
A METHOD TO GENERATE
CONFORMANCE TEST SEQUENCES
FOR FSM WITH TIMER SYSTEM CALL

Takanori Mori†, Kohei Tokuda†,
Harumasa Tada†, Masahiro Higuchi‡ and Teruo Higashino†
†Dept. of Info. and Math. Sci., Osaka Univ., Toyonaka, Osaka 560-8531, Japan
{t-mori, k-tokuda, tada, higashino}@ics.es.osaka-u.ac.jp
‡ School of Sci. and Eng., Kinki Univ., Higashiosaka, Osaka 577-8502, Japan
higuchi@ee.kindai.ac.jp

Abstract In this paper, we propose a method to generate conformance test se-
quences for communication protocols modeled as FSM with timers. The
test sequences generated by the proposed method can detect any single
fault of timer commands or destination states in the transitions on pro-
tocol machines. For each single timer command fault, we give sufficient
conditions that a given IUT is (or is not) equivalent to its specification.
Based on these sufficient conditions, we give a method for generating
test sequences. For each destination state fault, we give a test sequence
generation method based on Wp-method. To show the usefulness of
this method, we have developed a system for generating test sequences,
and applied it to DHCP (Dynamic Host Configuration Protocol). As a
result, we have generated the test sequences efficiently.

Keywords: conformance testing, test case generation, embedded system, FSM, timer

1. INTRODUCTION
Recently, complex systems consisting of two or more cooperating com-

ponents are commonly used. In such complex systems, interactions be-
tween components cannot be observed and controlled from their environ-
ment, usually[1]. Conformance testing for complex systems are discussed
in a lot of papers[2, 3, 4].

Communication protocols which use timer functions provided by op-
erating systems (OS) also can be viewed as such complex systems. In
this paper, we discuss conformance testing of such protocols. A sys-
tem considering in this paper consists of a FSM based protocol machine
and timers. A protocol machine is modeled as a deterministic finite s-
tate machine (DFSM) which uses timer functions of OS through system

http://dx.doi.org/10.1007/978-0-306-47003-5_29

302

calls. The interactions between a protocol machine and timers cannot
be observed and controlled from their environment.

In conformance testing for specific subsystems of complex systems, a
given complex system is divided into two components; (i) Spec : the
subsystem of the test target, and (ii) Context : the subsystems in the
complex system other than Spec. The context is assumed to be correctly
implemented. A system consisting of IUT (Implementation Under Test)
and Context is called SUT (System Under Test). Such testing is called
embedded testing[5] or gray box testing[2].

For embedded testing, we must consider the following features of com-
plex systems; (i) although the IUT does not conform to its specification
Spec , the behavior of the resulting SUT may conform to Spec·Context,
and (ii) a single fault of IUT may cause multiple faults of SUT.

Embedded testing has been mainly investigated by assuming that each
component of SUT is modeled as DFSM[2, 3, 4]. Although timers can
be modeled as DFSM, the numbers of states are usually large. We will
consider the above features of timers.

The remainder of this paper is organized as follows. In Section 2, we
describe the formal model of FSM with timers. In Sections 3 and 4, we
discuss a test sequence generating method. In Section 5, we explain an
experiment of applying the proposed method to DHCP.

2. COMMUNICATION PROTOCOLS WITH
TIMER SYSTEM CALL

Figure 1. Communication protocols with timer system call

In this paper, we consider a class of communication protocols shown
in Figure 1. In this model, a communication entity consists of a finite
state protocol machine and multiple timers. The interactions between
the protocol machine and timers are (i) timer commands (enabling or
disabling timers) from the protocol machine to timers, and (ii) timeout
notifications from timers to the protocol machine. Assume that the
timer function is provided by operating systems. The timer commands
are given as system calls, e.g. set-timer or del_timer in Linux. The

303

timeout notifications are given as signals. These interactions cannot be
observed and controlled from their environment.

2.1. Timer
In general, operating systems can manage multiple timers. A user pro-

cess can enable or disable individual timer through system calls. Here,
the timer period from enabling a timer to expiring the timer is called
the timer expiring time. The timer expiring time is specified as a pa-
rameter of the system call. After enabling a timer, if the timer expiring
time elapses without disabling or re-enabling the timer, then the timer
expires and produces a timeout signal.

We assume that each timer can be identified by a timer number and
the timer expiring time is fixed for individual timer. A specification of
timers is defined by a vector T of timer expiring times. v[i] denotes the
i-th element of a vector v. T [i] denotes the timer expiring time of timer
i. In order to describe a state of timers, we introduce a timer value
vector . τ [i] denotes the current value of timer i. τ [i] has an integer
value (0 ≤ τ [i] ≤ T [i]) or ⊥ . τ [i] = ⊥ means timer i is not active.
We assume that ⊥ > x and ⊥ – x = ⊥ , for all x ∈ N (N : the set
of non-negative integers). When timer i is enabled, τ [i] is set to T [i] .
When timer i is disabled, τ [i] is set to ⊥ . The values of all τ[i] decrease
one by one simultaneously every time unit. When τ [i] becomes zero,
timer i produces a timeout signal and τ [i] becomes ⊥ . We define I [i]
as the set {0 1, . . . , T [i], ⊥}. T denotes the set of timer value vectors
{ | τ [i] ∈ I [i]}.

If there exists a timer whose value is zero, a unit time never elapses. If
there exist two or more timers whose values are zero, the timers produce
timeout signals in the increasing order of their timer numbers. If a timer
i whose value is zero is re-enabled or disabled, τ [i] is set to T [i] or ⊥ ,
respectively. Such a timer does not produce a timeout signal.

2.2. Protocol machine
A protocol machine is modeled as a Mealy deterministic finite state

machine (DFSM) and defined as the following 6-tuple (Q , X , n , Y, H , s0) .

Q : a finite set of states.
X : a finite set of external input symbols.
n : the number of timers.
Y : a finite set of external output symbols.
H : a finite set of transitions (u , v , x , y,).

u, v ∈ Q : source state, destination state.
x ∈ (X {l, . . . , n}) : input.
y ∈ Y : external output.

∈ 〈S, D, N〉n : timer command vector.
s0 : an initial state.

304

A state transition is executed when a protocol machine receives an in-
put (an external input or a timeout signal). State transitions caused by
external inputs and timeout signals are called external input transitions
and timeout transitions, respectively. As protocol machines are deter-
ministic, the current state and an input can determine the destination
state and outputs (an external output and a timer command vector)
uniquely. We assume that state transitions are executed instantaneous-
ly. A timer command vector is a vector = (p[1], p [2], . . . , p[n]). p [i]
denotes a command for timer i. The command is either S, D or N. S is a
command enabling a timer. D is a command disabling a timer. N denotes
null operation for a timer.

We assume that protocol machines are reduced. We also assume that
each protocol machine has a reliable reset feature. If a protocol machine
receives a reset input, the protocol machine is reset to its initial state and
disables all timers. If a protocol machine receives an undefined input,
the protocol machine is reset and produces an error output. With such
error transitions, protocol machines are completely specified.

Protocol re-transmitting a message when timeout occursFigure 2.

Example 1 Figure 2 is a protocol machine which re-transmits messages
when a timer expires. Transmitting a message to a receiver, the proto-
col machine enables both Timer 1 and Timer 2. The protocol machine
re-transmits the message every expiration of Timer 1 until receiving an
Ack message. Receiving a timeout signal of Timer 2, the protocol ma-
chine stops re-transmitting the message. In Figure 2, Timeout[1] and
Timeout[2] denote timeout signals of Timer 1 and Timer 2, respectively.

2.3. FSM with timers
For a protocol machine M = (Q , X , n , Y , H, s0) and a timer specifi-

cation T, if n equals to the dimension of T , M · T denotes the system
consisting of M and T . We use a pair ξ = 〈s , 〉 of a state and a timer

305

value vector to describe an entire state of M · T where s ∈ Q and ∈
Such a pair is called a composite state of M · T. The set of all composite
states of M · T is denoted by Q T . The initial composite state of M · T
is ξ0 = 〈 S0 , ⊥n 〉 , where s0 is the initial state of M, and x n (x ∈ N ⊥)
denotes a vector that all elements of the vector are x.

Given a composite state 〈s, 〉, if there exists an integer i (1 ≤ i ≤ n)
such that τ [i] = 0 and τ [j] > 0 for 1 ≤ j < i, then 〈 s , 〉 is said to be
timer i expiring state. Γ [i] denotes the set of timer i expiring states.
〈s, *〉 denotes the set of composite states The
timer value vector part of a composite state ξ is denoted by τ(ξ). For
the set of composite states Ξ, τ (Ξ) denotes the set of timer value vectors

We use H T to denote the set of composite state transitions of M · T.
HT is the set of composite state transitions There exist
three kinds of transitions.

1. external input transitions :
For an external input transition (s, s ' , x , y,) ∈ H there exist
composite state transitions on M · T w h e r e

and

2. timeout transitions :
For a timeout transition (s, s', Timeout[k], y,) ∈ H, there exist
composite state transitions on M · T w h e r e

and

3. time elapse transitions :
There exist composite state transitions on
M · T where

Ht denotes the set of composite state transitions on M · T correspond-
ing to t ∈ H. Also He denotes the set of the time elapse transitions.

For a transition denotes the input/output part
of denotes the source composite
state and the destination composite state of η, respectively.

A composite state transition string is simply called a string. Given a
string r is said to be executable from a composite

306

state ξ 1 ∈ Q T , if there exist composite states such
that

Example 2 A string is executable from the initial com-
posite state of the protocol machine shown in Figure 2 where η ∈ H1 t 1,

We extend IO and δ to accept a string or a set of strings. For a string
r, δ (r) denotes the destination composite state of the last transition of
r . T S(ξ) denotes the set of strings which are executable from ξ, and
T Sn (ξ) denotes the set of strings in T S(ξ) whose length are n. R(ξ)
denotes the set of composite states δ(T S(ξ)). We may explicitly express
the target machine M in our notations, like T SM (ξ) or R M (ξ).

2.4. Related work
Timed automata[6, 7] are known as a model for describing and an-

alyzing protocols which deal with time dependent behaviors. A timed
automaton has several timers. The timer values increase by time elapse,
and we can give timing constraints for transitions by simultaneous in-
equality on timer values. In state transitions, the timer value can be
reset to zero. Although we do not give the proof, a timed automa-
ton can simulate our FSM with timers. It means that the procedures
for analyzing timed automata are also effective for analyzing FSM with
timers.

3. TEST SEQUENCES DETECTING SINGLE
FAULT

Figure 3. Test architecture

We consider a test architecture for FSM with timers (see Figure 3). In
this architecture, the tester can measure time through timer system calls
although the tester cannot observe and control the interactions between
the protocol machine M and timers. We assume that the tester receives

307

the timeout signals from timers after receiving all outputs from M. W e
use this assumption to construct test sequences in Section 3.4.

3.1. Fault model
We introduce a fault model for transitions of the protocol machines

as follows.

timer command faults :
An element of timer command vector of a state transition differs
from that of the specification.

destination state faults :
A destination state of a state transition differs from that of the
specification.

external output faults :
An external output of a state transition differs from that of the
specification.

In this paper, we focus to detect single faults. For a given specification
M = (Q, X, n, Y, H, s 0) and T, each faulty implementation can be denot-
ed by M [t ' / t] = (Q, X, n, Y, H', s 0) and T such that H' = H \ { t} ∪ {t'}
where t' differs from t only in one element of the timer command vector,
the destination state or the external output.

3.2. IO equivalent implementations
In a complex system, although an implementation I does not conform

to the specification S, a composed machine I · C (C is a context) may
conform to S · C [2, 3]. It is also true in our model of FSM with timer-
s. It means that some implementations which do not conform to the
specification cannot be externally distinguished from the specification
in context. We introduce the following IO equivalent relation.

Definition 1 Given two states ξ1 of AT and ξ2 of BT , ξ 1 and ξ2 are
said to be IO equivalent, written ξ1 ≡ ξ2 , if IO(T S (ξ1)) = I O (T S (ξ2)).

Definition 2 AT and B T are said to be IO equivalent, written AT ≡
B T , if the initial composite states of AT and B T are IO equivalent.

Given a protocol machine M and an implementation M [t ' / t] which
contains a single timer command fault or destination state fault, M [t'/t]⋅
T may be IO equivalent to M · T. On the other hand, if an implemen-
tation M [t ' / t] which contains a single external output fault, M [t ' / t] · T
is not IO equivalent to M · T except the case that the faulty transition
is not executable, since our tester can observe external outputs.

308

Figure 4. A faulty implementation IO equivalent to the specification

Example 3 For the protocol machine M shown in Figure 4, let us con-
sider a faulty implementation M[t'1 / t1] in which the transition t1 is im-
plemented as t'1 .

The initial state of M is 〈 s1 , (⊥ , ⊥)〉. In addition, after moving to
s 1 by transition t 3 , (τ1, τ2) = (⊥ , ⊥). Thus, (τ1 , τ2) = (⊥ , ⊥) holds
whenever M is in s 1 . It also holds for M[t'1 / t 1].

Let us consider strings which are executable from 〈s 1, (⊥ , ⊥)〉 i n M
and M [t'1 / t 1]. After executing t1 or t'1 , M is in 〈s2 , (3, ⊥)〉 and M [t'1 /t 1]
is in 〈 s 2, (3, 8)〉. For the both composite states, timer 1 will expire
after three time elapse transitions. By the timer expiration, transi-
tion t 2 is executed, M · T is in 〈 s3, (⊥ , 8)〉 and M[t'1 /t 1] · T is also in
〈 s3 , (⊥ , 8)〉 . Furthermore, for the strings corresponding the above be-
haviors, IO (η1η2η3η4η5) = I O(η'1η'2η'3η'4η'5) where η1 ∈ H t1 , η '1 ∈ H t '1,
η2 , η3 , η4 , η'2 , η'3 , η'4 ∈ He and η5 , η'5 ∈ Ht 2 . Thus M · T ≡ M [t'1 / t1] · T.

3.3. Fault detecting sequence
For every implementation M[t' / t], the equivalence between M · T and

M[t' / t] · T can be decided by composing two finite automata which accept
IO(TSM · T(ξ0)) and I O(TSM [t' / t] ·T (ξ0)) and deciding their equivalence.
We can compose the above two automata in a similar way to the com-
position of the region automata from timed automata[6].

Since protocol machines are assumed to be deterministic and com-
pletely specified, if M · T is not IO equivalent to M [t' / t] · T, there exist
at least one IO sequence io which is executable from the initial compos-
ite state of M · T and is not executable from that of M[t' / t] · T. We can
adopt such a sequence io as a fault detecting sequence.

3.4. Translating IO sequences to test sequences
Let io be an IO sequence obtained in the previous section. Since i o

is merely an IO sequence of M · T, we have to translate io to a test

309

sequence observable from our tester. Since one or more consecutive
timeout transitions occur after at least one time elapse transition, a
string of M · T should be an element of the set denoted by a regular
expression {(E* F) | (E + G +)}*E*, where E denotes the set of time elapse
transitions, F and G denote the set of external input transitions and that
of timeout transitions, respectively. The translation is as follows.

IO sequences corresponding to E*F :

Set(n) means that the tester sets a timer to n. WE means that the
tester Waits Enough until an output comes. TO means a timeout
signal corresponding to Set(n). If the tester receives a timeout
signal after setting a timer to n, we can guarantee that n t ime
units have passed.

IO sequences corresponding to E + G + :

We treat E + as E * E. From the assumption, the tester can rec-
ognize the timeout signal for Set(1) after observing all outputs
y 1 · · · y m of timeout transitions.

IO sequences corresponding to E* :

Example 4 For the protocol machine shown in Figure 2, suppose that
the transition t1 is implemented as t' 1.

t 1 = (Init, Wait, Send, Msg,(S, S))
t'1 = (Init, Wait, Send, Msg,(N, S))

The following IO sequence is a test sequence detecting the fault.

(Send/Msg)(Set(2)/–)(WE/TO)(Set(1)/–)(WE/Msg)(WE/TO)

The specification accepts the above IO sequence, while the faulty im-
plementation cannot accept it.

310

4. EFFICIENT TEST SEQUENCE
GENERATION

In general, if we enumerate all faulty implementations, check their
IO equivalence and generate the corresponding test sequences, the set
of the test sequences can distinguish every faulty implementation with
a single fault. However, this method may be a obstacle to generating
test sequences rapidly. To reduce the time necessary for test sequence
generation, we try to deal with multiple faults together and/or generate
test sequences by analyzing a smaller FSM than M · T.

Since external output faults can be immediately detected by executing
the faulty transitions and observing the external outputs, we will focus
on detecting timer command faults and destination state faults. We
begin with enumerating the reachable states of M· T and generate strings
which lead M · T from the initial composite state to each reachable
composite state.

4.1. Test sequences for timer command faults
Assume that the specification is given as M = (Q, X, n, Y, H, s0). An

faulty implementation M [t' / t] contains a single timer command fault for
timer i on a transition t = (u, v, x, y,) ∈ H.

We will discuss sufficient conditions for M· T ≡ M [t' / t] · T and M · T
M[t'/t] · T which can be checked by analyzing smaller machines. To
consider such conditions, we introduce the following relation between
composite states.
Definition 3 Given two composite states ξ and ξ ', we write ξ<i>ξ' i f ξ
and ξ ' differ only in the value of timer i.

For ξ ∈ Q T and appropriate transitions η ∈ Ht and η ' ∈ H t ' i . e .
ρ(η) = ρ (η') = ξ , δ (η)<i>δ(η') or δ (η) = δ (η') holds. Let us consider two
composite states ξ and ξ ' such that ξ <i>ξ', a transition z other than the
timeout transition of timer i and two transitions η , η' ∈ H z which are
executable at ξ and ξ ', respectively. If the timer command for timer i
of z is either S or D, δ (η) = δ (η') holds. On the other hand, if the timer
command for timer i of z is N, δ(η)<i>δ(η') still holds. It means that only
strings consisting of the transitions corresponding to transitions whose
timer command for timer i is N can distinguish such ξ and ξ '.

By the above consideration, we introduce a sub-protocol machine
MN = (Q, X, n, Y, HN , s 0) where HN = {z = (s, s', a, b,) ⎢ z ∈ H Λ p [i] =
N Λ a ≠ Timeout[i]}.

We introduce the following equivalence between strings.
Definition 4 Assume that the sets of state transitions of M and M[t'/t]
are H = {t, t1 , . . . , t k } and H' = {t' , t 1 , . . . , t k}, respectively. Two strings
q (= q1 ⋅ ⋅ ⋅ q m) and r(= r1 ⋅ ⋅ ⋅ r n) of (TS M · T (ξ0) ∪TSM [t'/t] ·T(ξ0)) are said

311

to be { t, t'}-equivalent, written , if (1) m = n, (2)

We extend the relation to the relation between the sets of strings.

Definition 5 Two sets of strings A, B are said to be { t, t'}-equivalent,
written

Since composite state transitions are translated to IO sequences u-
niquely and composite state transitions corresponding to t or t' are
translated to the same IO sequence, the following lemma holds.

Lemma 1 For M · T and M[t'/t] · T, if then
M · T ≡ M [t'/t] · T.

In the following, we will consider a condition to decide

For the strings whose length are one, the following lemma holds.

Lemma 2 Given two composite states ξ of M · T and ξ ' of M[t'/t] · T,

Proof Assume that Since the executability of
external input transitions does not depend on the values of timers, if
an external input transition is executable at ξ , then the corresponding
transition is also executable at ξ '. Next, since ξ <i>ξ' and timeout tran-
sition caused by timer i is not executable at both ξ and ξ ', the timeout
transition which executable at ξ is {t, t'}-equivalent to that of ξ '. Both
the values of timer i at ξ and ξ ' are greater than zero. Hence if the time
elapse transition is executable at ξ, then the transition is also executable
at ξ '. The case of ξ = ξ ' can be shown in a similar way.

Table 1 describes a necessary and sufficient condition for

i.e. For example, the first row denotes that
denotes the set of timer value vectors at state u

cannot reach [i] after executing a transition corresponding to t' at

Lemma 3 The followings hold if and only if “condition” holds for every
element in “timer value vector” of the row according to the case of p [i]
and p'[i] in Table 1.

1.

2. For each and corresponding

312

Table 1. Necessary and sufficient condition for

The if part of Lemma 3 can be shown in induction using Lemma 2.
By Lemma 1 and Lemma 3, if M · T and M [t’/t] · T satisfy the conditions
shown in Table 1, M · T ≡ M [t'/t] · T holds. The conditions in Table 1
can be checked by exploring a smaller FSM. Unfortunately, we have to
compose the automaton for M[t'/t] · T in the case of p [i] =S and p'[i] =N
even with Lemma 3.

In the case that the “condition” does not hold, a string r which leads
M · T or M [t'/t] · T from to a timer i expiring state
is obtained. By adding the transfer string from the initial state to
in front of r, a string r0 can be obtained. r 0 leads M · T or M [t'/t] · T
from ξ 0 to a timer i expiring state.

Next, we will consider a sufficient condition for M · T M[t'/t] · T .

Lemma 4 For M · T and M[t'/t] · T, if there exist two { t, t'}-equivalent
executable strings r of M · T and r' of M[t'/t] · T, and if two composite
states δ(r) = and δ(r') = satisfy either one of the following
conditions, then M · T M[t'/t] · T holds.

Proof Suppose that one of the above conditions holds. If the value of
timer i is zero at δ (r) or δ (r'), the values of other timers are not zero.
Hence, an output caused by timeout of timer i is observed.

Based on the above lemmas, we can summarize the test sequence
generating procedure as follows.

313

s t e p I According to the types of faults, check the condition in Table
1. If the condition holds, we do not generate a test sequence.
Otherwise, we obtain the above mentioned string r0 .

If r 0 and corresponding r' 0 satisfy the condition of Lemma 4, we
can adopt r0 as a fault detecting string. Otherwise, go to step II.

s tep II By the way described in Section 3.3, we can obtain a fault
detecting string.

4.2. Test sequences for destination state faults
Since the specification of protocol machines is assumed to be reduced,

we can use existing test sequence generating methods, e.g. Wp-method
[8], UIOv-method[9], to obtain strings which distinguish each state. We
choose Wp-method for test sequence generation. However, if a string
contains timeout transitions, the string may not be executable. Hence,
we must decide whether the string is executable.

Given specification of a protocol machine M = (Q, X, n, Y, H, s0), we
consider to generate a test sequence for detecting destination faults on
t = (u, v, x, y,) ∈ H. We generate test sequences step by step. In the
first step, we generate strings considering only external input transitions.

s t e p 1 Find a state transition sequence which distinguishes v (the des-
tination state of t) from w 1 ∈ (Q\ {v}) and contains only external
input transitions in M. If such a state transition sequence r exist-
s, we can adopt a string T r(u) · η t · R as a fault detecting string
where η t is a composite state transition corresponding to a target
transition t, Tr(u) is a transfer string which leads M · T from the
initial composite state to a composite state in which η t is
executable, and R is a string corresponding to r.

s tep 2 Let w 2 ∈ (Q \ {v}) be a state which cannot be distinguished
from v by any string consisting of external input transitions. Find
a state transition sequence t1 t 2 · · · t n ∈ H * which distinguishes v
from w 2 and decide whether there exists a string in

executable in M · T. Recall that H e is the set of time
elapse transitions. If such a string exist, we can generate the fault
detecting string by adding some appropriate transfer string.

step 3 If any string in is not executable, there
must be unexecutable timeout transitions t k in the string. So as
shown in Figure 5, if timer i is active in some composite state

and there exists a cycle c1 · · · c m consisting of transitions
whose commands for timer i is N, then we try to add the cycles in
front of the unexecutable transition tk = (sk , s k +1, Timeout i, y,).

314

Figure 5. String extension

We also check whether there exists a string in
executable in M · T.

step 4 For a state w 3 ∈ (Q \ {v}) at which we cannot find a string in
the above steps, we can obtain a fault detecting string in the way
described in Section 3.3.

In step 1, only a specification M is analyzed. In step 2 and step
3, a specification with timers M · T is analyzed. In step 4, the system
consisting of a faulty implementation and timers M[t'/t]·T is analyzed.

5. AN EXPERIMENT
We developed a test sequence generating system based on the pro-

posed method, and applied the system to DHCP (Dynamic Host Con-
figuration Protocol) [10].

5.1. Using simultaneous inequality
In composing a finite automaton of M · T, the state space explosion

problem arises for protocols containing timers with large T[i] values, e.g.
two or more T[i] = 1000 timers.

To avoid this problem, we introduce simultaneous inequality to ex-
press the set of timer value vectors. The inequalities are classified into
the following two types; (i) an inequality τ[i] ≤ C o r τ[i] ≥ C spec i f i e s
the upper limit or the lower limit C (a constant value) of timer i, (ii)
an inequality τ[i] – τ[j] ≤ C specifies the upper limit C of the difference
of two timer values τ[i] and τ[j]. Simultaneous inequality consisting of
the above types’ inequalities can be solved in O(lm) (l : the number of
inequalities, m : the number of variables) [11]. For using such simultane-
ous inequality, we have made a small modification on our test sequence
generating procedure.

A similar method is introduced in verification of timed automata [7].

5.2. A sample protocol
DHCP provides a framework for passing configuration information to

hosts on TCP/IP networks. DHCP is built on a client-server model,

315

where designated DHCP servers allocate network addresses and deliver
configuration parameters to clients dynamically. A client requests the
use of an address for some period of time (lease time). Both the client
and server use timers to watch the lease time. In DHCP, the time unit
is a second. The shortest lease time is an hour. A client re-transmits a
message based on timeout. The first interval of re-transmitting is four
seconds. The interval becomes twice every re-transmission.

If the lease time can be specified by a client, we cannot describe DHCP
in our model. Hence, we limit the lease time to an hour, i.e. 3600 time
units. In our model, the number of states is 11 and the number of state
transitions is 74. The number of timers is nine where five timers are
used to watch the interval of re-transmitting messages. The rest of the
timers are used to watch the lease time.

5.3. The result
As a result, we can decide the IO equivalence between the specifica-

tion and faulty implementation, and generate test sequences for non IO
equivalent implementations in a reasonable processing time. The exper-
iment is done on a PC (CPU : Pentium III 600MHz, Memory : 128MB).
The computing time and memory space are about seven minutes and
2MB, respectively.

In Table 2, we show the total number of the implementations con-
taining a single fault (test item), the number of IO equivalent imple-
mentations, and that of generated test sequences (non IO equivalent
implementations). These tables also tell the numbers of faulty imple-
mentations shown to be IO equivalent or generated test sequences in
every step, which correspond to each step described in Section 4.

Table 2. Result applying our method to DHCP

timer command
test item 1332
equivalent
test sequence 875
step I

0

457

1332
step II

destination state
test item 740
equivalent 0
test sequence 740
step 1 705
step 2, 3 35
step 4 0

For every timer command faults, the equivalence was determined and
the test sequence was generated for non IO equivalent fault in step I.
About 34% of faults are equivalent to M ·T. Most of these faults are
the one that the timer command N for non-active timers at source states
of target transitions are implemented as D.

For the destination state faults, about 95% of the test sequences are
generated in step 1, and no test sequence is generated in step 4.

316

There is no test sequence which is generated by enumerating all reach-
able states. Test sequences for DHCP are generated efficiently.

6 . CONCLUSIONS
In this paper, we have proposed a method to generate conformance

test sequences for FSM with timers. The test sequences generated by
this method can detect any single fault of timer commands or destination
states. We have developed a test sequence generating system and applied
it to DHCP. As a result, the test sequences was generated efficiently.

Acknowledgments
This work is partially supported by International Communications

Foundation (ICF), Japan.

REFERENCES
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

B. S. Bosik and M. U. Uyar, “Finite State Machine Based Formal Methods in
Protocol Conformance Testing : From Theory to Implementation”, Computer
Networks and ISDN Systems, Vo1.22, No.1, pp. 7–33 (1991).
L. P. Lima Jr and A. R. Cavalli, “A Pragmatic Approach to Generating Test
Sequences for Embedded Systems”, In Proc. IFIP 10th International Workshop
on Testing of Communicating Systems (IWTCS’97), pp. 288–307 (1997).
A. Petrenko, N. Yevtushenko and G. v. Bochmann, “Fault Models for Test-
ing in Context”, In Proc. Joint International Conference on 9th Formal De-
scription Techniques and 16th Protocol Specification, Testing, and Verification
(FORTE/PSTV’96), pp. 163–178 (1996).
A. Petrenko and N. Yevtushenko, “Fault Detection in Embedded Components”,
In Proc. IFIP 10th International Workshop on Testing of Communicating Sys-
tems (IWTCS’97), pp. 272–287 (1997).
IS0 9646, “Information Technology, Open System Interconnection, Confor-
mance Testing Methodology and Framework”, ISO/IEC 9646 (1991).
R. Alur and D. L. Dill, “A Theory of Timed Automata”, Theoretical Computer
Science, Vol. 126, No. 2, pp. 183–235 (1994).
R. Alur, “Timed Automata”, In Proc. 11th International Conference on
Computer-Aided Verification (CAV’99), LNCS 1633, pp. 8–22 (1999).
S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou and A. Ghedamsi, “Test
Selection Based on Finite State Models”, IEEE Trans. on Soft. Eng., Vol. 17,
No. 6, pp. 591–603 (1991).
W. Y. L. Chan, S. T. Vuong and M. R. Ito, “An Improved Protocol Test Gen-
eration Procedure Based on UIOs”, In Proc. ACM SIGCOMM’89, pp. 283–294
(1989).
R. Droms, “Dynamic Host Configuration Protocol”, RFC 2131, Bucknell Uni-
versity (1997).
T. H. Cormen, C. E. Leiserson and R. L. Rivest, “Introduction to Algorithms”,
The MIT Press, pp. 539–543 (1990).

	A METHOD TO GENERATE CONFORMANCE TEST SEQUENCES FOR FSM WITH TIMER SYSTEM CALL
	1. INTRODUCTION
	2. COMMUNICATION PROTOCOLS WITHTIMER SYSTEM CALL
	2.1. Timer
	2.2. Protocol machine
	2.3. FSM with timers
	2.4. Related work

	3. TEST SEQUENCES DETECTING SINGLEFAULT
	3.1. Fault model
	3.2. IO equivalent implementations
	3.3. Fault detecting sequence
	3.4. Translating IO sequences to test sequences

	4. EFFICIENT TEST SEQUENCEGENERATION
	4.1. Test sequences for timer command faults
	4.2. Test sequences for destination state faults

	5. AN EXPERIMENT
	5.1. Using simultaneous inequality
	5.2. A sample protocol
	5.3. The result

	6 . CONCLUSIONS
	Acknowledgments
	REFERENCES

