

[20] Shaw, M.: Procedure Calls Are the Assembly Language of Software Interconnection:
Connectors Deserve First-Class Status. In D.A. Lamb (ed) Studies of Software Design,
Proceedings of a 1993 Workshop, Lecture Notes in Computer Science no. 1078, Springer-
Verlag 1996.

[21] Shaw, M., DeLine, R., Klein, D. V., Ross, T. L., Young, D. M., Zalesnik, G.: Abstractions
for Software Architecture and Tools to Support Them. IEEE Transactions on Software
Engineering, Vol. 21, No. 4, April 1995, pp. 314–335.

[22] Sun Microsystems: JavaBeans 1.0 Specification.
http://java.sun.com/beans/docs/spec.html.

[23] Sun Microsystems: Enterprise JavaBeans 1.1 Specification.
http://java.sun.com/products/ejb/docs.html.

[24] Rogerson, D.: Inside COM. Microsoft Press 1997.

[25] Yellin, D. M., Strom, R. E.: Interfaces, Protocols, and the Semi-Automatic Construction Of
Software Adaptors. In Proceedings of the OOPSLA ’94, ACM Press, 1994, pp. 176–190.

	SOFTWARE CONNECTORS AND THEIR ROLEIN COMPONENT DEPLOYMENT*
	1. INTRODUCTION
	1.1. Connectors: overview and related work
	1.2. Challenges and the goals of the paper

	2. COMPONENTS AND THEIR LIFECYCLE
	2.1. A component model
	2.2. Component lifecycle
	2.3. Deployment anomaly
	2.4. Targeting the deployment anomaly: connectors

	3. BASIC CONNECTOR TASKS
	4. CONNECTOR MODEL
	4.1. Connector frame
	4.2. Connector architecture
	4.3. Connector lifecycle

	5. CASE STUDY: SOFA/DCUP CONNECTORS
	5.1. Predefined connector templates
	5.2. User-defined connector templates
	5.3. Using SOFA/DCUP connectors

	6. EVALUATION AND CONCLUSION
	References

