
INTEGRATING MOBILE AGENTS AND NEURAL
NETWORKS FOR PROACTIVE MANAGEMENT

Klaus Herrmann, Kurt Geihs
Johann Wolfgang Goethe-University
Department of Computer Science
Robert-Mayer-Str. 1
60325 Frankfurt / Main, Germany
{klaus,geihs}@ vsb.cs.uni-frankfurt.de

Abstract The management of modern computer networks and distributed systems com-
prises big challenges due to the complexity of nowadays network environments.
It requires a decentralized approach in order to be efficient, effective, scalable, and
flexible. Moreover, it has to be proactive since identifying and preventing prob-
lems before they affect users becomes increasingly important. Several research
projects have identified mobile agents as a possible solution for decentralized
management, while others have used neural networks to make predictions and
achieve proactiveness. We propose a management system which integrates both
technologies to achieve proactiveness in a decentralized fashion. The result is
a distributed management system that employs intelligent mobile components.
This paper discusses our approach and presents the design and implementation
of a prototype application that puts the proposed ideas to practice.

Keywords: Mobile Agents, Network Management, Proactive Management, Neural Net-
works, Prediction

1. INTRODUCTION
With the rapid growth of modern computer networks the management of

these networks and their distributed applications has gained strategic impor-
tance. Moreover, new trends like the integration of fixed corporate networks
and wireless terminal devices like laptops and palmtops introduce new lev0-
els of complexity for network management. These tendencies towards larger
networks and more complexity and heterogeneity have triggered two develop-
ment strands in distributed system management which are still only partially
connected:

http://dx.doi.org/10.1007/978-0-306-47005-9_29

204 MOBILE AGENTS

Decentralization: By distributing the management intelligence within
the managed network the system gains flexibility, scalability, and robust-
ness.

Intelligent data analysis tools: Manual analysis of management data
from large, heterogeneous networks has become impractical or even im-
possible. By employing intelligent techniques, relevant information can
be extracted from large sets of seemingly unstructured data.

While there are many research projects that either concentrate on decentralizing
network management or on using intelligent analysis methods, the integration
of both aspects has been rarely studied yet. This is mainly due to several con-
flicting properties of large scale intelligent systems and flexible decentralization
mechanisms.

In this paper we will discuss how mobile agents (MAs) can employ artificial
neural networks (NNs) to achieve intelligent data analysis in a decentralized
fashion. In section 2 we describe the requirements and examine MAs and NNs
with respect to network management. Section 3 will motivate the integration
of MAs and NNs and discuss general technical challenges of this approach.
We give a concrete design and analyze its properties. Section 4 introduces the
IntraManager system which is an implementation of the proposed design for
the management of IP networks. Finally, sections 5 and 6 will present related
work and conclusions.

2. REQUIREMENTS AND TECHNOLOGIES

2.1. Decentralized and Proactive Management
When IAB and ISO developed their original network management (NM)

standards more than a decade ago they assumed that a centralized approach
would be appropriate to solve most NM problems. In these frameworks one or
more central manager applications communicate with a set of NM agents that
are installed on the managed nodes and serve as a data base for NM information.
Putting intelligence on the managed nodes was not an option at that time because
a small footprint approach was needed. Thus, these management frameworks
did not include facilities to dynamically decentralize NM intelligence within
the managed network.

The NM community quickly realized that NM had to be decentralized to
handle the growing demands. The basic idea behind this decentralization is to
express a NM task as a piece of mobile code [Baldi et al., 1997] which is sent to
a managed device to monitor and control it locally. Decentralization can lead to
some considerable improvements [Goldszmidt, 1993]. Micro management can
be avoided, i.e. sequentially issued management commands can be encapsu-
lated into one mobile code entity and need not be transmitted separately. Instead

Integrating Mobile Agents and Neural Networks for Proactive Management 205

of collecting raw NM data to analyze it at the central location, mobile NM code
can be sent to the devices to process the data where it originates. This leads
to much more scalable applications because the processing load and network
load are distributed over the whole network. A notable increase in robustness
is achieved by avoiding central points of failure and bottlenecks. Moreover, an
NM application based on mobile code is adaptable to dynamic changes within
the managed network by adding or removing NM functions at managed nodes
on the fly during runtime.

Today, the necessity for decentralization in NM standards seems to be gen-
erally agreed upon. Projects like the RMON MIB [Waldbusser, 2000] and
DISMAN [Levi and Schoenwaelder, 1999] within the IETF (Internet Engi-
neering Task Force), and the research initiated by Goldszmidt and Yemini with
their Management by Delegation approach (MbD) [Goldszmidt, 1993] prove
this fact. MbD was the first project that made use of mobile code to delegate
NM tasks to managed nodes. Other researchers (e.g. [Kooijman, 1995], [Zapf
et al., 1999], [El-Darieby and Bieszczad, 1999]) followed the same principle
using different technologies.

Besides decentralization, another NM topic has gained considerable atten-
tion as managed networks continue to grow in size, complexity and importance.
Such networks produce vast amounts of NM data which makes intelligent data
analysis technologies a necessity. Furthermore, administrators seek for proac-
tive NM tools that help to detect and prevent problems beforehand in order to
avoid down times and financial losses.

A logical consequence of these observations is the integration of both decen-
tralization and proactiveness into one framework. Such a framework should
allow proactive, mobile NM tasks to manage the nodes of a network autono-
mously, i.e. without constant interventions from a central manager. To achieve
the decentralization we chose mobile agents (MAs), while the aspect of proac-
tiveness can only be realized by applying some intelligent prediction method that
enables a NM tool to plan one step ahead. In our case we needed a very flexible
mechanism in order to avoid frequent manual calibration which would interfere
with the idea of autonomous decentralized NM tasks. Automatic adaptation to
new and changing patterns in the measured data was important. Therefore, we
chose artificial neural networks (NNs) as a prediction mechanism.

The next two sections will discuss MAs and NNs in more detail and motivate
our decision for these technologies.

2.2. Intelligent Mobile Agents
Software agents are self-contained, autonomous software entities that can

perceive their environment, react to it in a timely fashion and possibly change
it according to their goals. They exhibit goal-directed behavior and thus are

206 MOBILE AGENTS

proactive. Agents can interact with each other through some kind of common
agent communication language. They act on behalf of some human being or
another software entity. In addition agents are called mobile if they are able
to migrate to other hosts. Depending on the mechanisms that determine their
bevahior, they may also be called intelligent (according to [Wooldridge and
Jennings, 1995]).

Mobile intelligent agents appear to be a very attractive paradigm for complex,
dynamic and distributed software. Agents are self-contained and generally use
a message-based communication scheme. This leads to a highly flexible and
modular approach. In addition, the concept of autonomy facilitates modular
software systems whose modules (agents) are mobile and only loosely coupled.
Therefore, a high degree of robustness can be introduced when designing agent-
based software. Autonomy is mainly achieved through giving agents their own
flow of control which enables them to actively take decisions.

All of the described abilities make mobile intelligent agents a good choice
for decentralized NM (compare section 2.1). NM tasks can be represented as
agents. When such an agent is mobile it becomes a mobile manager acting on
behalf of an entity situated on a higher hierarchical level.

In the design of our own agent-based NM framework [Zapf et al., 1999]
we use the notion of health agents. Such an agent monitors and controls a
certain aspect of the health [Goldszmidt, 1993] of one or more managed nodes.
Health agents are mobile but possess only a limited mobility scope. They can be
viewed as intelligent agents that exploit their mobility for initial distribution and
dynamically changing the degree of NM decentralization. After their migration
to a primary target host they may autonomously react to changes in the network
(or the NM policy) by moving away from or closer to their target host(s). As a
reaction to the observed state they can spawn other MAs which may use their
mobility to fix problems.

As we show in [Zapf et al., 1999], the use of well-known management
protocols, in particular SNMP, allows for a very flexible distribution of health
agents within a given network of nodes. These protocols are used by health
agents to collect data. An agent may be put directly on a managed node and use
SNMP locally or, if the node does not allow the execution of agent software,
it may manage the device from a nearby node by using SNMP remotely over
short distances. This eliminates the need for an agent execution environment
on every managed node and helps reduce the impact of management.

2.3. Artificial Neural Networks
An artificial neural network (NN) presents a simple computational model of

a biological neural system. In a NN, a number of primitive computing units
(the neurons) are arranged in interconnected layers. In a feed-forward NN

Integrating Mobile Agents and Neural Networks for Proactive Management 207

each neuron of one layer is connected to every neuron of the next layer. Each
connection has a weight attached to it, that is adjusted during a training process.
Every neuron calculates the weighted sum over its inputs and filters this sum
through a non-linear activation function1. The result is propagated through its
output connections and may serve as input for other neurons. After training such
a NN with examples from a data set, the general structure of the data manifests
itself in the network’s weights. When deployed to new data from the same source
it can still isolate this structure, even in the presence of noise, i.e. the NN can
generalize. It reproduces the mapping learned during the training phase. Their
ability to learn many different concepts with just one computational model, their
flexibility to adapt to changes in the input data, and the efficiency of trained NNs
make them so attractive. NNs are often applied to data analysis problems of
which we only have a somewhat blurred understanding and which are therefore
hard to solve with classical mathematical models.

Gardner and Harle show in [Gardner and Harle, 1997] how Kohonen self-
organizing maps – a special kind of NN – can be used to map sets of generated
NM events to their root causes (event correlation). In [Jobmann et al., 1997]
the authors make use of a simple 2-layer feed-forward NN to correlate alarms in
cellular phone networks. A second very appealing application, which we will
focus on in this paper, is time series prediction. As was shown in [Edwards et al.,
1997] a 2-layer feed-forward NN can be successfully applied for predicting the
traffic in a network. In [Biesterfeld et al., 1997] the authors use the same
technique to predict the future location of a mobile device within a cellular
network. The setup used in these cases is also adopted for our work: The NM
parameter which is to be predicted is periodically measured at discrete time
intervals and thus can be expressed as a time series where
is the parameter’s value at time index i and k is the time index of the most
recent measurement. The goal is to predict given the window of values

For example, a NN could take the last 12 hourly system
load values and output the value for the next hour. The training
and forecasting process we adopt is discussed in more detail in section 4.1.
[Dorffner, 1996] presents a general discussions on NN architectures for time
series prediction.

3. INTEGRATION
The basic idea of the integration of MAs and NNs – motivated in section 2.1–

is that MAs carry NNs with them to the managed nodes to generate predictions
and use them to manage nodes proactively. This results in a distributed system
that employs mobile and intelligent components. First, we will discuss the

1 [Masters, 1993] presents NNs in a very exhausting, comprehensive, and practical manner.

208 MOBILE AGENTS

potential conflicts that might occur in such a scenario. We will then derive a
design which takes these conflicting properties into account.

3.1. Potential Conflicts
The heavy-weight character of NNs versus the need for light-weight

MAs: The major preconception against NNs is that they are heavy-weight.
However, it is important to distinguish several phases here: the design, the
training and the application. As far as the first two phases are concerned, NNs
can be called heavy-weight in a sense, since the construction and initial training
of a NN generally is a time and data consuming task. But when this is done,
they are actually a very compact representation of knowledge. A multi-layered
feed-forward NN is characterized by the structural description (number of layers
and number of neurons in every layer) and by the knowledge representation (the
connection weights). The structural representation can be neglected because
it consists of only a few bytes. The sample NN sketched in section 2.3 takes
up less than 300 bytes. Thus, a MA with the typical size of a few will
not gain much weight by carrying it. Moreover, the resource consumption in
the deployment phase is very low since calculating a forecast only takes a few
simple mathematical operations.

The NN’s inherent need for persistence versus the volatile nature of
MAs: Training an NN, as we already stated, is a time and data consuming task.
Therefore, the loss of the acquired knowledge has to be prevented by storing the
trained NN persistently. How is this possible when NNs are used and trained
by highly volatile MAs? Most existing persistence concepts for MA systems
are specialized to achieve short-term error recovery, but not long term persistent
storage.

The customization of NNs to local environments versus the roaming of
MAs: The majority of NN applications involve a large degree of customization
to a local environment3 which is done during the training. For example, system
load patterns vary among the hosts of a network because these hosts are used
by different users with different habits. When a MA with an NN migrates to a
specific node and trains the NN with the local system load values, the NN will
learn the load patterns specific to this node. If the MA takes this trained NN to
another node it will probably fail to generate correct predictions since this node
exhibits different load patterns.

2This approximation is based on experience gained with our prototype implementation.
3 In NM an environment may be defined as one host or a small portion of the network.

Integrating Mobile Agents and Neural Networks for Proactive Management 209

3.2. The Design
While the first potential conflict turned out to be no problem, the second and

third conflict seem to be hard to handle when MAs carry NNs. But a general
question has to be asked here: Is it necessary and sensible for a MA to carry
his one and only NN at all times? It may be for some special applications4. But
for the majority of cases, a less dynamic solution is not only sufficient but also
necessary, especially when we look at the customization problem. The basic
idea of our design is that NNs are bound to hosts rather than to MAs at runtime.
At first, this might seem to be a contradiction to our goal. A description of the
basic scenario will clarify the issues.

In this scenario we adopt the notion of health agents as described in section
2.2. A health agent is responsible for monitoring, predicting, and proactively
controlling a certain aspect of the health of a single node or a set of nodes. At
its start time a mobile health agent is given the NN, that it needs to perform
its task. The node or network segment that the MA is assigned to defines
its environment. Upon arrival, the MA delivers its NN to a local NN-service
dedicated to maintaining numerous NNs belonging to different MAs (Figure
la). Through this deposition of the NN, the MA is relieved from the burden
of maintaining the NN. It measures the data and delivers it in regular intervals
to the NN-service which in turn takes care of training the NN with the data,
and generating predictions on demand (Figure 1b). If the MA migrates or
terminates, the NN is swapped to persistent storage by the service for reuse
later on (Figure 1c). If the MA returns at a later point in time, it does not
need to remember that it already deposited its NN. When it tries to resubmit
its original NN to the NN-service, the service notices that it already has the
NN belonging to this MA in its repository and continues using it instead of
registering a new one (Figure 1d). As the MA migrates to different hosts, it
implicitly distributes its NN, After a while, several NN-services on different
hosts hold separate copies of the NN which are customized for the respective
host's environment. This rather simple design has the following properties:

The notion of NNs is implicitly split in two. The NN that is carried around
by the MA can be viewed as an NN-type, whereas the NNs maintained by the
NN-services are NN-instances. These instances share a common structure and
ability to learn a specific problem but they possess individual identities and
different internal states. This also defines a new binding scheme for the NNs:
The NN-type is bound to the MA while the NN-instances are bound to the hosts.
A MA that travels across several nodes does not use one NN, but it uses several

4Such applications involve the recognition of globally observable patterns, i.e. patterns that exhibit the same
behaviour wherever the MA goes.

210 MOBILE AGENTS

Figure 1. The basic scenario stages

customized instances of the same basic NN-type. This technique resolves the
third conflict stated in section 3.1.

The MA does not have to take care of the NN’s persistence and training.
Therefore, the second conflict of section 3.1 is resolved.

The mechanism works transparently for the MA. On every visited host
it executes the same operations: It registers its NN, requests predictions, and
unregisters again before leaving. There is no need for the MA to hold a list of
visited hosts in order to decide how to interact with a NN-service. Therefore,
the deployment of the NNs is immune to the possible loss of an MA instance.

We achieve a decoupling of the decision part (the NN) and the action-
taking part (the MA). The NN that decides what the future states of a system

Integrating Mobile Agents and Neural Networks for Proactive Management 211

are, can be continuously trained and adapted to changing system characteristics.
On the other hand, the MA whose code takes actions if the system state degrades,
can easily be changed, removed or replaced without influencing the NN. This
decoupling introduces a high degree of flexibility since the possible loss of a
well-trained NN would make the replacement of a health agent very costly.

Summarizing these properties, we can conclude that the proposed design
presents a good compromise between flexibility, persistence, and customization.
It allows health agents to apply NNs in a decentralized way. At the same time
highly mobile agents – let us call them thin agents – can be spawned by health
agents and applied independently of the NN-usage to handle tasks autonomously
that require such a high degree of mobility. All agents may communicate with
each other to complete a common task cooperatively. Thus, we are able to fully
exploit the advantages of MAs for NM. At the same time we can incorporate NNs
as useful components in a decentralized NM system and achieve proactiveness
through predictions. The issue of organizing NN training is discussed in the
next section where we introduce a concrete prototype implementation of our
design.

4. THE INTRAMANAGER SYSTEM
IntraManager is a scalable and flexible management system that decentral-

izes intelligence using MAs. It was designed to manage IP networks. However,
we believe that the ideas proposed in our work can also be applied to other net-
works, like telephone or cellular phone networks since they rely on dedicated
management platforms like TMN which could be enhanced. The IntraManager
is build on the AMETAS agent system [Zapf et al., 1999]. IntraManager health
agents can rely on several interfaces for measuring system parameters. These
include e.g. SNMP agents and web server log files. A MA can use these data
sources to calculate arbitrary health functions. Such a function may take sev-
eral system parameters as input and evaluates to a single index characterizing
the system state. This index is periodically calculated and compared with pre-
defined thresholds to gauge the current state. If a threshold is exceeded for a
certain amount of time, an action is invoked by the MA. The MA programmer
can specify arbitrary actions for the different threshold events. The IntraMan-
ager system implements the design given in section 3.2. Thus, it is not only able
to react to measured health indices but it can also predict them and derive proac-
tive measures. The main motivation for the development of the IntraManager
was the need for capacity planning within an enterprise network that has many
low-bandwidth connections necessitating decentralized NM. Decisions have to
be taken proactively concerning the extension of existing systems before the
existing ones reach their limits. We are currently deploying the IntraManager
prototype in such a testbed to investigate its applicability.

212 MOBILE AGENTS

4.1. Automatic Training of Neural Networks
Our goal was to conduct proactive NM in a decentralized way to gain flexibil-

ity, scalability and robustness. Therefore, we gave a design that makes constant
interventions by a central NM authority unnecessary and that is able to generate
accurate predictions and take preventive actions. The framework requires the
NN training to take place automatically at the managed nodes without central
intervention. This poses a problem since the training process is generally the
weak point of NNs. In practice, even a well-planned training process does not
guarantee the success of a NN [Masters, 1993]. However, we assume a very
specific application - the prediction of NM time series. Therefore, we can sooth
this problem by introducing some constraints on the training process.

Helpful Constraints. The first constraint that is introduced by the nature of
the problem is the fact that we do not have to deal with arbitrary functions. The
time series observed in NM usually exhibit a superposition of several cyclic
effects [Edwards et al., 1997]. Most NM parameters are directly or indirectly
associated with human usage patterns which in turn obey to certain hourly,
daily, weekly etc. cycles. Some of these cycles are known in advance which
facilitates the construction of appropriate NNs. So these NNs can be constructed
and tested centrally under human control and inserted into a central repository
from which they are selected at the MA’s start.

The second constraint is the choice of sample intervals in the magnitude
of hours. That is, at the current stage we will not attempt to predict high-
frequency data. Therefore, gaps in the measured data – which may appear
when no measuring MA is present at the managed node – will only become
critically large when the MA is absent for several hours. Gaps, i.e. missing
values in the recorded time series, are a problem because this time series is to
be used for the next training cycle of the NN. When the NN has already been
trained it is possible to fill a gap in the time series by predicting the values in
question. However, this can only be done when the gaps are not too large.

Another constraint can be applied concerning the NN validation. During
the validation the trained NN is tested on a separate data set to ensure that it
has good generalization capabilities. This task usually requires human super-
vision. However, the training and validation in the IntraManager context takes
place on-line: A NN is trained with the collected data and validated during
the deployment phase by comparing the predictions with the actually measured
values. The difference of the two (prediction error) has a tendency to grow
over time. When a certain error is exceeded, a new training run is initiated to
accommodate the NN. Therefore, training and validation are ongoing processes
[Edwards et al., 1997].

Integrating Mobile Agents and Neural Networks for Proactive Management 213

The Training and Prediction Process. For the actual training process the
IntraManager uses the following scheme: In every training epoch, N random
data samples – each consisting of an input window of length n and the -th
value as the target output – are presented to the NN. Subsequently the NN’s
weights are adjusted using the conjugate gradient method (see e.g. [Masters,
1993]). Several such epochs are conducted and the training run is stopped when
the prediction error on the training data falls below some predefined threshold.
We repeat this whole training run for a certain number of randomly initialized
NNs and keep the NN which produces the lowest error. This NN is then deployed
until the next training run is triggered (see section 4.1). Please note that the
values of N and n are depending on the specific problem at hand and thus cannot
be discussed here. Please refer to [Masters, 1993] and [Edwards et al., 1997]
for a more general discussion on this topic.

The NNs used by the IntraManager have a single output neuron which enables
them to predict one future value. To predict a longer window of values a closed-
loop forecast can be conducted during which the predicted values are fed back
into the NN as part of the input for the next forecast. The result is a small
forecast time series enabling us to take proactive actions.

It should be noted that having a single output neuron does not really limit the
power of the system. Having multiple output neurons for different time offsets
usually renders the training much more difficult since it becomes harder for
the training algorithm to minimize the prediction error. On the input side, one
may actually use arbitrary data besides the pure time window (see section 2.3).
Any kind of information that can be measured and that might be helpful for the
training process can be used. One NN is dedicated to predict a specific system
parameter or a compound index calculated from a number of parameters. To
predict k different parameters one would use k NNs which can be operated by
the same MA.

5. RELATED WORK
Several researchers have studied the application of NNs in NM. Kohonen

self-organizing maps (SOM) are applied for event correlation in [Gardner and
Harle, 1997]. A SOM is trained with alarms and learns to associate them
with specific information on the root cause of the alarm. [Leray et al., 1996],
[Biesterfeld et al., 1997], [Edwards et al., 1997], [Frank et al., 1999], and
[Jobmann et al., 1997] present applications of feed-forward NNs similar to the
one explained in section 2.3 for predictive and correlative purposes. The first
major commercial application of NNs in proactive NM was recently introduced
by Computer Associates. Their so-called Neugents are immobile agents using
functional link neural networks to identify systems states and detect critical
changes in their environment.

214 MOBILE AGENTS

The application of NNs in combination with MAs to solve NM problems
has not been addressed yet. An attempt to integrate MAs with an AI technique
is made in [El-Darieby and Bieszczad, 1999] where the expert system JESS is
used to correlate events within a MA system. However, they do not elaborate
on the technical problems involved with this approach.

6. CONCLUSIONS
Our research integrates mobile agents and neural networks, two major tech-

nologies in contemporary distributed system management research. The goal of
this integration is to enable MAs to use NNs for the prediction of future system
behavior and to achieve decentralized proactiveness. We have designed and im-
plemented an extension to our MA-based IntraManager system, that combines
both technologies and shows that distributed system management can benefit
substantially from this integration. Our future research will concentrate on the
training process in specific application scenarios and its implications.

References

[Baldi et al., 1997] Baldi, M., Gai, S., and Picco, G. (1997). Exploiting Code Mobility in
Decentralized and Flexible Network Management. In Proceedings of the First International
Workshop on Mobile Agents, MA’97, Lecture Notes in Computer Science Nr. 1219, Springer
Verlag, 1997, ISBN: 3-540-62803-7, Berlin, Germany.

[Biesterfeld et al., 1997] Biesterfeld, J., Ennigrou, E., and Jobmann, K. (1997). Neural Net-
works for Location Prediction in Mobile Networks. In Proceedings of the International
Workshop on Applications of Neural Networks to Telecommunications 1997 (IWANNT’97),
Lawrence Erlbaum Associates, Melbourne, Australia.

[Dorffner, 1996] Dorffner, G. (1996). Neural Networks for Time Series Processing. Neural
Network World, 6(4):447–468.

[Edwards et al., 1997] Edwards, T., D.S.W.Tansley, Frank, R., and Davey, N. (1997). Traffic
Trends Analysis Using Neural Networks. In Proceedings of the International Workshop
on Applications of Neural Networks to Telecommunications 1997 (IWANNT'97), Lawrence
Erlbaum Associates, pages 157-164, Melbourne, Australia.

[El-Darieby and Bieszczad, 1999] El-Darieby, M. and Bieszczad, A. (1999). Intelligent Mobile
Agents: Towards Network Fault Management Automation. In In Proceedings of the Sixth
IFIP/IEEE International Symposium on Integrated Network Management, pages 611–622,
Boston/USA.

[Frank et al., 1999] Frank, R., Davey, N., and Hunt, S. (1999). Applications of Neural Networks
to Telecommunications Systems. In Proceedings of the European Congress on Intelligent
Techniques and Soft Computing, EUFIT’99, Aachen, Germany.

[Gardner and Harle, 1997] Gardner, R. D. and Harle, D. A. (1997). Alarm Correlation and
Network Fault Resolution using Kohonen Self-Organising Map. In Proceedings of IEEE
Globecom’97, Vol.3, pages 1398–1402, Phoenix, Arizona.

[Goldszmidt, 1993] Goldszmidt, G. (1993). On Distributed System Management. In Proceed-
ings of the Third IBM/CAS Conference, Toronto, Canada.

Integrating Mobile Agents and Neural Networks for Proactive Management 215

[Jobmann et al., 1997] Jobmann, K., Tuchs, K.-D., Wietgrefe, H., Fröhlich, P., Nejdl, W., and
Steinfeld, S. (1997). Using Neural Networks for Alarm Correlation in Cellular Phone Net-
works. In Proceedings of the International Workshop on Applications of Neural Networks to
Telecommunications 1997 (IWANNT’97), Lawrence Erlbaum Associates, Melbourne, Aus-
tralia.

[Kooijman, 1995] Kooijman, R. (1995). Divide and Conquer in Network Management using
Event-Driven Network Area Agents, http://netman.cit.buffalo.edu/doc/papers/koo9505.ps,
Technical Univerity of Delft, The Netherlands.

[Leray et al., 1996] Leray, P., Gallinari, P., and Didelet, E. (1996). A Neural Network Modular
Architecture for Network Traffic Management. In Proceedings of IEEE-CESA’96 IMACS
multiconference, Symposium on Control, Optimization and Supervision, vol. 1 of 2, pages
1091–1094.

[Levi and Schoenwaelder, 1999] Levi, D. and Schoenwaelder, J. (1999). Definitions of Man-
aged Objects for the Delegation of Management Scripts (RFC 2592).

[Masters, 1993] Masters, T. (1993). Practical Neural Network Recipes in C++. Academic
Press, ISBN 0-12-479040-2.

[Waldbusser, 2000] Waldbusser, S. (2000). Remote Network Monitoring Management Infor-
mation Base (RFC 2819).

[Wooldridge and Jennings, 1995] Wooldridge, M. and Jennings, N. (1995). Intelligent Agents:
Theory and Practice. The Knowledge Engineering Review, 10(2): 115–152.

[Zapf et al., 1999] Zapf, M., Herrmann, K., and Geihs, K. (1999). Decentralized SNMP Man-
agement with Mobile Agents. In Proceedings of the International Symposium on Integrated
Network Management (IM’99), pages 623–635, Boston/USA.

	INTEGRATING MOBILE AGENTS AND NEURALNETWORKS FOR PROACTIVE MANAGEMENT
	1. INTRODUCTION
	2. REQUIREMENTS AND TECHNOLOGIES
	2.1. Decentralized and Proactive Management
	2.2. Intelligent Mobile Agents
	2.3. Artificial Neural Networks

	3. INTEGRATION
	3.1. Potential Conflicts
	3.2. The Design

	4. THE INTRAMANAGER SYSTEM
	4.1. Automatic Training of Neural Networks

	5. RELATED WORK
	6. CONCLUSIONS
	References

