
DISTRIBUTED TEST USING LOGICAL CLOCK

Young Joon Choi1, Hee Yong Youn2, Soonuk Seol1, and Sang Jo Yoo3
1School of Engineering, Information and Communications University
{cyjnice, suseol}@icu.ac.kr
2School of ECE, Sungkyunkwan University, Suwon, Korea
youn@ece.skku.ac.kr
3The Graduate School of Information Technology & Telecommunications, Inha University,
Inchon, Korea
sjyoo@inha.ac.kr

Abstract

Keywords:

It is difficult to test a distributed system because of the task of controlling
concurrent events. Existing works do not propose the test sequence generation
algorithm in a formal way and the amount of message is large due to
synchronization. In this paper, we propose a formal test sequence generation
algorithm using logical clock to control concurrent events. It can solve the
control-observation problem and makes the test results reproducible. It also
provides a generic solution such that the algorithm can be used for any
possible communication paradigm. In distributed test, the number of channels
among the testers increases non-linearly with the number of distributed objects.
We propose a new remote test architecture for solving this problem. SDL Tool
is used to verify the correctness of the proposed algorithm, and it is applied to
the message exchange for the establishment of Q.2971 point-to-multipoint
call/connection as a case study.

concurrent events, control-observation problem distributed testing, logical
clock, output-shifting faults, test sequence

1. INTRODUCTION

Distributed objects have been implemented by Open Distributed
Processing (ODP) [11] and others. ODP is an ISO/ITU standard, offering a
generic framework for the development of distributed system. In this paper,
distributed system developed based on ODP is taken as the target [1] to test.

http://dx.doi.org/10.1007/978-0-306-47003-5_29


70

Benattou et al. [1] proposed a method to test distributed system as a black
box using a distributed test method. Here extra signals were proposed to be
used among the testers through coordination channels, called multicast
channel, for synchronizing them. The method has a merit of making the
events occurred at the distributed objects be totally ordered with special
signals, but has a drawback of possible output-shifting faults [8]. A method
in [2] is to use synchronization messages for controlling concurrent events as
a grey box. However, it has a difficulty in choosing a way to observe the
internal status of implementation under test (IUT) and needs other messages
in addition to TS. Luo et al. [3] analyzed existing models based on
synchronized TS and surveyed fault coverage in terms of output, transfer,
and hybrid. However, it did not propose any Test Sequence (TS) generation
algorithm in a formal way.

In overall, existing works for controlling concurrent events in the test of
distributed system do not propose the algorithm in a formal way and increase
the amount of message within IUT due to synchronization. To overcome the
drawbacks, we propose a TS generation algorithm using logical clock that
formally generates signals to control concurrent events by numerically
labeling the events of TS with logical clock values and comparing them. It
can also solve the control-observation problem [1,3]. The proposed TS
generation algorithm based on logical clock allow the test results to be
reproduced since a totally ordered TS can be achieved with the controlling of
concurrent events.

In distributed test, several testers are used and synchronized by
exchanging coordination messages. While traditional distributed test method
is effective in testing IUT of multiple ports, it has a shortcoming that the
number of channels among the testers increases non-linearly with the
number of distributed objects. To overcome this drawback, we also propose
an approach of remote test architecture. Specification and Description
Language (SDL) Tool [14] is used to verify the correctness of the proposed
algorithm, and it is applied to the message exchange for the establishment of
Q.2971 point-to-multipoint call/connection as a case study.

The rest of the paper is structured as follows. Section 2 explains the
background on testing distributed system. The proposed TS generation
algorithm based on logical clock is proposed in Section 3. Section 4 applies
the algorithm to the remote test architecture, and finally Section 5 concludes
the paper with some future research work.

2. BACKGROUND

When a distributed system is tested, some of the events executed by the
distributed objects do not always have casual relationship but possibly



71

(Xa ≤ Y a , Xb ≤ Y b , Xc c≤ Y )

concurrent relationship with each other. If the events are concurrent, the
following control-observation problem may take place [1, 3].

• When concurrent inputs are applied to a black box of a form of IUT, the
test results depend on the order of input process in the IUT.

• In testing a black box IUT, even though the mapping of an input and its
output is incorrect, test results may be correct.

The events occurred at each distributed object, which is an element of a
distributed system, may have concurrent relationship with other events. In
this case, the test results can be different from each other when an IUT is
tested with the same TS repeatedly since all the events are not totally
ordered. Therefore we need a mechanism to make concurrent events have
causal relation in order to reproduce the same test results. Causal relation is
also called “happened before” relation, represented by ‘→ ’. Relation ‘a’ →
‘b’ should satisfy one of the following rules to be ‘happened before’ events
[5, 6 ].

Rule 1
(1) ‘a’ and ‘b’ are in the same distributed object and ‘a’ → ‘b’.
(2) ‘a’ is sender and ‘b’ is receiver. However, in case of synchronous

communication, both send and receive events occur at the same time.
(3) ‘a’ → ‘c’ and ‘c’ → ‘b’.

Logical clocking is a time-stamping mechanism, which can be
represented with linear time, vector time, and matrix time [5]. In this paper,
we adopt vector time describing logical clock in one-dimensional matrix
whose field is assigned to each object [5]. The value of a field of logical
clock denotes the time the corresponding event occurs at a distributed object.
With the vector time, the following rule should be satisfied so that two
events can be causally related.

Rule 2
If the following relation is satisfied between event ‘X’ and ‘Y’ in an IUT
consisting of distributed objects a, b and c, the two events are said to have a
causal relation “a → b” except a case as (Xa = Ya , Xb = Yb , Xc  = Yc). The
logical clock values of events ‘X’ and ‘Y’ are (Xa, Xb, Xc) and (Ya, Yb, Yc),
respectively.

A stable state means a global state, which is not changed into another
state without any input [7]. In testing a black box IUT, it is difficult to
observe the transient states and only the stable states are visible.



72

port 3
Input

port 1 port 2
c, d

Output
a b

x, w y z

Figure 1. Stable states and transient states.

Figure 1 represents a finite state machine (FSM), which reaches stable
state-3 via transient state-1 and 2 after input ‘a’ is applied at stable state-0. A
tester can infer the test result by observing state-0 before the input ‘a’ was
applied and state-3 after the output ‘x’ and ‘z’ are obtained. This allow to
reduce the number of states which should be managed in the test and also
avoid the difficulty of observing transient states.

3. THE PROPOSED ALGORITHM

In this section we first analyze the existing method proposed for
controlling concurrent events in a black box IUT. We then propose a TS
generation algorithm based on logical clock.

3.1 The Problems in Existing Test Method

As a case study, we consider a typical test method reported in [1]. Figure
2(a) represents a FSM M, where each state is stable. The FSM M is a 3-port
FSM whose inputs and outputs at each port are shown in Table 1. Figure
2(b) is faulty FSM M derived from Figure 2(a). Here each port is connected
to a tester whose identifier is the same as the port.

(a) FSM M (b) Faulty FSM M
Figure 2. 3-port FSM.

Table 1. Inputs and outputs at each port of Figure 2.

Definition 1: Transition T is represented by (si , sj , x/y), where x ∈ X, y ∈ ∈ Y,
{si,sj} ⊂  S, S i , x), and y = j = δ(s λ(si , x). X is a finite set of input symbols, Y
is a finite set of output symbols, S is a finite set of states, δ is a state transfer
function, and λ is an output function.



73

If an IUT implemented with a faulty FSM M is tested by a TS (T1 → T3
→ T2 →  T5 →  T6), the control-observation problem may occur in the
subsequence T3 → T2 and T5 → T6. None of the testers can detect the faults
if ‘b’ is read first by the IUT when the input ‘c’ of transition T3 and the input
‘b’ of transition T2 are applied to the IUT concurrently in state-1. It is
because the order of the outputs observed by the testers is correct even
though the mapping of the input and its output is incorrect in the
subsequence T5 → T6.

The TS of a distributed object usually consists of inputs and outputs, and
signal ‘C’ and ‘O’ controlling concurrent events. The signal ‘C’ gives casual
relation to concurrent inputs applied to IUT, while signal ‘O’ gives causal
relation between concurrent input and output. The following steps produce
signal ‘C’ and ‘O’. A new TS for each distributed object including signal ‘C’
and ‘O’ is called Local Test Sequence (LTS).

1.
2.

3.

Label logical clock values for the events of TS.
Classify the events into either causal or concurrent by comparing the
logical clock values of the events.
If there exist concurrent events, generate signal ‘C’ and ‘O’ which make
the concurrent events be causally related and insert them to the TS of
each distributed object.

To solve the control-observation problem, [1] proposed coordination
channels whose function is to send or receive signal ‘C’ and ‘O’ among the
testers. However, output–shifting fault which is a consequence of the
control-observation problem can occur.

Figure 3. An example of output-shifting faults.

Refer to Figure 3(a) where an IUT is tested by TS (a/xyz →  b/xz). The
signal ‘C’ and ‘O’ are not generated by the method proposed in [1]. As a
result, none of the testers can detect the faults even if the output ‘z’ of
“a/xyz” is shifted forward and the output ‘x’ of “b/xz” is shifted backward as
shown in Figure 3(b). This is because the order of the input and output
observed by each tester is the same as Figure 3(a). This is called output-
shifting faults [8]. Output-shifting faults are the case that the test results are
correct even though the mappings of input and output are incorrect. This
occurs since it cannot properly control the testers receiving the outputs of the



74

previous transition which has concurrency relation with the new input. A
new formal way for signal generation is thus needed to be developed.

3.2 The Proposed Local Test Sequence Generation
Algorithm

Here we propose an LTS generation algorithm which can solve the
control-observation problem including output-shifting faults in a formal way
using logical clock. We make assumptions as follows:

• IUT is a black box.
• The logical clock vector is represented as a format (tester 1, IUT, tester

2, tester 3). When an event occurs at an element, the value of the
corresponding field is increased.

• The output receive delay for a transmission is zero.
• Logical clock is increased by the unit time.

Figure 4 shows TS1 (T1 →  T3 →  T2 → T4 → T7) which tests the IUT
implemented with FSM M. Observe that each event is labeled with a logical
clock value. To control concurrent events classified by Rule 2, extra signals
are needed. Table 2 lists the comparisons of logical clock values labeled with
the events of subsequence T1 →  T3 and T3 → T2. Here Compare_LC(x, y)
is a function that returns 'true’ if event ‘x’ and ‘y’ satisfies Rule 2.
Otherwise, it returns 'false’.

Figure 4. Logical clock labeling at the events of Test Sequence 1 (TS1).

Table 2. Comparison of logical clock values.
T1 (0, 1, a/xz) →T3 (1, 1, c/xz) T3 (1, 1, c/xz) →T2 (1, 1, b/wy)

Compare_LC(a, c)  = true
Compare_LC(x, c)  = false
Compare_LC(z, c)  = true

Compare_LC(c, b) = false
Compare_LC(x, b) = false
Compare_LC(z, b) = false



75

’ to Tester 1, which receives output ‘x’ of

3,2’
suggests that Tester 3 had already received output ‘z’. However, Tester 2
sends additional signal ‘O2,1’ to Tester 1 since input ‘b’ is still concurrent

According to Table 2, only output ‘x’ of transition T1 and input ‘c’ of
transition T3 are concurrent in subsequence T1 → T3. In this case, a signal
making input ‘c’ and output ‘x’ be casually related is needed. This signal is
called signal ‘O’. Accordingly, Tester 3 that provides input ‘c’ of transition
T3 to IUT sends signal ‘O3,1
transition T1 . Similarly, input ‘b’ of transition T2 is concurrent with all the
inputs and outputs of transition T3 in subsequence T3 → T2. Therefore a
signal is needed to let input ‘b’ be applied to the IUT after transition T3
occurs. This signal is called signal ‘C’. In this case, Tester 3 that is one of
the testers receiving the outputs of transition T3 sends signal ‘C3,2’ to Tester
2, which applies input ‘b’ of transition T2 to the IUT. The signal ‘C

with output ‘x’ of transition T3.
None of the testers can detect faults even though output ‘y’ is backward-

shifted since the test scenario of Tester 2 is the same as that for correctly
implemented FSM being tested by subsequence T4 → T7. To solve this
problem, Tester 3 sends signal ‘O3,2 ’ to Tester 2 before Tester 3 applies input
‘d’ to the IUT.

As aforementioned, the output receive delay is assumed to be zero, and
thus each tester receives the output of a transition instantly. Therefore, signal
‘O’ controlling concurrent outputs is generated by the tester which sends
input to the IUT. This assumption was also adopted in [1]. With this
assumption, though, the TS generation algorithm has some limitations in
testing real distributed system.

Figure 5. Waiting time and over-waiting time problem.

For example, refer to Figure 5. Tester 1 decides that the IUT is faulty
when it receives output ‘x’ in “a/xz” after Tester 1 eceives signal ‘O3,1’ even
if the IUT is correctly implemented. Also Tester 2 cannot detect faults in
case that output ‘y’ in “c/xy” is backward-shifted. This is because
synchronization among the testers is done through synchronization signal,
but IUT cannot be directly synchronized with the testers. Accordingly, the
testers should have sufficient waiting time to synchronize with the IUT.



76

However, if Tester 1 receives backward-shifted output ‘x’ in “c/xy” after
some waiting time, it is impossible to detect the fault. Let us call this over-
waiting problem. In order to prevent the problem, the waiting time and
receive delay time of outputs for a transmission are assumed to be zero. The
related definitions and the proposed algorithm are presented as follows.

Definition 2
– In transition T = (si, sj, x/y), “x/y” stands for “!x?y”.
– ‘-’ means that signal is sent to the tester and ‘+’ means that signal is

received from other testers.
– Port(x) is a function that returns ‘port id’ generating input or output ‘x’.
– PortS(X) = {Port(x1), Port(x2), . . . , Port(xn)}, where X = {x1, x2, . . . ,

xn} and xi is an event.
– Compare_LCS(x, Y) is a function that returns false if Compare_LC(x, a)

= false for all a ∈ Y, and return true otherwise where Y is a set of input
or output.

– Label_LC(x, k) is a function that updates logical clock value of port k
and records logical clock value of x where x is an input or output.

– Label_LCS(X, PortS(X)) = {Label_LC(x1, Port(x1)), Label_LC(x2,
Port(x2)), . . . , Label_LC(xn, Port(Xn))}. Append(X, Y) is a function
concatenating string X and Y.

– Append_In (Port(x), x) = Append(LTSPort(x), Append(“!”, x)) where
LTSPort(x) is an LTS of the tester connected to Port(x).

– Append_Out(PortS(X), X) = {Append(LTSPort(X1), Append(“?”, “x1”)),
Append(LTSPort(X2), Append(“?”, “x2”)), . . . , Append(LTSPort(Xn),
Append(“?”, “xn”))}.



77

In the algorithm above, Lines from 4 to 7 are to label logical clock values
for the events of TS. Whenever input or output is generated from the IUT,
Label_LC (or Label_LCS) function updates the logical clock value of the
distributed object where the input or output is generated. Lines from 14 to 40
are to generate signal ‘C’ and ‘O’ in the transitions except the final transition.
When the output of a transition is not null, the logical clock values of the
events between the current transition and the input events of the next
transition are compared using Line 19. If they are concurrent, signal ‘C’ is
generated. Lines 19 and 24 are the statements comparing logical clock
values for controlling forward output-shifting faults and backward output-
shifting faults, respectively. When the output of a transition is null, the
logical clock values between the current and next input are compared using
Line 29. If they are concurrent, signal ‘C’ is generated. Line 33 is to solve
backward output-shifting faults in case of null output by comparing the clock
values. Figure 6 is a test scenario obtained as a result of applying
Algorithm_LTS to TS1.

Figure 6. Applying Algorithm_LTS to TS1.



78

Note that state 0, 1 and 2 in Figure 6 are stable states since they are not
changed to other states before a new input is applied to the IUT. If the area
between the stable states is represented as a block, happened-before
relationships also exist between the blocks since the events in each block are
totally ordered with the events in other blocks by signal ‘C’ and ‘O’.

3.3 Extension of the Proposed Local Test Sequence
Generation Algorithm

The LTS generation algorithm [1] and the proposed Algorithm_LTS
assume that the output receive delay is zero. If the assumption is not
satisfied, test results may not be able to be reproduced. For example, in
Figure 6, even though IUT is correct, the test results can be faulty when
Tester 3 receives output ‘z’ and then sends signal ‘O3,1’ to Tester 1 before
output ‘x’ is received by Tester 1 in the first block. To solve the problem,
LTS for Tester 3 should be updated so that input ‘c’ can be sent to the IUT
after Tester 1 sends signal ‘O3,1’ to Tester 3 and Tester 3 receives both signal
‘O 3,1’ and output ‘z’.

Let us call the LTS generation algorithm for which output receive delay
is not zero Algorithm_LTS_DELAY. Append_RD(X, Y) is a function
attaching Y to X while keeping the order of the elements of them. For
example, Append_RD(“xy”, “z”) means that ‘xyz’, ‘xzy’, or ‘zxy’.



79

The lines from 13 to 34 are modified from Algorithm_LTS. Line 13
(Case 1), Line 19 (Case 2), and Line 22 (Case 3) compare logical clock
values for controlling forward output-shifting faults in case that the outputs
are not null. Case 1 is applied when all the events of the current transition
and an input of the subsequent transition are concurrent, Case 2 is applied
when outputs of the current transition and an input of the subsequent
transition are concurrent, and Case 3 is applied when some outputs of the
current transition and an input of subsequent transition are causally related,
respectively. The signal ‘O’ generated by each case is sent from the tester
(Temp_Set), which receives the outputs of the current transition, to a tester
which sends an input of the subsequent transition to the IUT. Therefore, the
LTS for input-side testers should manage all combinations of the receive
order of the input events. Generating signal ‘O’ that controls backward
output-shifting faults is the same as the one in Algorithm_LTS.

Figure 7 is a sample test scenario. Here Specification and Description
Language (SDL) Tool [14] is used to verify the correctness of
Algorithm_LTS_DELAY. An FSM representing the IUT and the LTS
obtained by Algorithm_LTS_DELAY for TS1 are described in SDL
processes, respectively. Note that the output receive delay is not zero.



80

Figure 7. The LTS obtained by Algorithm _LTS_DELAY for TS1.

We analyze the results of Message Sequence Chart (MSC) Trace which
is the test scenario for Figure 7 using reachability tree. Figure 8 shows the
reachability tree obtained by the SDL Tool. The states represented at each
point are global ones showing the states of Tester 1, IUT, Tester 2 and Tester
3, respectively.

Figure 8. The reachability  tree for Figure 9.

The box shown in Figure 8 represents the reachability tree for transition
T1. To send input ‘c’ of transition T3 to the IUT, the logical clock value
should be (3, 4, 0, 3). In other words, input ‘c’ is applied to the IUT only at
stable state (3, 4, 0, 3). This demonstrates that Algorithm_LTS_DELAY can
reproduce the test results by controlling concurrent events.



81

We apply Algorithm_LTS and Algorithm_LTS_DELAY to the message
exchange for  the establishment of  Q.2971 point- to-mult ipoint
call/connection. Figure 9 illustrates a message exchange where call initiator
is S_A and call receivers are R_A and R_B [12, 13]. In here, the IUT has 3
ports connected to S_A, R_A and R_B.

Figure 9. Message exchange for the establishment of Q.2971
network-side npoint-to-multipoint call/connection.

Figure 10. The LTS obtained by the two algorithms.

In Figure 10(a), the testers must receive the outputs without delay.
However, message exchange in communication networks such as Q.2971
cannot satisfy such condition. The test scenario of Figure 10(b) can be said
to be much more general. Table 3 compares the LTS generation algorithms:
the algorithm in [1], Algorithm_LTS, and Algorithm_LTS_DELAY.

Table 3. Comparison of Local Test Sequence generation algorithms.

[1] Algorithm_LTS LTS_DELAY
Output receive delay
Backward output-shifting faults
Forward output-shifting faults
Over-waiting time problem exists
Channel complexity

No
Yes
Yes

-
O(n 2)

No
No
No
Yes

O(n2)

Yes
No
No
No

O(n2)



82

In Table 3, Algorithm_LTS prevents output-shifting faults except over-
waiting time problem. With Algorithm_LTS_DELAY, appropriate waiting
time is allowed for preventing over-waiting time problem. The channel
complexity of the algorithms is O(n2) since they employ a test method of
mesh-structure. The numbers of signal ‘C’ and ‘O’ generated by the
proposed algorithms are same, while it is slightly larger than that of [1].

4. TEST ARCHITECTURE

In this section, we propose a method for testing distributed system using
Algorithm_LTS_DELAY with no coordination channels.

4.1 The Proposed Test Architecture

The number of coordination channels among the testers in distributed test
environment exponentially increases since the channels are connected as a
mesh. So, the diagnostic power of a tester diminishes due to the
communication overhead. In order to solve the problem, a test architecture
having O(n) channel complexity is proposed as Figure 11. Here Management
and Control Entity (MCE) receives signal ‘O’ from the testers and sends the
signal to them.

Figure 11. Proposed test architecture.

Here the transitions (state a, state b, x, y) and (state b, state c, x, y), and
the tester connected to Port(x ) should receive synchronization signals except
cases that Port(y) = null, Port(x) = Port(x ) and Port(x ) = Port(y). This is
because the testers are synchronized with other testers via only MCE.
Therefore, only signal ‘O’ is used to synchronize the testers. Figure 12
shows the result obtained by applying the proposed algorithm to the Figure 9.



83

Figure 12. An LTS for message exchange of the establishment of Q.2971.

To apply the proposed algorithm, extra signals are needed between the
testers and an MCE in case of the transitions having concurrent events or no
output for any input. To generate signal ‘OM,3’ to prevent backward output-
shifting faults for output ‘SETUP’ in “ADD PARTY/SETUP”, extra signal
‘O 1,M ’ is generated as shown in a box of Figure 12. Note that only MCE can
transfer signal ‘O’. Here, signal ‘OM,1 ’ is synchronization signal of Tester 1,
while Tester 1 applies input ‘ADD PARTY’ to the IUT.

The test architecture suggested in Figure 11 is more effective than
conventional distributed test architecture for testing Q.2971. It is because
modification of test architecture is minimal and test errors caused by channel
faults becomes less while the number of call receives increases. However,
there may be a bottleneck in MCE due to the increase of signal ‘O’s.

5. CONCLUSION AND FUTURE WORK

In this paper, a LTS generation algorithm has been proposed to test a
distributed system using logical clock. Proposed algorithm classifies the
events into concurrent or causal by labeling and comparing the logical clock
values of the events of TS. Based on that, it generates additional signals ‘C’
and ‘O’ to control concurrent events and inserts them to the TS for each
distributed object.

We have also proposed a variation of the LTS generation algorithm for
which the output receive delay can be nonzero in distributed test architecture
with channels among testers. It can automatically produce LTS onto already
generated TS. Analyzing test scenario given with the proposed algorithm
using reachability tree demonstrates that the proposed algorithm can solve
the control-observation problem including output-shifting faults in a formal
way.



84

In conventional distributed test architecture, the number of channel
increases non-linearly since channels among testers are connected as a mesh.
To overcome this drawback, a test architecture having O(n) channel
complexity is proposed where the testers are not directly connected with
each other. With this, diagnostic power of the testers can increase owing to
the simplified test architecture.

As future work, over-waiting problem and appropriate ways to test
distributed system using a dynamic testing method will be studied.

REFERENCES

[1] M. Benattou, L. Cacciari, R. Pasini, and O. Rafiq, “Principles and Tools for Testing
Open Distributed Systems,” Int’l Workshop on Testing of Communicating Systems,
pp.77-92, Budapest, Hungary, September 1999.

[2] A. Ulrich and H. Konig, “Architectures for Testing Distributed Systems,” Int’l Workshop
on Testing of Communicating Systems, pp.93-107, Budapest, Hungary, September 1999.

[3] G. Luo, R. Dssouli, G.v. Bochmann, P. Venkataram, and A. Ghedamsi, “Test Generation
With Respect To Distributed Interfaces,” Computer Standards and Interfaces, pp.119-132,
1994.

[4] K. Tai, R. Carver, and E. Obaid, “Debugging Concurrent Ada Programs by Deterministic
Execution,” IEEE Trans. Software Engineering, Vol. 17, No. 1, pp.45-63, January 1991.

[5] M. Kim, S. T. Chanson, S. Kang, and J. Shin, “An Enhanced Model for Testing
Asynchronous Communicating Systems, ” FORTE/PSTV’99, June 1999.

[6] C. Fidge, “Logical Time in Distributed Computing Systems,” IEEE Computer, pp.28-33,
August 1991.

[7] G. Luo, G. v. Bochman, and A. Petrenko, “Test Selection Based on Communicating
Nondeterministic Finite-State Machines using a Generalized Wp-Method,” IEEE Trans.
Software Engineering, Vol. 20, No. 2, pp.149-162, February 1994.

[8] Y. C. Young and K. C. Tai, “Observational Inaccuracy in Conformance Testing with
Multiple Testers,” IEEE 1st Workshop on Application-specific Software Engineering
and Technology,  pp.80-85, 1998.

[9] T. V. Gioles, I. Schieferdecker, M. Born, M. Winkler, and M. Li, “Configuration and
Execution Support for Distributed Tests,” Int’l Workshop on Testing of Communicating
Systems, pp.61-76, Budapest, Hungary, September 1999.

[10] G. Coulouris, J. Dollimore, and T. Kindberg, “Distributed Systems, Concepts and
Design,” Second Edition, Addison-Wesley, 1994.

[11] H. Herzog and K. Sunderhaft, “General Framework for fault tolerance from ISO/ITU
Reference Model for Open Distributed Processing (RM-ODP),” Object-Oriented Real-
Time Dependable Systems, pp. 111-118, 1999.

[12] Y. Jung and J. Lee, “Experiences with Generation of Conformance Test Suite for Q.2971
Network-side Testing,” Information Networking, pp. 286–289, 1998.

[13] ITU-T Draft Recommendation, Q.2971 B-ISDN Digital Subscriber Signaling No. 2
(DSS2) – User Network Interface layer 3 Specification for Point-to-Multipoint
Call/Connection Control, 1995.

[14] Telelogic SDT3.2: Getting Started, Part1: Tutorials on SDT Tools, Telelogic, September
1997.


	DISTRIBUTED TEST USING LOGICAL CLOCK
	1. INTRODUCTION
	2. BACKGROUND
	3. THE PROPOSED ALGORITHM
	3.1 The Problems in Existing Test Method
	3.2 The Proposed Local Test Sequence GenerationAlgorithm
	3.3 Extension of the Proposed Local Test SequenceGeneration Algorithm

	4. TEST ARCHITECTURE
	4.1 The Proposed Test Architecture

	5. CONCLUSION AND FUTURE WORK
	REFERENCES




