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Abstract Middleware provides distributed objects with a software infrastructure that offers
a set of well-known distribution transparencies. These transparencies enable
the rapid introduction of applications for heterogeneous, distributed systems.
However, to support guaranteed Quality of Service (QoS) system-specific QoS
mechanisms need to be controlled. Accessing the low-level mechanisms directly
by applications crosscuts the transparency offered by the middleware and limits
portability and interoperability. The challenge for next-generation middleware is
to support application-level QoS requirements, while maintaining the advantages
of the distribution transparencies. This paper presents three contributions: (1)
An architecture for a QoS-aware software infrastructure for distributed objects
(2) A framework for a QoS provisioning service (QPS) and (3) An evaluation of
the QPS framework by means of a prototype that supports performance
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1. INTRODUCTION

Middleware is gaining wide acceptance as a generic software infrastructure
for distributed applications. A growing number of applications are designed
and implemented as a set of collaborating objects using object middleware, such
as CORBA, EJB and (D)COM(+), as a software infrastructure that facilitates
distribution transparent interactions. However, quality aspects of these interac-
tions cannot be specified nor enforced by current object middleware, resulting
in a best-effort QoS.

In order to support QoS sensitive applications, system-specific QoS mecha-
nisms such as OS scheduling mechanisms and network reservation mechanisms
need to be controlled. Allowing applications to directly access and control these
mechanisms would crosscut the distribution transparencies offered by the mid-
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dleware layer and would reduce the portability and interoperability of distributed
object applications.

To avoid this, next generation object middleware should offer abstractions
for management and control of the system level QoS mechanisms. These ab-
stractions should take into account that new interfaces to OS resources and new
network protocols are expected to appear as the result of ongoing research ef-
forts. In addition, a changing run-time environment must be handled, such as
system and network load that influences the QoS capabilities.

In summary, the architecture of next generation middleware has to meet the
challenge of (1) evolutionary changes of the system level QoS mechanisms and
(2) run-time dynamic changes of the environment.

1.1. Paper structure

This paper is organised as follows. Section 2 describes an architecture for po-
sitioning QoS support in open distributed systems. Section 3 gives an overview
of the requirements on a middleware-based software infrastructure that offers
QoS support to distributed objects. Section 4 presents our solution in the form of
an infrastructure service for QoS provisioning, which is an extensible service
for making middleware QoS-aware. Section 5 evaluates this framework and
gives an overview of our implementation. Section 6 relates our work to other
QoS-aware middleware solutions. Finally, this paper is completed in Section 7
with our conclusions.

2. QOS PROVISIONING IN OPEN DISTRIBUTED
SYSTEMS

We use a layered architecture to structure the problem space and position the
functions that provide QoS support in an open distributed system.

In this architecture, three functional layers are distinguished, each with dis-
tinct responsibilities, offering services to adjacent layers on top and using ser-
vices of adjacent layers below. Orthogonal to the layers, three planes are iden-
tified: data transfer, control and management. The architecture is depicted in
Figure 1.

At the middleware layer, the responsibilities of the planes are as follows.
The data transfer plane consists of the functions that provide the ‘traditional’,
i.e. non-QoS related, distribution transparencies. In case of CORBA, examples
of these functions are the Portable Object Adapter (POA), the GIOP protocol
engine or a CDR encoder.

The control plane is responsible for controlling the QoS mechanisms and
monitoring the achieved QoS level to ensure adequate end-to-end quality of
service levels. The scope of the control plane is limited to a single association
between objects.
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Figure 1. Layers and planes of open distributed systems

The management plane contains functions for long term monitoring, such
as the gathering of statistics, and the instantiation and configuration of con-
trol plane functions. The scope of the management plane is beyond a single
association since management actions have an effect on multiple associations.

The focus of this paper is on the control plane; therefore it is depicted as a
hatched area in Figure 1.

3. REQUIREMENTS ON A QOS-AWARE
MIDDLEWARE

The middleware layer is a natural place for brokering between QoS require-
ments of applications and the QoS capabilities of operating systems and net-
works. The aim of a QoS-aware middleware therefore is to provision QoS of
applications in a heterogeneous distributed environment. Such a system has to
deal with the diversity of low-level resource management mechanisms and the
dynamic behaviour of the environment. In the literature, a number of require-
ments have already been identified on a QoS-aware middleware [11], [17]. The
following requirements have been identified and are used as constraints on the
design of our QoS provisioning service:

s Applications should be able to specify their QoS requirements using
high-level QoS concepts. This frees application developers from having
to know how to interact with the available system-level resource con-
trol mechanisms. Furthermore, applications become more portable since
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they are independent of the lower level mechanisms. Mapping the high
level QoS specifications into parameters of resource control mechanisms
should be done by the middleware.

The software infrastructure should be modular and easily extensible with
new interfaces to system level QoS mechanisms. This is essential to be
able to deploy the software infrastructure on top of a wide variety of hard-
ware, OS, and network infrastructures. Specifically, it should be possible
to configure into the middleware components handling the control of dif-
ferent resource management mechanisms dynamically. Consequently,
QoS control mechanisms are expected to offer standardised interfaces to
the middleware, including reflective interfaces for run-time discovery.

The software infrastructure should allow adaptive QoS support. In dis-
tributed environments the system behaviour is dynamic and only partially
predictable. This requires adaptation that can be initiated both at the ap-
plication and at the system level. At the application level this means that
applications can change their QoS requirements dynamically, requesting
higher (or lower) QoS. In such a case, the middleware should re-allocate
system resources in order to meet the new requirements. Adaptation at
system level on the other hand occurs when the availability of system
resources drops, due to failure, system reconfiguration, increased user
load or other non-predictable factors. Again, the middleware should re-
allocate resources, and if possible, this should be completely transparent
for applications. If the required QoS cannot be guaranteed, applications
should be notified in order to see if they can adapt themselves to lower
QoS levels.

The software architecture should support policies for a) the QoS ne-
gotiation between client and server sides, and b) balancing and trading
functions when resources are interchangeable. Many of the mechanisms
used in a QoS-ware middleware are application area dependent. Policies
offer a generic way to configure these mechanisms.

THE QOS PROVISIONING SERVICE

The QoS Provisioning Service (QPS) is a control plane service, because its
actions are limited to a single association between a client and a server object.
Such an association is also referred to as a client-server binding.

QPS acts as a broker between the application level QoS requirements and
the available QoS mechanisms of the Distributed Resource Platform (DRP). In
addition, QPS is responsible for maintaining a QoS agreement for the lifetime
of a binding. Effectively, QPS is a broker and controller for QoS agreements.

The following sections give an overview of the lifecycle of QPS controlled
bindings and present how each phase of the lifecycle is supported by QPS.
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4.1. QPS lifecycle model

The lifecycle of bindings controlled by QPS revolves around the QoS level
offered (Qoferea) by a server object, the QoS level required (Qrequired) by a
client object and the agreed QoS level (Qggreed). The purpose of QPS is to
control the resources of the DRP in such a way that some Qggreeq is negotiated
and maintained for the lifetime of the binding. This agreed QoS is the result of
a matchmaking process between the offered QoS of the server object and the
required QoS of the client.

Figure 2 shows the five lifecycle phases of QPS for a single client-server
binding. The lifecycle phases are inform, negotiate, establish, operate and
release.

2. Negoti

3. Establish

5. Release™&

Figure 2. QoS support lifecycle in QPS

In the inform phase the client specifies its Qrequired and the server specifies
its Qoffereq. The offered QoS is defined as the intended QoS that a server
can offer if sufficient resources are available at the time a client binds to the
server. QPS will generally accept a Qo fereq,unless a single server object by
itself intends to consume more resources than the computing system where it
is deployed can offer.

During the negotiate phase, QPS initiates a negotiation procedure between
the client, the server and the DRP to see if an agreement can be reached. A
successful negotiation results in a Qqgreeqthat is then associated with the bind-
ing, and resources are reserved for the binding. During the establish phase,
QPS assigns the resources that have been reserved during the previous phase,
so other bindings cannot claim these resources. These can be communication,
storage and processing resources.
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Once sufficient resources have been assigned to the binding, Qggreeq must
be maintained. This means correcting drifting quality levels, for example,
by re-allocating system resources or, in case it is not possible, by informing
applications to take appropriate actions. Applications can subsequently decide
to lower their Qrequireq and request a re-negotiation, or end their binding. This
is the operate phase. Finally, when the client does not further need the binding
(this 1s indicated explicitly by the client) system resources are released.

In this paper we focus on the first three phases. Details of the operate phase
design can be found in [1]. We don’t describe the release phase, since this phase
is only concerned with releasing the resources claimed during the negotiate and
establish phase. The next sections describe the QPS components and how QPS
supports the inform, negotiate and establish phases.

4.2. QPS implementation

The QPS framework is implemented as a CORBA service and is designed to
use standard CORBA extension hooks. QPS uses the Portable Object Adapter
[16], the Portable Interceptor [10] and the Open Communications Interface
[6]. Since QPS uses standardized ORB extension hooks, it can work with any
standard ORB implementation that implements these extension hooks.

Figure 3 shows the standard ORB components and the QPS specific extension
components. On the server side, the POA is extended with a dedicated Servant-
Locator and a Negotiator object for managing servants with an offered QoS.
On the client side QPS provides a QoSRepository (QR) interface for managing
QoS requirements of clients.

Application
objects

ORB
Inter
face

- -- QPS components

Figure 3. QPS components
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4.3. Inform phase

Server application objects with offered QoS are registered at a dedicated
POA, the QPS Object Adapter (QOA). These objects also register their Qo fered
with the QOA. QoS offers are expressed as XML documents. The structure of
a QoS specification in XML format is inspired by the QML specification [5].
Use of XML technology has the advantage that standard parsers are available
and that additional QoS dimensions can easily be incorporated into the QoS
specification format. Clients can use the same XML document structure for
specifying Qrequireq and register their requirements with the QoSRepository.

The QR and the QOA provide the same generic interfaces to client and server
objects for informing QPS about their required and offered QoS.

44. Negotiate phase

The purpose of the negotiation phase is to reach an agreement between the
client and the server about a sustainable and acceptable QoS level Qggreed. The
QoS negotiation is initiated by a client application that instructs QPS to start
the negotiation. As aresult, QPS sends Qrequiredto the server-side, using a DII
request directed at the target object. Qpequireqis received by the QOA and for-
warded to the negotiator together with an identifier for the target object. The ne-
gotiator uses this identifier to obtain the Q,f sereq and then calculates aQagreed-
Calculation of @Qggreeq can exploit different strategies. The default strategy in
QPS results in a Qggreeq that is equal to Qo fered» Whenever Qrequireq is smaller
than @, fered if sufficient resource are available such thatQof fereq can indeed
be guaranteed. Negotiation fails when Qpequireqis bigger than Qoj sered- The
default negotiation strategy can be overridden by a more sophisticated way to
reach an agreement.

At any time in the lifetime of a binding, a client can register a new Qrequired
and can initiate a negotiation.

4.5. Establish phase

When the negotiation is successful we enter the establish phase. At this stage
the client and server have a common understanding of Qggreeqand resources at
the middleware and DRP layers have been reserved. During the establish phase
the resources are assigned to the binding and administered so that they can be
released when the binding is released. In addition, a monitoring and control
loop is instantiated to ensure that Qggreeqcan be maintained for the operate
phase.
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S. QPS EVALUATION

The QPS components have been implemented in order to validate the feasi-
bility of the QPS architecture[12]. In addition to the framework, a QPS plugin
has been implemented that is able to reserve network resources. The design
of this plugin, called QIOP, and its use for reserving network resources for
CORBA method invocations are presented in the next sections.

51. QIOP

QIOP is an inter-ORB protocol that conveys standard inter-ORB messages
via dedicated channels offering guaranteed QoS for messages sent through
these channels. QIOP offers an ORB all the facilities needed to convey General
Inter-ORB Protocol (GIOP) messages, in a similar way as I[IOP does. The IIOP
protocol specifies how GIOP messages are transported over TCP/IP connec-
tions. However, the IIOP protocol cannot provide guarantees on throughput
and/or delay for message delivery. With QIOP such guarantees can be pro-
vided. In QIOP, RSVP control messages are used to investigate the availability
of network resources.

QIOP builds on the acceptor/connector pattern [15]. It uses the Open Com-
munication Interface (OCI) [3] to register and interact with the ORB. Figure 4
shows how a QIOP transport connection is established.

ORB Skeletons
Inter
face

7.new(..)
8. create_rsvp_session
9. create_rsvp_session

RESV PATH

11. create_rsvp_session
12. create_rsvp_session

Figure 4. QIOP interactions

The QoSRepository uses the QIOP ConFactory to create a Connector. The
Connector establishes a TCP/IP connection with the server side and creates
QIOP transport objects. These transport objects create two RSVP sessions, one
for network traffic from the client side to the server side and one for network
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traffic in the opposite direction. This is necessary because RSVP can only
reserve network resources for a unidirectional flow.

The Transport objects create RSVP reservations for both RSVP sessions
according to Qagreed-

5.2. Results of QPS & QIOP

To demonstrate the benefits of QIOP over IIOP, we’ve conducted some ex-
periments. The demonstration system consists of three PCs running Linux.
One PC serves as a host for client objects, another PC serves as a host for a
server object. The third PC is configured as a router with two Ethernet inter-
faces that connect to the client and server hosts. All PCs run the KOM-RSVP
implementation [7]; furthermore, the client and the server hosts run ORBs with
QPS and QIOP extensions.

In the experiment, two client objects are running on the client host; one with
a QoS requirement Qreguired and one without a QoS requirement. Both clients
connect to a single server object (i.e. they use the same object reference). As
a result, the client without QoS requirements will communicate using [IOP
whereas the other client will communicate using QIOP. To show the behaviour
of QIOP in a saturated network, a heavy data stream, with occasional bursts
was injected into the network. Figure 5 shows the response times of the two
clients.
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Figure 5.  Response times in saturated network



198 ARCHITECTURES, SERVICES & APPLICATIONS

The figure shows that the response times for messages carried over QIOP
are not sensitive to heavy traffic bursts on the network (they all stay below 100
ms), whereas messages carried over IIOP can really suffer from large delays.
This demonstrates that applications with more stringent requirements on the
response time of remote object invocations can benefit from QPS with a QIOP
plugin.

6. RELATED WORK

QoS-aware middleware is being developed in several projects, with different
focuses. To limit the scope of this overview, we describe here only those systems
that a) enable applications to specify their QoS requirements using high-level
language concepts and b) realise resource adaptation. Per focus, three main
QoS-aware middleware groups can be identified: general purpose middleware,
real-time middleware and multimedia middleware.

The general purpose architectures differ mainly in their approach to resource
reservation and adaptation mechanisms. QuO [18] is a CORBA based frame-
work for configuring distributed applications with QoS requirements. It comes
with a suite of description languages that allow applications to specify the inter-
dependencies between QoS properties and system objects, thereby configuring
the adaptive behaviour of the underlying system. QuO however uses code-
weaving. This means that at compile time the code for QoS control is entangled
with code for data-transfer. As aresult, QuO only allows QoS mechanisms to be
added at design time. Quartz [17] is another QoS-aware middleware. In Quartz,
QoS concepts are introduced at system and application levels, with configurable
mappings between the two. In Quartz, however, there is no reconciliation mech-
anism between required and realisable QoS. System agents that configure and
monitor resources and balance their use carry out adaptation. MULTE-ORB
[8][11] is another QoS-aware middleware that supports configurable multiple
bindings. A QoS requirement is specified per binding, together with policies
for negotiating QoS and for performing connection management. The QoS
configuration and management system is however ChorusOS and SunOS spe-
cific. Similarly to QPS, in MULTE-ORB, QoS is controlled by feedback control
loops.

OMG’s Real-Time CORBA (RT-CORBA) specification [9] is targeted at real-
time distributed systems. Applications specify policies that guide selection and
configuration of protocols. RT-CORBA supports explicit binding in order to
validate the QoS properties of bindings. After binding time, however, protocols
may not be reconfigured. TAO [14] is areal-time CORBA ORB implementation
targeted at hard real-time systems.

QoS aware multimedia middleware concentrates on QoS provisioning for
multimedia streams. The requirements for such a platform are specified in
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the reTINA project [13]. Multimedia platforms are developed in the DIMMA
project [2] at APM in Cambridge, and in the Adapt [4] project that extends
the COOL ORB. From the previously mentioned platforms, TAO implements
the CORBA A/V streaming. Furthermore, Quartz and MULTE-ORB support
streaming too.

7. CONCLUSIONS

Next generation middleware must meet the challenge of evolutionary changes
and run-time changes in a heterogeneous distributed computing environment,
in order to provide distributed objects with support for QoS. This paper presents
an architecture for QoS-aware middleware that separates the QoS support func-
tions from ‘traditional’ data transfer functions. The QoS support functions at
the middleware layer are further separated into control and management plane
functions.

The QoS Provisioning Service (QPS) is our framework that enables control
plane functions to be added to off-the-shelf object middleware, for controlling
the QoS of individual client-server associations. QPS follows a 5 phase lifecycle
model to establish and control a QoS agreement between a client and a server.

The QPS framework implementation presented here uses standard CORBA
extension hooks, which makes QPS a portable CORBA service. We have pre-
sented QIOP, a communication module that uses RSVP for reserving network
resources and demonstrated its performance benefits compared to communica-
tion over IIOP.

Future work includes the application of the QPS lifecycle to manage the QoS
of multimedia streams, and implementing a more advanced interface between
QPS and system level QoS control mechanisms.
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