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Abstract  Time and action locks can arise freely in timed automata specification.
We review techniques for avoiding the occurrence of timelocks, based
on the Timed Automata with Deadlines framework. Then we present
a notion of parallel composition which preserves action lock freeness, in
the sense that, if any component automaton is action lock free, then the
composition will also be action lock free.
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1. INTRODUCTION

Deadlocks are the characteristic error situation arising in concurrent
and distributed systems. In very general terms, they are states in which
the system is unable to progress further.

Classically the term deadlock has been seen as synonymous with what
we will call action locks. These are situations in which, how ever long
time is allowed to progress, the system will never be able to perform an
action. Such action locks often result from unmatchable action offers,
e.g. when a component wishes to perform a synchronisation action, but is
unable to because no other process can offer a matching synchronisation.

In the context of timed systems, new locking situations arise. In
particular, in this paper, we will be working in an environment with two
main types of locking situation. As a result of this, we have had to be
careful with our choice of terminology. Thus, in this paper the term
deadlock is the most general. It embraces action locks and the form of
locking behaviour that comes with timed systems - timelocks.

Timelocks are situations in which, informally speaking, time is pre-
vented from passing beyond a certain point. They are highly degenerate
occurrences [4] because they yield a global blockage of the systems evo-
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lution. This is quite different from an action lock, which cannot affect
the evolution of an independent process.

In particular, unless significant care is taken, the possible presence of
timelocks is a major problem for the formal specification and analysis
of time critical networks and distributed systems. This is especially the
case when using timed automata, which are at the heart of current timed
model checking technology, such as UPPAAL [1] and Kronos [7].

This problem was highlighted in [6] where a number of timelock er-
rors were discovered in a timed automata model of a lip-synchronisation
protocol. Furthermore, it was shown in [4] that, when using timed au-
tomata, even the simple task of defining a timeout in a communication
protocol is hampered by the possible presence of timelocks.

In fact, the issue of whether timelocks are desirable or undesirable
features of timed models remains a hotly debated topic. The standard
argument in favour of models containing timelocks is that they repre-
sent specification inconsistencies (like logical contradictions) and that
by discovering and eliminating them, specifications can be corrected.
However, we take the contrary position for a number of reasons.

Firstly, detecting timelocks is, in fact, a difficult and expensive analy-
sis task. The classic method is to show that a property such as the Kro-
nos formula, init = [O0=(true), holds over the specification. This
is an unbounded liveness property which is one of the most difficult
classes of formulae to check. Recent work by Tripakis [9] offers potential
improvements in such analysis. However, his algorithm remains unim-
plemented and furthermore, such improvements will always be thwarted
by systems with fundamentally large state spaces.

We are also strongly of the opinion that inconsistencies and contradic-
tions fit in the domain of logical description, but are difficult to recon-
cile with behavioural specification techniques, such as Timed Automata
(TA). Contradictions arise when conflicting properties are asserted /
conjoined. However, although the mistake is frequently made, parallel
composition of processes is not a property composition operator, rather
its meaning is operational - two (or more) physical components are run
in parallel. Error situations in behavioural techniques should have a be-
havioural / operational intuition that is justifiable in terms of real world
behaviour. This is the case for action locks and livelocks. However, there
is no real world counter-part for time stopping!

It is also important to emphasize that the situation with action locks
and timelocks is, in this respect, a little different. In our opinion time-
locks are highly counter-intuitive and thus we believe that constructively
preventing the occurence of timelocks is essential. However, since action
locks are not in the same way counter-intuitive, prevention is not in the
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same sense essential. Nonetheless investigating techniques which ensure
action lock freeness is useful since it highlights forms of parallel compo-
sition that can be employed when building systems that are “correct by
construction”.

Although pleasingly simple, as previously implied, timed automata
have the weakness that timelocks can freely arise and in a number of
different ways. Perhaps most problematically they can arise through
the interplay of urgency and synchronous interaction. We argue that
urgency is given too strong an interpretation in timed automata, in the
sense that an action can be forced (i.e. it becomes urgent) even if it is
not possible (i.e. is not enabled).

The first part of this paper presents a re-interpretation of synchroni-
sation that weakens the effect of urgency and thus limits the occurrence
of timelocks. The approach uses ideas from the Timed Automata with
Deadlines (TADs) framework of Bornot and Sifakis [2, 3]. However, we
adapt the TADs definitions in the manner we introduced in [4].

The timed prioritised choice features offered by the TADs framework
yield the possibility that the dynamic enabling of “competing” transi-
tions can be defined statically. Hence notions of parallel composition
that preserve different dynamic properties can be investigated. In this
vein we also present a notion of parallel composition which preserves
action lock freeness, in the sense that, if any of the component TADs is
action lock free then the parallel composition will also be action lock free.
Thus, in this paper we develop notions of parallel composition which are
strongly compositional in the sense that if component processes are time
and action lock free, then the parallel composition of these process will
also be time and action lock free.

Structure of Paper. Section 2 introduces basic notation. Then we
tackle the issue of timelocks in section 3 and action locks in section 4.
Finally, section 5 presents concluding remarks.

2. BACKGROUND

Notation. HA= {x?,x!|x € CA} is a set of half (or uncompleted)
actions. CA is a set of completed (or internal) actions. These give a
simple CCS or UPPAAL [1] style point-to-point communication. Thus,
two actions, x? and x! can synchronise and generate a completed action
x. A = HAU CA is the set of all actions. We use a complementation
notation over elements of A: T =x ifx € C4,z?7 = x!and 2! = x?.

R* denotes the positive reals without zero and R = R U {0}. C
is the set of all clock variables, which take values in R™". CC is a set
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of clock constraints. Also if C < C we write C C for the set of clock
constraints generated from clocks in C.
Ve = C — R0 is the space of clock valuations for clocks in C.

Timed Automata. An arbitrary TA has the form: (L,ly,7T,1,C),
where, L is a finite set of locations;/y € L is a start location; and C is
the set of clocks of the TA.

Tc LxAxCCcxP(C)xLis a transition relation. A typical
element of 7 would be, (/1.¢ g r,12) where [1,/, are locations; e labels
the transition; g is a guard; and ris a reset set. (l1,e, g rl2) € T
is typically written, /;—2% ), stating that the automaton can evolve
from location /1 to [/, if the (clock) guard g holds and in the process
action e will be performed and all the clocks in » will be set to zero.

I1:L — CC¢ is a function which associates an invariant with every
location. Intuitively, an automaton can only stay in a state while its
invariant is satisfied.

It is important to understand the difference between the role of guards
and of invariants. In this respect we can distinguish between may and
must timing. Guards express may behaviour, i.e. they state that a transi-
tion is possible or in other words may be taken. However, guards cannot
“force” transitions to be taken. In contrast, invariants define must be-
haviour. This must aspect corresponds to urgency, since an alternative
expression is that when an invariant expires, outgoing transitions must
be taken straightaway.

Semantics. TA are semantically interpreted over transition systems
which are triples, (S, s9,=), where, S < L X V¢ is a set of states; sg € S
is a start state; and = < S X Lab x S'is a transition relation, where Lab =
A U R™. Transitions can be of one of two types: discrete transitions,
e.g. (s1,e 52), where e € A and time transitions, e.g. (si1,d, s,), where
d € R" and denotes the passage of d time units. Transitions are written:
S1 = s, respectively s ész.

For a clock valuation v € V¢ and a delay d, v+d is the clock valuation
such that(v+d)(c) = v(c)+d forall c € C. For a reset set », we use r(v)
to denote the clock valuation v’ such that v’ (c) = 0 whenever ¢ € r and
v'(c) = v(c) otherwise. v, is the clock valuation that assigns all clocks
to the value zero.

The semantics of a TA A= (L, lo, 7,1, C) is a transition system,
(S, s9,=>), where S= {s' e Lx Ve |Is eS8 y € Lab.s=Ls"} U
{[lo,vol}> 5o = [lo,vo] and = is defined by the following inference reles:-

18251 g(v) Vd <d.I()(v+d)
[, 0] = [I', r(v)] (1, v] <% 1,0 + d]
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The semantic map which generates transition systems from TA is written
[1. Also, notice that our construction ensures that only reachable states
are in S.

Parallel Composition. We assume our system is described as a vector
of TA, denoted, |A = [(A[l1], ..., A[n]) where A[i] is a timed automaton.
In addition, we let u, u' etc, range over the set U of vectors of loca-
tions, which are written, (#[1],...,u[n]) . We use a substitution notation
as follows: u[1], ..., u[f], ..., u[n])[ulj] /ulf]] = (ul1], ..., u[f]’, .-, u[n]) and
we write [uls]'/uljl] as [5'/7] and w[é) /ir]-.. (i, [im] as u[d} /i1, ..., i3 /imm]-

IfVi(l <i < n).Ali] = (L;, 10, T3, I, C;) then the product automa-
ton, which characterises the behaviour of [{A[l],..., A[n]) is given by,
(L,1,T,1I,C) where L = {|u|u € L1 X ... x Ly }, lo = [{l1,05--»l1,n),
Tis as defined by the following two inference rules, I{|{u[1],...,u[n]}) =
Li(u[l]) A... A In(uln]) and C =C, U ... UCy,.

u[i]i?lgi'l)u[i]' u[j] —af"—gﬁL)uL]]’ uli] 285 yfi) z e CA
|u —2ERILTET [ /5, 5 /5] |u S50 Juli' /1]

where 1 < 4 # j < |u|l. Note, we write ¢ < k # 7 < y in place of
c<k<yANz<r<yA k#r.

Timelocks. We can formulate the notion of a timelock in terms of
a testing process. Consider, if we take our system which we denote
System and compose it in parallel with the timed automaton, Tester,
shown in figure 1, where, since it is completed, the zzz action is indepen-
dent of all actions in System. Then for any de R" | if the composition
| <Tester (d), System> can evolve to a state from which it cannot per-
form zzz, then the system contains a timelock at time d. Notice that
we are not saying that all executions of System will timelock, but rather
that System can timelock.

This illustration indicates why timelocks represent such degenerate
situations - even though the Tester is in all respects independent of the
system, e.g. it could be that Tester is executed on the Moon and System
is executed on Earth without any co-operation, the fact that the system
cannot pass time prevents the tester from passing time as well. Thus,
time really does stop and it stops everywhere because of a degenerate
piece of local behaviour.

We can also give a semantic definition of the notion, which is similar to
definitions given in [9]. However, we first need a little notation. A trace
of a timed automaton 4 has the form, p == So¥y1 81 -.- Sn—1 Yn Sn., Where,
Vi(0 <i<mn).si € [A4] .1 (throughout the paper we use the notation
t.ito access the ith element of a tuple); so = [lo,vo]; ¥i € AURT; and
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Vi(0 £i<n-1). si—AyL—ﬂ#sHl. We let Tr(4) denote the set of all
traces of 4 and we define the function delay as,

delay(p) =Z{y; |1 <i<n A y; eRt}
Now we say that A4 can timelock at time d iff

Jdp € Tr(A).(delay(p) < d A Vo € Tr(A).(ppref o = delay(o) < d))

where p pref p2 if and only if p; is a prefix of p,. Intuitively this ex-
presses that there is a state reachable before d time units has passed,
from which it is not possible for time to elapse beyond d. Notice this
definition does not preclude the system evolving “while timelocked”.

@ Tester(y) (t==0) System1
22z,
t==y @ oox,
t=0
@ (t<=2)  systemz @ System3
XXX7?,
xxx! 007
Figure 1. A Tester and Timelock Illustrations

There are two different forms of timelock:-

1 Zeno Timelocks. These arise when the system has an infinite be-
haviour but time cannot pass beyond a certain point. In other
terms, an infinite number of discrete transitions are performed
in a finite period of time. An example of such a specification is
Systeml (see figure 1).

2 Time Action Locks. These are situations in which a state is reached
from which neither time or action transitions can be performed.
An example of such a lock is a trivial TA with no transitions and
one location with invariant false. However, more problematically,
time action locks can arise through mismatched synchronisations,
e.g. | <System2, System3> (from figure 1) contains a timelock at
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time 2, which arises because System2 must have performed (and
thus, synchronised on) action xxx by the time t reaches 2 while
System3 does not start offering xxx until after t has past 2.

The interesting difference between these two varieties of timelock is
that the first one locks time, but it is not action locked. However, the
second reaches a state in which neither time passing or action transitions
are possible.

A relevant property which appears in the literature is that of time
reactivity. It ensures that a system is time action lock free.

Definition 1 A4 system is said to be time reactive if it can never reach
a state in which neither time or action transitions can be performed.

Action Locks. Timelocks are much more serious faults than action
locks, since the latter generate local deadlocks, however, cannot prevent
an independent process from evolving. A TA is action locked when it
reaches a state from which, however long time is allowed to pass, an
action will never be possible. The natural interpretation of action lock
in the setting of timed systems is as follows.

Definition 2 4 state [[, v] of a TA A is an action lock, denoted AL([I, v]),
e

if and only if, ¥t € R™® ([(lv + t]e [A].1 = [Lv + %), where
[Lv+i e[ A} .1 implies [l v +t]is reachable from [l, v] by the definition
of [1.4 TA A contains an action lock iff s € [A].1.AL(s).

3. TIMELOCKS

Zeno Timelocks. Using an approach of Tripakis [9] we introduce a
static construction which ensures zeno timelock freeness. The idea is to
ensure that for each loop in an automaton, time must pass by at least
e € R ™ on every iteration (this is similar to imposing time guardedness
in timed process algebra). First a definition.

Definition 3 For A € TA we define a structural loop to be a sequence
of distinct transitions, lo —SLILTiy [1 229202, Cadnlny | o f [ =],

A is called strongly non-zeno if, for every such structural loop, there
exists a clock c € A5,ee R* and 0< i, j <nst, (I)ce r,; and (2)
c is bounded from below in step j, i.e. (c <€) N 8 = false.

Clearly, Systeml of figure 1 fails to be strongly non-zeno since a suitable
e € R" does not exist. The following result was presented in [9].

Proposition 1 If A € TA is strongly non-zeno then Tr (A) does not
contain a path that is both infinite and yields a timelock.
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In addition, strong non-zenoness is well behaved through parallel com-
position. Specifically, the following result was presented in [9]. It ensures
that we cannot generate new zeno timelocks through parallel composi-
tion.

Proposition 2 If 4,,..., A, € TA are strongly non-zeno then |{A1, ..., 4,)
is also strongly non-zeno.

Also although we have no empirical evidence, in accordance with [9],
we believe that in practice, specifications will invariably be strongly non-
Zeno.

The Nature of Synchronisation. Perhaps the most counter-intuitive
aspect of the timelock story is the manner in which timelocks can arise
from mis-matched synchronisations, such as the composition in figure 1.
If we consider how this problem arises we can see that it is caused by
the particular interpretation of urgent interaction employed in TA.

It is without doubt true that facilities to express urgency are required.
However, it is our perspective that while urgency is needed, currently it
is given an excessively strong formulation. We illustrate the issue with
the following example.

Example. Consider the specification of the Dying Dining Philosophers
problem. The scenario is basically the same as the Dining Philosophers
except here we have extra constraints which state that philosophers die
if they do not eat within certain time periods.

For example, if at a particular state, Aristotle must eat within 10
time units to avoid death, in TA his situation could be represented as
state 10 of timed automaton Arisl in figure 2. In addition, if say the
fork he requires is being used by another philosopher, the relevant global
behaviour of the rest of the system might correspond to Restl in state
m0 (see figure 2 again).

Aris1 Rest1 Aris2 Rest2
(t<=10) k! pleQ, pICkl, @
pick?, P 1<=10, t>=15 .
t<=10 t==10 al(l:sé
m false’
g " \
R ~ Al | Pt ©
Figure 2. Dying Dining Philosophers Automata

However, the formulation | <Arisl,Restl> will timelock when t reaches
10. This seems counter-intuitive. Aristotle knows he must pick-up his
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fork by a certain time otherwise drastic consequences will result for him
(this is why he “registers” his pick request as urgent). However, if he
locally fails to have his requirement satisfied, he cannot globally prevent
the rest of the world from progressing, rather a local deadlock should
result. As a consequence Aristotle might be dead, but as we all know,
“the world will go on!”

Conceptually what is happening is that Aristotle is enforcing that his
pick action must be taken even if it is not possible, i.e. it is not enabled.
However, we would argue that urgency can only be forced if an action
is possible. In other words, it should only be possible to make an action
urgent if it is enabled, i.e.

must requires may or, in other terms, you can only force what is possible.

One way in which such an interpretation of urgency has previously
been obtained is through only allowing urgency to be applied to inter-
nal actions. This is the so called as soon as possible (asap) principle
[8], much discussed in the timed process algebra community. This prop-
erty indeed prevents the occurrence of timelocks due to synchronisation
mismatches, but unfortunately, it is not a suitable solution for timed
automata. This is because TA do not have a hiding operator. In timed
process algebra with asap the hiding operator, which turns observable
into internal actions, has an important role since (implicitly) it makes
actions urgent. The absence of hiding in TA means that we cannot (se-
lectively) take an observable action that results from synchronising half
actions and turn it into an (urgent) internal action.

Thus, now we consider an alternative framework for TA specification
- Timed Automata with Deadlines (TADs) which was initially devised
by Bornot and Sifakis [2, 3] and with which we can obtain the synchro-
nisation interpretation we desire. Our presentation follows that in [4],
with some refinements.

TADs Basics. For a full introduction to TADs, we refer the interested
reader to [2, 3]; here we highlight the main principles.

Deadlines on Transitions. Rather than placing invariants on states,
deadlines are associated with transitions. In order to do this, transitions
are annotated with 4-tuples, (e, g d, r), where e is the transition label;
g is the guard; d is the deadline; and ris the reset set. Conceptually,
deadlines state when transitions must be taken and taken immediately.
Since we have deadlines on transitions there is no need for invariants
on states. It is also assumed that the constraint, d = g holds, which
ensures that if a transition is forced to happen it is also able to happen.
As a result of this constraint, TADs are time reactive.
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(Timewise) Priorities. By restricting guards and deadlines in choice
contexts, prioritised choice can be expressed, e.g. if we have two tran-
sitions, b1 =(el,gl,dl,rl)and b2 =(e2,92,d2,r2), and we are at a
state with a choice between them, then we can give b2 priority over bl
by restricting the guards and deadlines of bl to (el,gl',d1',rl). The
form of priority we use is to enforce the following restricted guard and
deadline, g1' = gl A O-g2 anddl' = dl A gl', where O is the
temporal operator henceforth. This ensures that bl is only enabled if
gl holds and there is no point in the future at which g2 will hold.

Parallel Composition with Escape Transitions. The TADs framework
employs a different parallel composition operator to that arising in stan-
dard timed automata. The key idea is that of an escape transition.
These are the local transitions of automaton components that are com-
bined when generating a synchronisation transition. Thus, not only are
synchronisations included, but component transitions of the synchroni-
sation are as well. The timewise priority mechanism is then used to give
the synchronisation transition highest priority. Intuitively, the escape
transitions can only happen if the synchronisation transition will never
be enabled.

In fact, in addition to ensuring time reactivity, the TADs framework
limits the occurrence of action locks. Specifically, the escape transitions
allow the components of a parallel composition to escape a potential
action lock by evolving locally.

We briefly review the definition of TADs. An arbitrary 7AD, has the
form, (L,lo,—, C), where L is a finite set of locations; [/ is the start
location; and C is the set of clocks.

—>C LxAxCC¢c xCCc x P(C) x L is a transition relation. A
typical element of which is, (/1,e g d, r, [2), where /|, [ € L; e la-
bels the transition; g is a guard; d is a deadline; and r is a reset set.
(li,e g drlh)e—is typically written,/, —2L4"5 7,

As was the case with TA, TADs are semantically interpreted as tran-
sition systems. The following two inference rules are used for this,

[ 2287, 1 g(v) VI 82T ) — VY < b —d(v + 1)

(S1) (52)

[1,0] =5 [, r()] 1,0 =, v + 4]

Now we define the semantic map []] from TADs to transition systems
as follows, [(L, Iy,», C)]] = (S, so,=) where, S= {s'e Lx V¢ |Is e
S yeLab.s= sy U {[lb,vol}; so = [lo,v]; and = C (L x V¢ ) x
Lab x (L x V) satisfies (S1) and (S2). Notice that, once again, S only
contains reachable states.
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In addition, we will use the function:
6p(l) = {(e,g,d,r) | .1 224", ' A ec B}

In [4] we considered three different TADs parallel composition rules
- standard TADs, Sparse TADs and TADs with Minimal Priority Es-
cape Transitions. The first of these coincides with Bornot and Sifakis’s
definition [2, 3], while the latter two were developed by us. We argued
in favour of the latter two, since standard TADs composition generated
too many escape transitions. Here we re-iterate the Sparse TADs and
TADs with Minimal Priority Escape Transitions definitions.

Sparse TADs. This is a minimal TADs approach, in which we do
not generate any escape transitions. The following parallel composition
(denoted [|*) rules are used:

uli] iy o) o] EEGTL o) ufi] 22, i g€ CA
||#u 2L drirg syl 4, 4 /4] [|$0 —BLETy ||#uf4 /i]

where 1 <i#j<|ul,g'=giNgjandd =g N (d;Vd)).

These rules prevent uncompleted actions from arising in the composite
behaviour; they only arise in the generation of completed actions, while
(already) completed actions offered by components of the parallel com-
position can be performed independently. This definition has the same
spirit as the normal TA rules of parallel composition. The difference be-
ing that here we have deadlines which we constrain during composition
to preserve the property d = g, and hence to ensure time-reactivity.

Furthermore as a consequence of these characteristics of sparse TADs
we have revised the interpretation of synchronisation in the manner we
proposed. For example, if we consider again the Dying Dining Philoso-
phers illustration, the obvious TADs formulation of Arisl and Restl,
are Aris2 and Rest2 shown in figure 2. Now sparse TADs composition
of the two TADs yields the behaviour shown on the right of figure 2,
which is action locked. This is the outcome that we were seeking. Since
the pick synchronisation is not enabled, urgency cannot be enforced.
This is reflected in both the guard and deadline in figure 2 being false.

TADs with Minimal Priority Escape Transitions. The idea here
is the same as standard TADs, but rather than just giving escape tran-
sitions lower priority than their corresponding synchronisation, we also
give them lower priority than other completed transitions. Thus, a com-
ponent can only perform an escape transition if the component will never
be able to perform a completed transition. This seems appropriate as
our view of escape transitions is that they should only be performed
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as a very last resort - when the choice is between performing them or
reaching an “error” state.

Letting, 1 <j # i< |u| , the parallel composition (denoted ||” ) rules
are:

wli] ELgduTiy y [ y[4) w_’:-q:ﬁ:ﬁ_,uml

||mu z,9',d' ,riUr; 5 ||mu[Z'/Z,]’/_7]

ufi] 2297, 5] £ € CA ufi] 2297, i) o€ HA
([ 2y ||y /4] RN
where, ¢’ =gi A gj, d =g A (di Vdj)and 1 <k #1i < |ufin,

g = g A ANO-q2|q€boaluli])} A
AMO—-(a:2 A ¢'2)|q € Oua(uli]) A ¢ €057, (ulk])}
d// — d /\ gll

(R1)

(R2) (R3)

(RI) is the normal synchronisation rule; (R2) defines interleaving of
completed transitions; and (R3) defines interleaving of incomplete, i.c.
escape, transitions. In this final rule, g” holds when, (1) g holds; (2)
it is not the case that an already completed transition from u[i] could
eventually become enabled; and (3) it is not the case that an incomplete
transition (including a itself) offered at state u[i] could eventually be
completed. Furthermore, the definition ensures that d = g and thus that
time reactivity is preserved. In addition, we again obtain the “weaker”
handling of urgency in synchronisation that we seek.

4. ACTION LOCKS

The last section and the TADs framework in general provide a means
to compose automata together without generating timelocks. This then
raises the issue of whether the same can be done for action locks.

It is clear that independent parallel composition (both in an untimed
and a timed setting) preserves action lock freedom (see [5] for a formal
justification). However, interaction free parallel composition is of limited
value. Thus, here we consider how the same action lock composition-
ality property can be obtained but while allowing interaction between
processes. Our definition builds upon TADs with Minimum Priority
Escape Transitions.

Consider the parallel composition ||“4 where 4 is a vector of TADs
in which the component automata have disjoint clock sets. This is nec-
essary to avoid action locks arising as a result of component automata
resetting the clocks used by other components (see [S] for further justi-
fication). Letting, 1 <i#j < |u|, the product rules for || 4 are,
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uli] SRy i) ufj]) G, yfj)

(RCA) a.. T,90,dmUrs i orerge oy
|[f0 ===y (|’ /4, 57/ 4]

ufi] 2245, 4] z e CA ufi) 2247 '] a € HA

(RHA)
\ /

.RI.A ii Jii
(RIA) = o 282, Joufiryi [ou S oy /]

where, ¢’ =¢i A gj, d' =¢' A (di Vd;)and 1 <k #4 < |u| in,
9" = (gAAN{O-g2|q€boa(ulil)} A
A{O-~(g2 A g'.2)|qg€braluli]) A ¢ € G{E}(u[k]) bhHvd

d A N{-g3|lg€bca(uf])} A
A~(@2Ad2A @3V d3)|q € bua(uli) Ad € 0 (ulk)}

d"

(RCA) is the (now) familiar “conjunctive” synchronisation rule, with

the deadline constraint ensuring that d = g and thus preserving time
reactivity. (RIA) gives the also familiar interleaved modelling of inde-
pendent parallelism. (RHA) generates escape transitions in order to
avoid action locks, with the guard and deadline constructions control-
ling when the escape transitions can occur. We justify our guard and
deadline definitions now.

The guard in (RHA). This is a disjunction between the guard con-
struction for escape transitions presented in section 2 and the deadline
(d"). We justify the guard based disjunct (i.e. the first) here. A later
point justifies disjoining with the deadline.

The basic idea of this first disjunct, is to enable the product to escape
action locks resulting from mismatched synchronisations. As a simple
illustration of this consider A0 and A1 in figure 3. Both of these TADs
are action lock free. However, if just rules (RCA) and (RIA) are used
the composition of A0 and A1 will action lock immediately as neither
synchronisation can be fulfilled. However, application of rule (RHA)
in conjunction with (RCA) and (RIA) will allow the action lock to be
escaped, as shown in composition (i) in figure 3.

The deadline in (RHA). The definition of 4" has a similar shape
to the guard construction we just considered, however, the temporal
operators are not included. The construction states that, the deadline
(d") of the escape transition holds if and only if,

1 the deadline of the corresponding component transition (d) holds;

2 no internal transition of the component is at its deadline; and
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Figure 3.  Assorted TADs

3 no synchronisation which includes a half action of the component
is at its deadline.

The intuition behind the rule is that any (non competing) deadline
that appears in the component but that does not arise in the product
(because of a failed synchronisation) has its deadline preserved in an
escape transition of the product. A deadline of a transition is competing
at a state if the deadline of an alternative transition also holds there.

This deadline construction is motivated by the observation that in the
majority of cases it is the deadline that ensures action lock freeness. For
example, although the automaton A in figure 3 is strongly connected it
is not action lock free. In particular, assuming s0O is first entered with
t==0, if it stays in state sO for longer than 5 time units, it will action
lock. Furthermore, there is nothing constraining the length of time the
automaton can idle in state sO as the deadline of the aaa! transition is
false. However, (assuming s0 is entered with t<=5) if the false deadline
is replaced by, say, t==5, then it would be action lock free.

Now in order to obtain the action lock freeness property that we desire
we need to guarantee that deadlines that ensure action lock freeness
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of component automata are preserved in the product (either through
appearing as a result of rules (RCA) or (RIA) or by including relevant
escape transitions). Our rule does this. Consider the two action lock free
automata B and B' shown in figure 3. With just rules (RCA) and (RIA)
the product of B and B' would be action locked. However, with (RHA)
as well, the product automaton (ii) shown in figure 3 would result.

In fact, this product would have resulted from application of the rules
presented in section 2 where the deadline is simply d" =d A g”. However,
the example in figure 3 of two more action lock free TADS (CO and C1)
shows that this is not sufficient in the general case. This is because
according to the rules of section 2, the parallel composition of CO and C1
would be as shown in figure 3 (iv) which will action lock at state s1 t1.

The problem is that the guards of the aaa! and bbb! escape tran-
sitions that the rules of section 2 generate, are false. This is because
in both automata an internal action can eventually be taken and this
internal action will take priority.

However, if we apply the rules (RCA), (RI4) and (RHA) of I|“ then
a product “behaviourally equivalent” to figure 3 (iii) results. This is
because the deadline prevents clock t passing 5 and clock r passing 8.
Notice that the guard has been pruned to match the deadline. This
ensures that the enabling of aaa! and bbb! is minimised to only what
is required to preserve the desired action lock freeness property.

Also notice that this example illustrates why the priority enforced in
the deadline has to be immediate and including temporal operators is
inappropriate. Specifically, if a deadline d ensures action lock freedom
then even if later transitions are possible the deadline must be preserved
exactly in the product in order to prevent later transitions from being
enabled which allow an action lock to be reached, e.g. the internal tran-
sitions in CO and C1 above. This may not be the most refined solution
since we might add an escape transition even though a later transition
may prevent the action lock. However, it is not currently clear how to
improve upon the approach.

Finally, we need to disjoin the deadline in g” in order to ensure that
d = g and thus to preserve time reactivity. For example, without such
a disjunct, the product of CO and C1 would timelock when t reaches 5
as the guard on the aaa! transition from s0 t0 would be false.

The central result of this section is given in the next theorem, it
states that ||a preserves action lock freeness. The proof of this result
is not straightforward and due to space considerations it is not possible
to include it here. However, the necessary theory, the full proof and
illustration of use of the operator can be found in [5], which is available
on the WWW.
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Theorem 1
3i(1 < i< | Al A[i]is action lock free = ||° A is action lock free.

5. CONCLUSIONS

This paper builds from [4] by refining its timelock results and extend-
ing the results to action lock freeness. Although related to the work
of Bornot and Sifakis [2, 3], our work is different. In particular, giving
escape transtions lower priority than completed actions of a particular
component, is unique to our work. Furthermore, such an interpreta-
tion is important since as we have argued, real-time structures such as
timeouts are inappropriately expressed with the standard TADs paral-
lel composition operator. In addition, in obtaining our compositionality
results, the only constraint we impose on component automata is that
they are time and / or action lock free. In contrast, Bornot and Sifakis
require a number of well behavedness criteria to hold. This limits the
generality of their approach when compared with ours.
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