JAVA CLASS LOADING TECHNIQUES IN THE
HARNESS METACOMPUTING FRAMEWORK

Dawid Kurzyniec and Vaidy Sunderam

Emory University, Dept. of Math and Computer Science
1784 N. Decatur Rd, Atlanta, GA, 30322, USA
{dawidk.vss)- @ mathcs.emory.edu

Abstract Harness is an Java-centric metacomputing system based on a principle of dynamic
reconfigurability not only in terms of participating computing resources, but also
the capabilities of the virtual machine itself. The central feature of the system is
a “plug-in” mechanism built upon Java dynamic class loading services enabling
integration of new functionality in the run time. In this paper we describe new
flexible, framework based Java class loading techniques and their application in
the Harness system.

1. INTRODUCTION

Harness [4, 8] is a metacomputing framework based upon such experimental
concepts as dynamic reconfigurability and extensible distributed virtual ma-
chine. The underlying motivation behind Harness is to develop a metacomput-
ing platform for the next generation, incorporating the inherent capability to
integrate new technologies as they evolve. The first motivation is an outcome
of the perceived need in metacomputing systems to provide more functionality,
flexibility, and performance, while the second is based upon a desire to allow
the framework to respond rapidly to advances in hardware, networks, system
software, and applications.

Harness attempts to overcome the limited flexibility of traditional software
systems by defining a simple though powerful architectural model of a software
backplane which is configured dynamically by attaching “plug-in” modules
providing various services. Those “plug-in” modules are simply packages of
cooperating Java classes and possibly related resources, and the dynamic “plug-
in” loading is based upon underlying Java class loader capabilities to locate
and load classes and resources from the dynamically changing set of software
repositories.

Current implementation of Harness class loader fails to satisfy two desired
features: to support loading classes from Java archive (JAR) files [5], as they

http://dx.doi.org/10.1007/978-0-306-47005-9_29

306 SHORT PAPERS 11

improve code integrity and reliability with package sealing [5] and digital sig-
natures, and to supply uniform and reliable caching mechanism reducing poten-
tially expensive network access. This paper overviews the flexible class loader
framework, intended to support a wide range of possible dynamic class loading
models, and describes its application in the Harness system.

2. CLASS LOADERS IN JAVA

The concept of a class loader evolved together with the Java technology.
Primarily it was designed to allow users to load to the Java VM classes com-
ing from various non-standard sources such as downloaded from the network,
fetched from a database, or even generated on-the-fly. Beginning from the JDK
1.1, class loaders support finding not only classes but also other resources such
as images, icons, or sound files. Also, the class signers has been introduced to
improve the security model.

JOK "
[' misc

M library finding
[| package mgmt
M resource finding

Figure 1. Class Loader API evolution

Java 2 platform brought substantial changes to the class loader capabilities.
Its semantics were refined [7] and it has been tightly integrated with the newly
established Java Security API [9]. A few new classes were introduced:
the java.security.SecureClassLoader , intended as a basis for
user-defined class loaders incorporating Java security model, and the
java.net .URLClassLoader, which enables loading data from Java archive
(JAR) files [5] and includes support for downloadable extensions [2]. More-
over, in addition to finding and loading classes and resources class loader
became responsible to define and keep track of packages and control native
library linking. Additionally, the notion of parenthood and request delega-
tion has been introduced improving the run-time model. The evolution of a
class loader API (that is, the set of public and protected methods of class
java.lang.Classloader) is illustrated in Figure 1.

3. FLEXIBLE CLASS LOADER FRAMEWORK

Although class loaders are used when there is a need for some application-
specific way to find classes, resources, or libraries, they often have much in
common. For example, many of them might want to read data from JAR files

Java Class Loading Techniques in the Harness Metacomputing Framework 307

or download it from the network; similarly, many class loaders treats classes
and resources uniformly rather than having separate routines for dealing with
them. These similarities, however, do not comprise a common denominator.
For that reason, full advantage of a generic class loader can be taken only when
its structure 1s modular, so the users can choose and configure the modules they
are willing to use in their implementations. Unfortunately, none of the class
loaders provided as a part of Java platform is flexible enough to be appropriate

for this purpose.

l FlexClassLoader l

| ResourceFinder ‘

| Resourceloader |
Network,
filesystems

Figure 2. Structure of Flexible Class Loader Framework

The flexible class loader framework presented here is an example of such
modular structure, as illustrated in Figure 2. It is based on the observation
that the typical class loader, apart from doing its low level duty, must perform
independent activities like searching for requested data, being able to download
it from the network and manage JAR files. Taking this into account, it becomes
reasonable to split the whole functionality into three layers:

= the class loader itself, serving as an interface to an application,

= the resource finder, encapsulating the searching algorithm but unaware
of differences between classes, libraries, and other resources,

s the resource loader, responsible for managing JAR files and downloading
data from the network.

The full description of the framework is out of scope of this paper. Note, how-
ever, that as the most specific part of each class loader is its resource searching
algorithm, many sophisticated ones can be derived from this scheme just by cus-
tomization of the resource finder layer. Also, because many class loaders require
the capabilities to cache code downloaded from the network, we introduced the
CachingResourceFinder providing those as a part of the framework.

4. CLASS LOADING IN HARNESS

Harness uses specific class loading scheme: classes can be retrieved from var-
ious software repositories, possibly maintained by independent organizations.

308 SHORT PAPERS 11

Each time the class is to be loaded, the system searches for it subsequently on
the repository search path. As long as all classes are kept in repositories as sep-
arate files and there is a direct mapping between directory paths and package
names, the lookup can be performed easily just by specifying proper URLs.
Thus, the only activity required to make given class visible to Harness system
is to put it on appropriate directory path in the software repository.

4.1. Hierarchical Resource Lookup

The simple class lookup model described above gets complicated if we wish
to include JAR files as an option to store classes and resources. It is not obvious
how JAR files should be stored in repositories to retain simplicity of making
the classes and resources available to Harness system. It is important to note
that they must be stored in some designated places known by the class loader,
because many Internet protocols (including HTTP as an important special case)
do not provide reliable mechanisms to query for directory contents.

As a solution, we provide notion of hierarchical resource lookup based on
the package-oriented organization of the Java language. The Java deployment
strategies encourage to store in JAR files only single packages, consisting of re-
lated classes and resources and providing some concrete functionality. Making
such JAR file layout a requirement, it becomes possible to establish a naming
contract as follows: the name of the JAR file should be the same as the last part of
appropriate package name, and the JAR file itself should be stored where direc-
tory of that name would be normally expected. For example, JAR file wrapping
package edu.emory.mathcs.harness should be named harness. jar and
be placed on the edu/emory/mathcs path.

looking for harness.plugins.pkgl.Clsl: &‘3 harness
harness. jar L {\: plugins
harness/plugins. jar

harness/plugins/pkgl. jar [% pkgl.jar

looking for
harness.plugins.pkg2.subpkg2.Clsl: subpkgl. jar

harness. jar [&‘3 subpkg2

harness/plugins. jar
harness/plugins/pkg2. jar O Clsl.class

harness/plugins/pkg2/subpkg2. jar @ Cls2.class.jar
harness/plugins/pkg2/subpkg2/Clsl.class.jar
harness/plugins/pkg2/subpkg2/Clsl.class O picl.gif

Figure 3. Examples of Hierarchical Resource Lookup

The Figure 3 shows two examples of the hierarchical resource lookup based
on such naming contract. When looking for a class or resource, the algorithm
goes downward directory structure trying to search JAR files starting from the

Java Class Loading Techniques in the Harness Metacomputing Framework 309

outermost one possible. If it fails, the traditional lookup method is eventually
adopted making the whole approach backward compatible.

The algorithm was implemented in the class derived from the framework’s
CachingResourceFinder and inheriting its caching capabilities. The new
class loader is therefore automatically equipped with uniform and flexible
caching mechanism, replicating remote structures of software repositories as
the classes and resources are loaded.

4.2. Benefits for Harness

In the Harness system, the class loader plays importantrole as itis responsible
to provide background layer for linking “plug-in” services. The new class
loading approach will be beneficial here as it allows to take advantage of JAR
file features and as it provides uniform caching mechanism:

» JAR files can be digitally signed and can contain certified code. This
will enable security improvement in a Harness system, allowing system
administrators to include certificates in security policies.

w JAR files are compressed, so data will be faster downloaded from the
network.

® JAR files may contain meta-information related to JAR file as a whole
or to its separate entries. Using this meta-information, Harness will be
able to avoid performing complex byte-code analysis of the classes being
downloaded (the system performs such analysis in order to decide if it
can run the “plug-in” in its own Java VM or if it should spawn another
one).

» Complex plug-ins, which contain a bunch of classes and resources, will
be maintained more easily by storing them in single JAR file. Also, the
package consistency and versioning will be improved by taking advantage
of JAR package attributing and sealing.

S. CONCLUSIONS AND FUTURE WORK

This paper overviews the flexible class loader framework, which simplifies
development of application-specific class loaders and consists of the set of
customizable classes providing commonly needed functionality. The ongoing
work on the application of the framework in the Harness system is described,
including the hierarchical resource lookup algorithm which supports loading
resources stored in software repositories.

The future work plans include enabling Harness to take advantage of “plug-
in” modules containing native code [1, 6]. To retain high portability, these
modules are intended to carry out native source files rather than precompiled

310 SHORT PAPERS 11

libraries; the compilation process would occur “just in time” on the target plat-
form. This technique would benefit from described class loader framework
in several ways: first, the Java classes and native source files comprising the
“plug-in” could be bundled together in the elegant JAR file. Next, the code
certification and digital signatures could be used to assure reliability, which
is essential when native code is considered. And finally, the general-purpose
caching services provided by the new class loader would support management
and caching of native libraries once they were compiled on a target platform.

References

[1] M. Bubak, D. Kurzyniec, and P. Luszczek. Creating Java to native code interfaces with
Janet extension. In M. Buba J. Moscinski, k, and M. Noga, editors, Proceedings of the First
Worldwide SGI Users’ Conference, pages 283-294, Cracow, Poland, October 11-14 2000.
ACC-CYFRONET.

[2] The Java extension mechanism, http://java.sun.com/j2se/1.3/docs/guide/
extensions/index.html.

[3] P. Gray, V. Sunderam, and V. Getov. Aspects of portability and distributed execution of
JNI-wrapped code. Available at http: //www.mathcs. emory. edu/icet/sp.ps.

[4] Harness project home page, http://www.mathcs.emory.edu/harness.

[5] Java archive (JAR) features. http://java.sun.com/j2se/1.3/docs/guide/jar/
index.html

[6] Java Native Interface. http://java.sun.com/j2se/1.3/docs/guide/jni/index.
html.

[71 S.Liang and G. Bracha. Dymanic class loading in the Java Virtual Machine. Available at
http://www.java.sun.com/people/gbracha/classloaders.ps.

[8] M. Migliardi and V. Sunderam. The Harness metacomputing framework. In Proceedings
of the Ninth SIAM Conference on Parallel Processing for Scientific Computing, San An-
tonio, Texas, USA, March 22-24 1999. Available at http://www.mathcs.emory.edu/
harness/PAPERS/pp99.ps.gz.

[9] Java security home page. http://java.sun.eom/j2se/l.3/docs/guide/security/
index.html.

	JAVA CLASS LOADING TECHNIQUES IN THEHARNESS METACOMPUTING FRAMEWORK
	1. INTRODUCTION
	2. CLASS LOADERS IN JAVA
	3. FLEXIBLE CLASS LOADER FRAMEWORK
	4. CLASS LOADING IN HARNESS
	4.1. Hierarchical Resource Lookup
	4.2. Benefits for Harness

	5. CONCLUSIONS AND FUTURE WORK
	References

