
EXECUTABLE TEST SEQUENCE FOR THE
PROTOCOL DATA FLOW PROPERTY¹

Wen-Huei (Paul) Chen
Department of Electronic Engineering, Fu Jen Catholic University, Taipei, Taiwan, R.O.C.
paultaipei@yahoo.com.tw

Abstract

Keywords:

A new test sequence generation method is proposed for testing the conformance
of a protocol implementation to its data portion modeled by an Extended Finite
State Machine which is represented by a Data Flow Digraph. All-Use and IO-
df-chain are two important criteria in selecting paths from the Data Flow
Digraph in order to generate a test sequence which traces the data flow property,
but it is a tedious process to select a path which satisfies the criteria while
guaranteeing that the generated test sequence is executable (i.e., one that has
feasible parameter values.) The proposed four-step method automatizes the
selecting process as well as optimizing the test sequence length. First, the Data
Flow Digraph is embedded with certain (but not all) parameter values so as to
construct a Behavior Machine Digraph where executable test sequences can be
directly generated. Second, executable test paths which trace every association
defined by each criterion are generated from the Behavior Machine Digraph.
Third, the Behavior Machine Digraph is embedded with these test paths so as to
construct the SelectUse and SelectIO Digraphs. Finally, the Selecting Chinese
Postman Tours of the two digraphs are used to generate the optimally
executable test sequences that satisfy the All-Use and IO-df-chain criteria.

Conformance testing, executable test sequence, data flow.

1. INTRODUCTION

A distributed system is composed of many parties (i.e., computers,
instruments, etc.) remotely connected by communication links (i.e., cables,

¹ This work is supported by the National Science Council of Taiwan under Grant
NSC892213E030025 and by Fu Jen University under a grant from the SVD section.

http://dx.doi.org/10.1007/978-0-306-47003-5_29

286

fibers, etc.) through which messages are transmitted, A protocol is the
representation as well as the orderly exchange of these messages that must
be agreed on by any party before using it, and a set of protocols is usually
layered to establish a complex communicating behavior. In each party, a
protocol is implemented in either software or hardware that has an upper (or
lower) interface to the upper-layer (lower-layer) protocol(s) [9]. The
objective of protocol conformance testing is to see if a protocol
implementation conforms to the protocol specification defined as a standard.
In a testing center, the protocol implementation is tested as a black box.
Inputs are sent from an external tester to the implementation through the
interfaces, and the outputs are checked to see if they are as expected. The
sequence of input/output pairs is the test sequence, and the number of inputs
is the test sequence length [5]. In general, such a test sequence is generated
from the protocol specification.

The protocol specification contains a control and a data portion [2]. The
control portion determines how messages are sent and received. It can be
considered a deterministic ² Finite State Machine (FSM) which contains
states and transitions [5]. Initially, the FSM is in a specific state called the
initial state. An input message (i.e., input or stimulus) will cause the FSM to
generate output message(s) (i.e., outputs or responses) and to change from
the current state to a new state; this process is a transition. The data portion
specifies other functions (e.g., quality of service) that involve the parameter
values associated with the messages. Informally, the data portion is
described in words which are then formulated into a set of rules among
parameter values [6]. Formally, the data portion is specified by an Extended
Finite State Machine (EFSM) [2] which is extended from the FSM by
introducing variables and parameters. Initially, the EFSM is in the initial
state and all the variables are set to initial values. The EFSM can receive an
input that has parameter values, which combine with certain variable values
to define a logic function (i.e., predicate.) That input will cause the EFSM
to change from the current state to a new state that depends on the truth
value of the predicate, then the EFSM updates the variable values according
to a computation function (i.e., action) while generating output(s) that have
certain parameter values.

In a data portion described by a set of rules, the generated test sequence
is executable if it has parameter values that do not violate any rule [1][6]. In
[6], Kwast converts the FSM and rules into a Behavior Machine Digraph, in
which paths can be used to generate the executable test sequence which
verifies the rules. In [1], Chen converts the Behavior Machine Digraph into

² “deterministic” means that for each input there is at most one transition
defined at each state.

287

a Selecting Digraph and proposes the Selecting Chinese Postman Algorithm
to find a specific tour of the digraph which generates a minimum-length
executable test sequence that verifies each rule at least once. In [2], Chen
generalizes the Selecting Digraph into a SelectO digraph which is used to
generate an executable test sequence that verifies both the control and data
portions. However, the data portions of many protocols which are described
in words cannot be formulated into rules. This paper is concerned with test
sequence generation from the data portion specified by an EFSM.

The EFSM of a data portion can be represented by a Data Flow Digraph,
where the inputs, outputs, predicates and actions of the EFSM are
represented by a set of nodes [11]. A test sequence generated from a path of
the digraph is executable (or feasible) if it has certain input parameter values
which make each predicate along the path to remain true. Because it is
infeasible to traverse all possible paths of the Data Flow Digraph, a test path
is usually selected according to a criterion which involves a data flow
property of the EFSM. In [12], a criterion is defined for observing the data
flow abnormality of the EFSM due to a fault model. However, it is difficult
for a test designer to construct a fault model that covers all possible faulty
implementations of the EFSM. In [10][11], the All-Use and IO-df-chain
criteria are defined for observing the data flow of variable values from where
they are defined (or input) to where they are used (output.) They have
become important criteria in EFSM testing.

A test path of the Data Flow Digraph is said to satisfy the All-Use (or IO-
df-chain) criterion if it can trace all the variable value associations defined
by that criterion. In order to trace³ an association, the test path starts from
the first node (i.e., the initial state) and proceeds to a specific node where a
property of that association is exhibited, then returns to the first node to
result in a complete path [11]. At the same time, we must ensure that the
complete path allows a feasible assignment of input parameter values which
makes all predicates along the path remain true. New complete paths must
be obtained until that all associations defined by the criterion are traced.
Unfortunately, this process is tedious and introduces a lot of overhead
sequences in taking the EFSM to/from the initial state. In this paper, we are
going to propose an automatic method to generate the executable test
sequences that satisfy the All-Use and IO-df-chain criteria as well as
optimizing the test sequence length.

We convert the Data Flow Digraph (the EFSM) into a Behavior Machine
Digraph, the paths of which can be used to generate executable test
sequences. Unlike the Global FSM which represents the complete behavior
of the EFSM by enumerating all possible parameter and variable values as
the inputs/outputs and states, the Behavior Machine only represents a partial

³ such a trace is different from the “trace” used in verification for proving the property.

288

behavior which will be used for testing. That is, only certain parameter (or
variable) values are embedded into the inputs/outputs (states) for
constructing the Behavior Machine where all predicates are removed [4].
For instance, the Simple Connection Protocol of 4 states (see next section) is
converted to a Global FSM of 768 states but is converted to a Behavior
Machine of 6 states. Multiple paths of the Behavior Machine Digraph trace
the same variable value association defined by the criterion, but only one
needs to be included into the final test sequence. Thus, we use the Selecting
Chinese Postman Algorithm to optimally select either one to construct a
minimum-length executable test sequence which traces each association at
least once.

In Section 2, the two criteria are reviewed. In Section 3, the method
based on the first criterion is proposed. In Section 4, the method based on
the second criterion is proposed. In Section 5, our conclusions are presented.

2. THE TWO DATA FLOW TESTING CRITERIA

Consider the Simple Connection Protocol (SCN). The control portion
specifies how to establish/release a connection. To establish a connection,
an input “CONreq” (i.e., connection request) from the upper interface causes
the SCN to output “connect” to the lower interface. Inputs “accept” or
“refuse” from the lower interface causes the SCN to output “CONrsp(+)”
(i.e., positive connection response) or “CONrsp(-)” (negative connection
response) to the upper interface. After the connection is established, an
input “Data” from the upper interface causes the SCN to output “data” to the
lower interface. To release the connection, an input “Reset” from the upper
interface cause the SCN to output “abort” to the lower interface. Notice that
the uppercase (or lowercase) first letter indicates that the message is related
to the upper (lower) interface.

The data portion specifies other functions of the SCN by two types of
variables. Variables of the first type are called the memory variable that
will store temporary values. In the SCN, the memory variable TryCount
stores the number of unsuccessful connection attempts and has values from 0
to 2, and the memory variables ReqQos and FinQos store the levels of
requested and final quality of service and have values from 0 to 3. Variables
of the second type are called parameter variables that will store the
parameter values of inputs. Let X(y) denote an input X which has a
parameter y, then the parameter variable denoted by X.y will store the value
of parameter y. This definition can be extended to multiple parameters. In
the SCN, the parameter variables CONreq.qos, accept.qos and data.qos will

289

store the values of the parameter “qos” of inputs “CONreq(qos)”,
“accept(qos)” and “data(qos)” respectively. They have values from 0 to 3.

The EFSM can be represented by the Data Flow Digraph of Figure 1,

Figure 1. The Data Flow Digraph of the SCN protocol

where the states, inputs, outputs and actions are represented by the state
nodes, input nodes, output nodes and action nodes which enclose symbols
that start with “s”, “i”, “o” and “a” respectively. Each predicate of the
EFSM is represented by one predicate-decision node (i.e., decision node)
and two predicate-outcome nodes (i.e., predicate nodes) which specify the
two possible outcomes 4 . The decision and predicate nodes enclose symbols
that start with “d” and “p” respectively. The execution sequence of nodes is
indicated by edge directions. For example, consider Figure 1. In the input
node “i1”, the value of variable CONreq.qos will be input according to the
statement “Input CONreq(qos).” Then, in decision node “d1”, the value of
CONreq.qos is decided to see whether it is larger than 1 or not. Then, the
EFSM may either arrive at either the predicate node p1 or predicate node p2

4 In [10][11], a predicate is represented by a predicate node and the results of the
predicates are represented by edges leaving that node.

290

which represents the two possible outcomes “CONreq.qos >1” and
“CONreq.qos ≤ 1.”

In Figure 1, a path is a sequence of nodes that are connected by edges. A
tour is a special path which starts and ends at the same node. A path can be
used to generate a test sequence by considering only the inputs and outputs
in the path. For example, the path [s1, a1, a2, a3, s2, i1, a4, d1, p1, o1, s2]
is used to generate the test sequence [Input CONreq(qos), Output
Nonsupport(qos)] (or simply [CONreq(qos)/Nonsupport(qos)]) by
considering only input “i1” and output “o1.” In reality, the parameter “qos”
must be given a value which makes predicate p1 hold true. For example,
[CONreq(0)/Nonsupport(0)] is not executable because predicate p1 will not
hold true, but [CONreq(2)/Nonsupport(2)] is executable. An executable
path is a path that allows parameter values to be assigned which causes each
predicate in the path to be true in order to generate the executable test
sequence. Not all paths are executable. For example, the path [s1, a1, a2, a3,
s2, i1, a4, d1, p2, o2, s3, i2, d2, p4, o3, s1] is not executable. It is because
that the value of variable TryCount becomes “1” in node a1. In order to pass
through predicate node p4 which requires that the value of variable
TryCount be equal to 2, the variable should increase its value in the
intermediate nodes. However, the only node that can increment the value of
TryCount is node a5, and that node is not in the path.

All-Use and IO-df-chain are two important criteria in selecting a test path
from the Data Flow Digraph [11]. The first criterion claims that we should
trace each variable from where it is defined (i.e., its value is first assigned) to
where that value is used. We first describe where and when a variable is
defined. At an input node, a variable is defined by an input statement. For
example, at input node i1 of Figure 1, variable CONreq.qos is defined by the
input statement “Input CONreq(qos)” which gives variable CONreq.qos a
value. At an action node, a variable is defined by a computation statement
which gives the variable a value. For example, at action node a1, variable
TryCount is defined by the statement “TryCount :=0” where variable
TryCount is assigned the value of 0. We then describe where and when a
variable is used. At a predicate node, a variable is used in the predicate
statement where the value of the variable will determine the result of the
predicate. For example, in Figure 1, variable CONreq.qos is used at
predicate node p1 because the value of CONreq.qos will determine whether
the predicate “CONreq.qos >1” is true or not. At an action node, a variable
is used in the computation statement where the variable value will determine
the value of another variable. For example, at action node a6, variable
ReqQos is used in the statement “FinQos := min(accept.qos, ReqQos)”
where the value of ReqQos determines the value of variable FinQos. At an
output node, a variable is used in the output statement where the value of the
variable is output. For example, at node o2, variable ReqQos is used in the

291

output statement “Output connect(ReqQos).” Table 1 lists the variables
defined and used in Figure 1.

Table 1. Variables defined and used at the nodes of the Data Flow Digraph of Figure 1
Variable Node where it is defined Node where it is used
CONreq.qos i1 a4 p1 p2
accept.qos i3 a6
TryCount a1 a5 a5 p3 p4
ReqQos a2 a4 a6 o2 o1
FinQos a3 a6 o5 o6

sequence) of the Data Flow Digraph is said to satisfy the All-Use criterion if
not all associations of variables and nodes form du-pairs. A path (or test

In tracing a variable X from node J (where X is defined) to node K
(where X is used), the All-use criterion claims that the variable cannot not be
redefined in the tracing process. Thus, to trace such an association, we must
construct the define-clear-use path5 which connects node J to node K in
such a way that the first node is the only node of the path where X is defined.
If such a define-clear-path exists, we say that variable X and nodes J and K
form an association called a define-use pair (or du- pair) du(J, K, X). For
example, consider Figure 1 and Table 1. Variable ReqQos and nodes a4 and
o2 form a du-pair du(a4, o2, ReqQos) because it can be traced by the define-
clear-use path [a4, d1, p2, o2], where variable ReqQos is defined exclusively
at node a4 and used at node o2. It is possible that many define-clear-use
paths can trace the same du-pair. But such a path may not exist at all so that

all possible du-pairs can be traced.
The second criterion (i.e., the IO-df-chain criterion) claims that we

should trace the data flow from an input node J (where a variable X is
defined) to an output node K (where a variable Y is used), where X and Y
can be either the same or different variables. Variables X and Y are input
and output parameter values that are controlled and observed by the testing
system respectively. Certainly, the value of variable X may not directly
affect the value of variable Y, but it may affect indirectly. That is, X may
affect another variable that in turn affects variable Y, and so on. For
example, consider the path [i1, a4, d1, p2, o2] of Figure 1. At node i1, the
EFSM receive an input “CONreq” which has a parameter “qos,” the value of
which is stored by the parameter variable CONreq.qos. At node a4, the
value of CONreq.qos affects the value of variable ReqQos. At node o2, the
value of ReqQos affects the parameter value of output “connect.” As a
result, we can control the parameter value of the input “CONreq” to observe

5 the definition is extended from the define-clear path of [10][11].

292

the parameter value of the output “connect.” Obviously, a sequence of
define-clear-use paths must be connected to trace this data flow.

By definition, a sequence of define-clear-use paths p1, p2 ,...,p r-1, p r ,..., p s
(for variables X1 , X 2 , ..., X r-1 , Xr , ...,Xs respectively) which starts from an
input node J and ends at an output node K form an input-output chain (i.e.,
io-chain) io(J, X 1, K, X s). The chain [p1, p2, .. .pr-1, p r ..., ps] can be used to
trace the data flow from an input node J where variable X1 is input to an
output node K where the value of variable Xs is output, because the value of
variable Xr is determined by the value of variable Xr-1 through a computation
statement in the node where pr-1 and pr intersect, i.e., variable Xr-1 affects X r
at the intersecting node (with the restriction that an action can has only one
statement so that Xr-1 cannot affect other variables). For example, [i1, a4]
is a define-clear-use path for variable CONreq.qos which starts from an
input node, and [a4, d1, p2, o2] is a define-clear-use path for variable
ReqQos which ends at an output node. The two paths are connected into an
io-chain io(i1, CONreq.qos; o2, ReqQos) which is [i1, a4, d1, p2, o2]. A
path (or test sequence) of the Data Flow Digraph is said to satisfy the IO-df-
chain criterion if all possible io-chains are traced.

3. THE METHOD FOR THE FIRST CRITERION

In Section 2, we have described the All-Use and IO-df-chain criteria that
are guidelines for selecting the test paths from the Data Flow Digraph. In
this section, we will propose a method which automatically generates the
executable test sequence that satisfies the first criterion. Our method
involves four steps.

The first step involves the conversion of the Data Flow Digraph (Figure
1)
into the Behavior Machine Digraph (Figure 2) where executable paths can be
directly generated. In general, a node J (Figure 1) is converted into nodes J1,
J2 , J3, ... (Figure 2)6 by embedding parameter values. If all parameter values
are embedded, the Behavior Machine Digraph will be very large. Hence, we
only embed parameter values that enable the removal of decision nodes. For
example, consider node i1 (i.e., CONreq(qos)) of Figure 1. The parameter
qos has values from 0 to 3, so that we can convert node “CONreq(qos)” into
four nodes “CONreq(0)”, “CONreq(1)”, “CONreq(2)”, “CONreq(3) .”
However, because either “CONreq(0)” or “CONreq(1)” can make predicate
p2 true (and either “CONreq(2)” or “CONreq(3)” can make predicate p1
true), we only create node “CONreq(1)” (i.e., node i11) and node

6 Without loss of generality, notations J1 , J 2 , J3 , ... of the Behavior Machine Digraph
represent the nodes converted from the node J of the Data Flow Digraph in this paper.

293

“CONreq(2)” (i.e., node i12). Then we remove the decision node d1 from
the digraph since no decisions are required there. Because every predicate in
the digraph is true, any path of the digraph can be used to generate an
executable test sequence. In Figure 2, the Behavior Machine is represented
by fine lines and text, but it includes some bold characters that will be used
in the next step for tracing the data flow. In general, a bold character “Xdef”
(or X use) is put on nodes J1, J2, J3 , .. of Figure 2 if variable X is defined
(used) at node J of Figure 1. For example, a bold character Cdef (an
abbreviation of CONreq.qosd e f) is put on nodes i11 and i12 of Figure 2,
because variable CONreq.qos is defined at node i1 of Figure 1 (see Table 1.)

Remarks:
C: CONreq.qos A : accept.qos T :TryCount R: ReqQos F:FinQos

def (use): variable defined (used) d at that node
Figure 2. The Behavior Machine Digraph of the Data Flow Digraph of Figure 1 (only

new statements other than that of Figure 1 are indicated)

294

The second step involves finding executable test paths of Figure 2 that
can trace the du-pairs of Table 1. Consider the du-pair du(J, K, X), where
variable X is defined at node J and used at node K. As described in Section
2, this du-pair is traced by a define-clear-use path of Figure 1 which starts
from node J and ends at node K and does not redefine the variable in the
intermediate nodes. In Figure 2, such an executable define-clear-use path
corresponds to specific paths which start from nodes J1, J2,..., J , . . , Jr s and
end at nodes K1 ,K2 ,...,Kp,... ,Kq where the symbols “Xdef ” can only be seen
in the starting nodes. These specific paths of Figure 2 can be constructed
from shortest paths of Figure 2 where nodes which have the symbol X def
(except the starting nodes) and their adjacent edges are (temporarily)
removed. For example, to trace the du-pair du(i1, a4, CONreq.qos) of Table
1 where “CONreq” is defined at node i1 and used at node a4, we find the
specific shortest paths which starts at nodes i11 and i12 and ends at nodes
a4 1 and a42 of Figure 2. These shortest paths are used to produce the
executable define-clear-use paths [i11, a41] and [i12, a42] that can trace the
du-pair du(i1, a4, CONreq.qos). The complete executable define-clear-use
paths of Figure 2 for tracing the du-pairs of Table 1 are shown in Table 2.

Table 2. Executable test paths of Figure 2 for tracing the du-pairs of Table 1
Label du-pairs2 of Table 1 Executable define-clear-use paths of Figure

1 du(i1,a4, CONreq.qos) [i11 , a4 1] or [i12, a42]
2 du(i1,p1, CONreq.qos) [i11, a41 , p1]
3 du(i1,p2, CONreq.qos) [i12, a42, p2]
4 du(i3, a6, accept.qos) [i3, a6]

5 du(a1, a5, TryCount)
[a 1 , a2, a3, s2, i12 , a42 , p2,o2 1 , s3 1 , i2 1,
p31 , a5 1]

6 du(a, p3, TryCount) [a1, a2, a3, s2, i12, a42 , p2,o2 1, s3 1 ,i21 ,p31]
7 du(a5, p3, TryCount) [a51, o22 , s3 2 , i2 2 , p3 2]

8 du(a5, p4, TryCount) [a52, o23, , s3 3 , i2 3, p4]

[a42 ,p2,o2 1] or

9
p2, o2

du(a4, o2, ReqQos) 2 1 , s3
,p2,o2

1 , i2 1, p3 1 , a5 1 ,o22] or
[a42 1,s3 1 i 21,p3 1,a51,o22,s3 2 ,i22 ,

2,a52,o23]
10 du(a4, a6, ReqQos) 2, p2, o2 1, s3 1, i3, a6]

11 du(a4, o1, ReqQos) [a41 , p1, o1]

12 du(a6, o5, FinQos) [a6, o5]
13 du(a6, o6, FinQos) [a6, o5, s4, i5, o6]

295

Figure 3. The SelectUse Digraph constructed from the Behavior Machine Digraph of Figure 2
by embedding the define-clear-use paths of Table 2 as bold edges

The third phase involves constructing a SelectUse Digraph of Figure 3 by
embedding the executable test paths of Table 2 into the Behavior Machine
Digraph of Figure 2. Generally, an executable define-clear-use path from
node J to node K is embedded as a bold edge from node J to node K, and a
bold label is put on the path to indicate the du-pair traced by the path. Cost
is assigned to the edge according the number of inputs that it contribute to
the final test sequence when that edge is traversed in the test path, because
the length of a test sequence is decided by the number of inputs that it has.
Thus, a fine edge is assigned a cost of 1 if it leaves an input node, and a bold
edge is assigned a cost which is the number of inputs contained in the
define-clear-use path represented by the bold edge. For example, consider
the executable test path [a1, a2, a3, s2, i12, a42, p2,o21, s31, i21 , p31, a51] of
Table 2 that traces the du-pair du(a1, a5, TryCount), which has the label “5.”
Because the path starts at node a1 and ends at node a51, it is embedded as a
bold edge from node al to a51. The bold edge is labeled with “5” and
assigned a cost of 2. An executable define-clear-use path that can trace
multiple du-pairs is embedded as an edge that has multiple labels. For
example, the define-clear-use path described above can trace two du-pairs of
Table 2, and we put labels “5” and “6” on it. For many bold edges that share
the same label, only one edge needs to be included in the final test path

296

because these bold edges represent the executable test paths that trace the
same du-pair. As a result, the Selecting Chinese Postman Tour of the
SelectUse Digraph (which is a minimum-cost tour where each type of label
appears at least once) can be used to generate a minimum-length executable
test sequence that traces all the du-pairs.

The fourth step involves using the Selecting Chinese Postman Algorithm
proposed in [1] to find the Selecting Chinese Postman Tour of the SelectUse
Digraph in order to generate the executable test sequence. The algorithm
contains two phases. The first phase replicates (or deletes) each edge of the
SelectUse digraph, resulting in a minimum-cost Selecting Symmetric
Augmentation (MCSSA) which satisfies the properties that i) each node has
the same number of entering and leaving edges and ii) each type of label
appears in the digraph at least once. The MCSSA can be obtained by
solving a system of integer programming equations formulated from the
SelectUse Digraph. The integer programming problem is solved by a branch
and bound algorithm which iterates to improve an initial solution [8]. When
the problem size is not very large, the branch and bound algorithm can find
the optimal solution. Otherwise, the branch and bound algorithm will at least
obtain a significantly improved solution if we can make the algorithm run at
long time. In the second phase, we check whether the MCSSA is an Euler
Digraph or a collection of disjoint Euler Digraphs [7]. In the former case, an
Euler Tour of the Euler Digraph is an Selecting Chinese Postman Tour of the
SelectIO Digraph. In the latter case, a tour will be used to connect these
disconnected Euler Digraphs into an Euler Digraph, so that the Euler Tour
algorithm can be applied. For Figure 3, the Lindo package [8] has solved the
integer programming equations in less than one second and results in an
Euler Digraph, resulting in the first case so that that the optimal tour is
found. The Selecting Chinese Postman Tour of Figure 3: [s1, a1, a2, a3, s2,
i1 1, 1 , a41 , 11, o1, s2, i11, 2, p1, o1, s2, i12, 1 , a42, 10 , a6, (13,12) , o6, s4,
i4, o4, s1, a1, a2, a3, s2, i12, 3 , p2, o21, s31, i3, 4 ,a6, 12 , o5, s4, i4, o4, s1,
al, a2, a3, s2, i12, 1, a4 2, 9, o 22 , s3 2, i22 , p32 , a52, o23, s33, i23, p4, o3, s1,
a1, (6, 5) , a51, 7 , p32, a52 , 8 , p4, o3, s1, a1, a2, a3, s2, i12, 3 , p2, o21, s31,
i3, 4 , a6, 12 , o5, s4, i4, o4, s1] is used to generate the minimum-length
executable test sequence [i11, o1, i11, o1, i12, o21, i3, o5, i5, o6, i4, o4, i12,
o21, i3, o5, i4, o4, i12 , o2 1, i21, o22, i22, o23 , i23, o3, i12, o21, i21, o22, i2 2,
o23, i23, o3, i1 2, o2 1, i3, o5, i4, o5] which traces all the du-pairs of Table 1.

4. THE METHOD FOR THE SECOND CRITERION

In Section 3, we have proposed a method to produce an executable test
sequence which satisfies the first criterion by finding the Selecting Chinese

297

Postman Tour of the SelectUse Digraph. In this Section, we are going to
extend the method to generate an executable test sequence which satisfies
the second criterion, i.e., the IO-df-chain criterion which requires tracing
each io-chain at least once. The extended method contains two steps.

The first step involves finding all io-chains of Figure 1. In the SelectUse
Digraph of Figure 3, we consider input nodes J1, J2, J3, ..., (converted from
node J where variable X is defined) to output nodes K1, K2, K3, ... (converted
from node K where variable Y is used). As described in Section 2, an io-
chain is constructed from a sequence of define-clear-use paths so as to
connect an input node to an output node (but notice that a sequence of
define-clear paths defined in [11] does not necessary form an input-output-
chain). We call those bold edges which leave input nodes J1, J2, J3, ..., that
are the define-clear-use paths for variable X as the (X-J) edges, and those
bold edges which enter output nodes K1, K2, K3, ..., that are the define-
clear-use paths for variable Y as the (Y-K) edges. A path which involves
only bold edges is a bold path. In the SelectUse Digraph, the shortest bold
path from these (X-J) edges to those (Y-K) edges can be used to generate the
sequence of define-clear-use paths which can trace io-chain io(J, X, K, Y).
Those specific shortest paths of the SelectUse Digraph can be obtained from
shortest paths of the SelectUse Digraph where fine edges are (temporarily)
removed. For example, the bold edge (i.e., the define-clear-use paths [i11, 1,
a41]) and another bold edge (i.e., [a4 1 , 1 1, o1]) compose an io-chain
io(i1,CONreq.qos, o1, ReqQos) = [i11, 1, a41, a41, 11, o1]. The complete io-
chains for Figure 1 obtained from these specific shortest paths of Figure 3
are shown in Table 3, where each io-chain is given a label.

Table 3. The io-chains for the Data Flow Digraph of Figure 1
Label

a

b

c

d

input-output-chains Composed define- Corresponding Executable
(Figure 1) clear-use paths (Figure 3) Paths (Figure 2)
io(i1,CONreq.qos,

o1, ReqQos)
[i11 , 1, a4 1 , 11 , o1] [i1 1, a41 , p1 o1]

io(i1,CONreq.qos,
o2, ReqQos)

[i12 , 1, a42 , 9 , o21]

[i1 2 , 1, a4 2, 9, o2 2]

[i1 2, 1 , a4 2, 9, o2 3]

[i1 2 , a4 2, p2, o2 1]
[i12, a42 , p2, o2 1,

s3 1, i2 1, p3 1, a51, o2 2]

[i1 2, a42 , p 2, o2 1,
s3 1, i2 1, p3 1, a5 1, o2 2,
s3 2, i2 2 , p3 2 , a52, o2 3]

io(i1, CONreq.qos,
o5, FinQos) [i1 2, 1, a4 2, 10 , a6, 12 , 05] [i12 , a4 2, p2, o2 1 ,

s3 1, i3, a6, o5]

io(i1, CONreq.qos, [i1 2, 1, a4 2 , 10, a6, 13 , 06] [i12 , a42, p2, o2 1 , s3 1 ,
o6, FinQos) i3, a6, 05, s4, i5, o6]

298

The second step involves constructing a SelectIO Digraph of Figure 4 by
embedding the executable test paths of Table 3 to the Behavior Machine
Digraph of Figure 2. Generally, an executable test path listed in Table 3
which starts from an input node J and ends at output node K is embedded as
a bold edge from vertex J to vertex K. The label which represents the io-
chain traced by the executable path is put on the edge (see Table 3 and
Figure 4.) Costs are assigned to the edges of the SelectIO Digraph similar to
the process described in the third step of Section 3 for assigning the cost to
the edges of the SelectUse Digraph. A Selecting Chinese Postman Tour of
the SelectIO digraph can be used to generate an minimum-cost executable
test sequence that checks each io-chain. The tour is obtained using the
algorithm described in the four step of Section 3. The Selecting Chinese
Postman Tour of Figure 4: [s1, a1, a2, a3, s2, i1 1, a , o1, s2, i12 , b , o21, s3 1,
i21, p31, a51, o22, s32, i22, p3 2, a52, o23, s33, i2 3, p4, o3, s1, a1, a2, a3, s2, i12,
(c, d), o6, s4, i4, s1] is used to generate the executable test sequence [i11, o1,
i12, o21, i21, o22, i22, , o23, i23 , o3, i12, o21, i3, o5, i5, o6, i4, o4] which
traces all the io-chains of Table 3.

Figure 4. The SelectIO Digraph constructed from the Behavior Machine Digraph of
Figure 2 by embedding the io-chains of Table 3 as bold edges

299

5. CONCLUSIONS

In this paper, we have proposed a method to automatically generate the
executable test sequence from the protocol specification for verifying two
data flow criteria, based on finding the Selecting Chinese Postman Tour of
the SelectUse and SelectIO Digraphs constructed from the Data Flow
Digraph of the protocol. The first phase of the Selecting Chinese Postman
Algorithm involves solving a system of integer programming equations so as
to find an augmentation. In our experiences of solving such equations
[1][2], a linear programming version of the formulation always yield integer
results. We want to check whether these equations satisfy a specific
property so that the linear programming approach can be applied.

Our method of minimizing the test sequence length can be easily
extended to minimizing the test sequence cost, by assigning cost to the edges
of the digraph. And the method can be combined with the duplexE digraph
method to generate a synchronizable and executable test sequence [3].

REFERENCES
[1] W. H. Chen, “Test sequence generation from the protocol data portion based on the

Selecting Chinese Postman algorithm,” Information Processing Letters, Vol. 65, 1998.
[2] W. H. Chen, “Executable test sequence for the protocol control and data portions,” Proc.

of IEEE Int'l Conference on Communications, New Orleans, U. S. A., 2000.
[3] W. H. Chen and H. Ural, “Synchronizable test sequence based on multiple UIO

sequences,” IEEE/ACM Trans. on Networking, Vol. 3, No. 2, 1995.
[4] K. T. Cheng and A. S. Krishnakumer, “Automatic functional test generation using the

extended finite state machine model,” Proc. IEEE Design Automation Conference, 1993.
[5] R. Dssouli, K. Saleh, E. Aboulhamid, A. En-Nouaary and C. Bourhfir, “Test

development for communication protocols: towards automation,” Computer Networks,
Vol. 31, 1999.

[6] E. Kwast, “Automatic test generation for protocol data aspects, “ Proc. IFIP Int'l Symp.
on Protocol Specification, Testing, and Verification , 1992.

[7] J. A. Mchugh, Algorithmic Graph Theory, Prentice-Hall, Englewood Cliffs, NJ, 1990.
[8] L. Schrage, LINDO 5.0 User’s Manual , Scientific Press., 1991.
[9] M. Schwartz, Telecommunication Networks: Protocols, Modeling and Analysis, Addison-

Wesley Publishing Company, 1987.
[10] H. Ural, “Test sequence selection based on static data flow analysis,” Computer

Communications , Vol. 10, No. 5, 1987.
[11] H. Ural, K. Saleh and A. Williams, “Test generation based on control and data

dependencies within system specification in SDL,” Computer Communications, Vol. 23,
2000.

[12] C. J. Wang and M. T. Liu, “Generating test cases for EFSM with given fault models,”
Proc. IEEE INFOCOM, March 1993.

	EXECUTABLE TEST SEQUENCE FOR THE PROTOCOL DATA FLOW PROPERTY¹
	1. INTRODUCTION
	2. THE TWO DATA FLOW TESTING CRITERIA
	3. THE METHOD FOR THE FIRST CRITERION
	4. THE METHOD FOR THE SECOND CRITERION
	5. CONCLUSIONS
	REFERENCES

