SYMBOLIC VERIFICATION
OF COMPLEX REAL-TIME SYSTEMS
WITH CLOCK-RESTRICTION DIAGRAM

Farn Wang

Institute of Information Science, Academia Sinica
Taipei, Taiwan 115, ROC

farn@iis.sinica.edu.tw

Abstract Real-world real-time systems may involve many complex structures, which are
difficult to verify. We experiment with the model-checking of an application-
layer html-based web-camera which involves structures like event queues, high-
layer communication channels, and time-outs. To contain the complexity, we
implement our verification tool with a newly developed BDD-like data-structure,
reduced CRD (Clock-Restriction Diagram), which has enhanced the verification
performance through intensive data-sharing in a previous report. However, the
representation of reduced CRD does not allow for quick test of zone containment.
To this purpose, we thus have designed a new CRD-based representation, cas-
cade CRD, which has given us enough performance enhancement to successfully
verifying several implementations of the web-camera.

Keywords: Real-time systems, BDD, verification, Clock-Restriction Diagram

1. INTRODUCTION

Fully symbolic model-checking with BDD data-structure[8, 4] has achieved
great success in hardware systems and become one of the standard technolo-
gies in Electronic Design Automation (EDA). Naturally, people are now looking
forward to repeating the success in model-checking complex systems, which
may involve structures like queues, stacks, clocks, communicaiton channels,
.. .. Such structures usually cause great complexities to verify with BDD-like
data-structures. In this work, we experiment with a real-world project, an html-
based web-camera (http://www.mmedia.com.tw) implemented in applica-
tion layer, and discuss how we have coped with the challenges in verification.
Especially, we implemented the newly developed CRD (Clock-Restriction Dia-
gram), which is a BDD-like data-structure for space-efficiency in timed automa-
ton verification, in our model-checking tool and found that the representation

http://dx.doi.org/10.1007/978-0-306-47003-5_29

236

of reduced CRD does not allows for efficient testing of zone containment. It
was only with our new representation scheme of cascade CRD that we had been
able to verify implementations of the web-cameras.

Most modern model-checkers for real-time systems are built around some
symbolic manipulation procedures[12] of zones implemented in data-structures
like DBM[10], NDD[1], CDDJ[7], RED[15], or CRD[16]. A zone means a
behaviorally equivalent state subspace of a timed automaton and is symbolically
represented by a set of difference constraints between clock pairs. It has been
the general opinion that DBM (difference-bounded matrix) [10] is perhaps the
best data-structure for the representation and manipulation of zones. For a long
time, BDD-like structures[1, 7, 15, 16] have not performed as well as the popular
DBM (difference-bounded matrix) [10] which is a 2-dimensional matrix and
nothing BDD-like. But recently, there comes a new BDD-like data-structure,
called CRD (Clock-Restriction Diagram) [17], which has shown efficiency in
experiments (see appendix 6). CRD uses evaluation variables corresponding to
the entries in DBM. Particularly, the default value of variables, say x — x/, is
treated as x — x' <o (i.e. no restriction). Since a CRD is actually a DBM set
represented in decision diagram, it is neither a canonical representation of dense-
domain state-spaces. The representation of CRD with zones with smallest set
of inequalities[14], i.e. reduced CRD, was proposed in [17] to cope with space-
complexity. But the drawback of reduced CRD is that zone containment cannot
be determined efficiently. Thus many many zones, which are contained by
others in the reachable state space representation, are calculated again and
again. As a result, both space and time-complexities become unmanageable
and our verification tool with reduced CRD could not finish verifying several
implementations of the web-camera.

Note that the problem, with the zone containement relation, mentioned in the
last paragraph cannot be simply handled by using the representation of CRD
with all-pair shortest-path representation zones [10, 14] because as argued in
[17], such representation is less space-efficient than reduced CRD. To overcome
this obstacle, we here propose a new representation of CRD, the cascade CRD,
which is not a representation of set of zones with minimal number of inequali-
ties. For a zone with identical clock readings, cascade CRD may contain more
inequalities than reduced CRD. But for a given state-space (i.e. a set of zones),
cascade CRD may result in much less zones recorded than reduced CRD with
efficient elimination of zones contained by others. It is with the cascade CRD
that we have successfully verified several implementations of the web-camera
system.

Here is our presentation plan. Section 2 briefly defines timed automata as our
model for discussion. Section 3 basically restates part of [17] to give readers a
background knowledge to the issues in verification research of timed automata
and CRD. Section 4 presents cascade CRD and its computation. Section 5

237

reports our tool implementations and experiments with the web-camera. Ap-
pendix 6 shows how good our CRD-based verification tool is compared to two
well-known verification tools and justifies our choice to continue experiments
with CRD.

2. TIMED AUTOMATA

We use the widely accepted timed automata[2] as our model. A timed au-
tomaton is a finite-state automaton equipped with a finite set of clocks which
can hold nonnegative real-values. It is structured as a directed graph whose
nodes are modes (control locations) and whose arcs are transitions. The modes
are labeled with invariance conditions while the transitions are labeled with
triggering conditions and a set of clocks to be reset during the transitions. The
invariance conditions and triggering conditions are Boolean combinations of
inequalities comparing a clock with an integer. At any moment, the timed au-
tomaton can stay in only one mode. In its operation, one of the transitions can be
triggered when the corresponding triggering condition is satisfied. Upon being
triggered, the automaton instantaneously transits from one mode to another and
resets clocks in the corresponding transition clock set label to zero. In between
transitions, all clocks increase their readings at a uniform rate.

For convenience, given a set X of clocks, we use B(X) as the set of all
Boolean combinations of inequalities of the form x —x'~ ¢ where x, x' €
X U {0}, “~” is one of <, <, =, > > and c is an integer constant.

Definition 1 automata A timed automaton A is given as a tuple
(X 0 qo0, L W, T, v,1,) with the following restrictions. X is the set of clocks.
Q is the set of modes. g is the initial mode. / € B(X) is the initial condition
on clocks. u: O — B(X) defines the invariance condition of each mode. T'is
a finite set of transitions. y: T+ (Q X Q) describes the source and destination
modes of transitions. T: T+ B(X) and 7t : T ~— 2% respectively defines the
triggering condition and the clock set to reset of each transition. I

A valuation of a set is a mapping from the set to another set. Given an
N € B(X) and a valuation v of X, we say v satisfies 1, in symbols v =1, iff
when the variables in 1 is interpreted according to v, 1 will be evaluated true.

Definition 2 states Given a timed automaton 4 ={ X, Q, %-LwTyrT),
A state v of 4 is a valuation of X U {mode} such that
* v(mode) € Qisthe mode of 4 in v with mode as a special auxiliary
variable; and
» for each x € X, v(x) € R " such that R * is the set of nonnegative real
numbers and v = p(v (mode)). I

238

For any t € R™, v +tis a state identical to v except that for every clock x ¢ X,
vix) + ¢t = (v+ (x). Given X c X, vX is a new state identical to v except
that for every xe X ,v X (x) =

Definition 3 runs Given a timed automaton 4 =(X O, g9, 1, 1, T, ¥, T, T), a
v-run is an infinite sequence of state-time pair (v, o) (v, ¢1) ... (Vi tg) .o ..
such that v=vo and tgt;...t;...... is a monotonically increasing real-
number (time) divergent sequence, and for all £ > 0,
e forallz € [0,tg41 — tr], vk + t = p(ve (mode)); and
o either v, (mode) =v;4 (mode) andvy, + (f44; — tx) = Vj+1; or for
some we T,
— Y(w) = (vx(mode), Vg1 (mode)); and
= Vg + (tk41 —) = 7(w); and
= (v + (g1 — te))m(w) = vgqs. |

A safety requirement on timed automaton A4 can be written as a Boolean
combination of clock constraints in B(X) and mode restrictions in the form
of mode = ¢ meaning that A4 is currently in mode g € Q. A run p =
(vo,t0)(v1,t1) -« - (g, i) ... of A satisfies safety requirement 1), in sym-
bols p = n, iffforallk > Oand ty <t < iy, v+t =7 Wesay 4 k=1
iff for all v-runs p, v =1 A (mode = ¢q) implies p = 1. Our verification
framework is safety analysis problem that when given 4 and 7, asks whether

A E=n.

3. BASICS

To better prepare readers for understanding of the materials, we restate some
of the paragraphs form [17] in this section. Subsection 3.1 discusses the concept
of zones. Subsection 3.2 formally defines CRD and its manipulations. Espe-
cially, subsection 3.2.2 illustrates how reduced CRD can be more space-efficient
than the other technologies.

3.1 Zones, closure form, and reduced form

Most modern model-checkers are built around some symbolic manipulation
procedures[12] of zones implemented in data-structures like DBM, NDD, CDD,
RED, or CRD, A zone means a behaviorally equivalent state subspace of a timed
automaton and is symbolically represented by a set of difference constraints
between clock pairs. Previously, people still believed that DBM was the most
efficient data-structure. DBM-technology generally handles the complexity of
timing constant magnitude very well. But when the number of clocks increases,
its performance also degrades rapidly.

Let Z be the set of integers. Given c¢>0and c € 2, let I be {» } U{ d|
de Z;—c<d<c}. Also forany de Z,d + oo = o0 + d = oo,

239

Given a safety analysis problem for a timed automaton A with biggest timing
constant C 4 used in 4, a zone is a convex subspace of R Wconstrained by
half spaces represented by inequalities like x — x'~d, with x, x'e X U {0},
~e {“<7,%“<”}, and d € I ¢, such that when d = oo, ~ must be “<”. For
convenience, let Be = {(~,d) |~€ {“<”,“<”};d € Z;d = 0o =>~= “<}.
With respect to given Xand C 4 , the set of all zones is finite. Formally, a zone
¢ can be defined as a mapping (X U {0})%2+— B , - Alternatively, we may also
define a zone ¢ as the set {x — x’ ~ d| ¢(x, x") = (~, d)}. In the following,
we shall use the two equivalent definitions flexibly as we see fit.

There can be many zones representing the same convex subspace. A straight-
forward canonical representation of a zone-characterizable convex subspace is
its zone in closure form (called shortest-path closure in [14]). A zone ¢ is in clo-
sure form if and only if for any sequence of elementszy,...,zr € XU {0}, with
T1— 2k ~ d € ¢ andV1 < @ < k(zi — Tit1 ~i di € (), either d < Xy <ick di
or (d=21<ick GiN(~="“<" = Ai<ick ~i= “<”)). Intuitively, this means
that every half space constraint has to be tight. We can artificially designate the
closure form of each zone as our canonical representation of the corresponding
state subspace characterized by the zone. For convenience, given a zone ¢, we
let ¢ be the notation for its closure form.

A few terms to define before we explain the second candidate for zone canon-
ical representation. Two clocks x, x' € X U {0} are equivalent in a zone ¢,
in symbols x=¢ x', iff3d € Z(z —2' < —d € (* Az’ —z < d € (°).
For convenience, assume that X= {x;,...,x,} and O is also named x,. If
Y = {zi,Tiy,..-,Ti, } € X U {0} is a maximal set of equivalent clocks in
gsuch thati; < 42 < ... < %, let min=¢(zi;) = =;; for all 1 <j < k.
Given x —x'~d e ¢C, (x, x')is redundant in ¢ iff x #¢ x'and there is a
T € XU{0},withz — T~ d1,Z—x' ~2ds € gc,suchihatz,éc T #cx
andd = dy + da A (~=“<” = (~1= “<7V ~p= “<)).

Another candidate for the canonical representation of zones is the reduced
form (called shortest-path reduction in [14]) which records only minimum num-
ber of constraints for each zone. We refer interested readers to [14, 17] for ex-
planation how to convert a given zone V to its zone in reduced form, in symbols
gR. It is shown in [14] that ¢¢ = (¢®)¢; and DBM with zones in reduced
form can be used as a canonical representation of timed automaton convex
states-spaces and can significantly save space in model-checking.

3.2 Clock Restriction Diagram

CRD is not a decision diagram for state space membership. Instead it is like
a database for zones. We devise the new data-structure CRD exactly because
CRD acts like a database (recording device) and is more suitable for comparison
and manipulation of sets of clock diference constraints.

240

3.2.1 Previous data-structures. NDD[1] uses binary encoding for clock
readings and its performance is very sensitive to timing-constant magnitude.

CDD[7] is a decision diagram for state-space membership. It has very similar
structure to CRD. There are two major differences of CRD. First, a value d for
evaluation variable, say x — x’, in CDD means x — x' = d while a value
like (~, d) means x — x' ~ d. This is because CDD is designed to be decision
diagram. Second, the default value of a variable in CRD is interpreted as (<,e)
while it is interpreted as (—ee, oo) in CDD. To reduce information duplication
in representations of state-spaces, CDD has to be transformed to closure form
[10, 7] which records the shortest-path distances between all pairs of clocks
and is very space-inefficient.

REDJ15, 16] encodes the ordering of fractional parts of clock readings in
the variable ordering and has achieved very high space-efficiency for systems
with large number of clocks and small timing constants. RED is indeed a
canonical representation of timed automaton state subspaces. But for large
timing constants, RED’s performance degrades rapidly.

At this moment, DBM is still the most popular and efficient data-structure.
DBM-technology generally handles the complexity of timing constant magni-
tude very well. But when the number of clocks increases, its performance also
degrades rapidly.

3.2.2 Definition. CRD is a directed acyclic graph for representation of
sets of zones. It has similar structure as BDD without FALSE terminal. Each
of the pairs (x, x') € (X U{0})? is treated as an evaluation variable. By fixing
an evaluation order, we can construct a CRD just as BDD, CDD, or RED. For
example, given C4 = 10, the CRD for a set {{0 —x; < -3 .x; — x3 <
4}, (0 —x2 < —1,x -x1 <6}} of two zones (constraints of the form
x —x’ <ooare omitted) is in figure 1(a). In CRD, a missing constraints on
differences of clock pairs, say x,x’, is interpreted as x — x’ <oo. Thus in the
root vertex, even no constraint is on 0 — x; in the latter zone, we still construct
an arc with 0 — x1 < e from the root vertex. This is one major difference of our
CRD from decision diagrams like CDD which interprets a missing restriction
on x,x as-—oco<xy—x' < oo with an implied lowerbound of —« on x — x".

An evaluation index w : (X U {0})2 U {true} = {0,1,...,|(X U {0})?|}
is a mapping such that w(true) = |(X U {0})?|and for every twoe,e' €
(X U{0})2 U {true}, w(e) # w(e').

Definition 4 Clock Restriction Diagram (CRD) A CRD is a labeled directed
acyclic graph D = (V, ¢, E, A), with single source and single sink, constructed
under a given evaluation index w such that
e V'is the set of vertices;
« ¢ :V = (X U{0})? U {true} defines the evaluation variable at each
vertex;

241

< _?/ < 00 < -3 —00,—7)
1 —23 < -1 <1 00,—3)
T2 — 1 @
< <6 <-4 =% =6)
true true
®) 1
@ reduced
CRD

true true
(© (@
closure CDD
CRD in closure
form

Figurel. examples of CRD and comparison with CDD

« EC Vx Vis the set of arcs such that for every(v,v') € E, w(é(v)) <
w(é(v')(i.e., evaluation ordering must be respected); and
* X : E — Zg,such that for every (v,v'),(v,v") € E, v # " =
Alw,v") # Mo, v")
There is at most one v € V such that ¢(v) = true and this v is the single sink
of the CRD. I
Since many zones can represent the same subspace, like DBM and CDD,
neither is CRD a canonical representation of zone-characterized state spaces.
To reduce information duplication in state-space representation, one solution is
to convert all zones to their closure form[10,7] (called shortest-path closure in
[14]), which is the set of all pairwise clock difference constraints derived from
the all-pair shortest-path distances, and only store their closure form. Such
conversion is expensive and, as we shall illustrate in figure 1(b)-(d), incurs
large space consumption with data-structures like CDD and CRD.
Also note that although zones in closure form can be used as canonical rep-
resentation for convex state-spaces characterizable by zones, CRD with closure
form zones is not a canonical representation of dense-time state-spaces. This is

242

because CRD with closure form zones does not intrinsically have the capability
to eliminate zones contained by the unions of other zones.

An alternative solution for space-efficient representation of state spaces is
zones in their reduced form (called shortest-path reduction in [14]) which con-
tains minimal number of clock difference constraints chosen by a policy. As
shown in [14], DBM with zones in reduced form can be space-efficient. Wang
has proposed to use CRD with zones in reduced form (or reduced CRD in
short) as the representation for state-spaces to enhance verification efficiency
[17]. Moreover, a space-efficient algorithm, with only four auxiliary variables,
for computing reduced CRD has also been presented in [17].

Note again that reduced CRD is neither a canonical representation of dense-
time state-space. Nevertheless, in average, CRD with zones in reduced form (re-
duced CRD in short) is much more space-efficient than previous data-structures
[1, 7, 15, 16]. For example, given X = {x1,x2,x3} and C4 = 10, in fig-
ure 1(b),(c),(d), we have the representations of zone {0 — x> < -3, x1 —x3 <
1,x, — x1 < —4} in reduced CRD (figure 1 (b)), in CRD with zones in closure
form (figure 1(c)), and in CDD with zones in closure form (called tightened
form in [7]) without FALSE terminal vertex (figure 1(d)). It is easy to see that
as the number of clocks increases, reduced CRD will perform better and better.

3.2.3 Set-oriented manipulations on CRD. For convenience of dis-
cussion, given a CRD, we may just represent it as the set of zones recorded in
it. Set-union (V), set-intersection (M), and set-exclusion (—) of two zone sets
respectively represented by two CRDs are straightforward. For example, given
CRDs D; : {Cla CQ} and Dag : {Cz, Cg}, D; N Ds is the CRD fOI‘{CQ}; DyUDs
is the CRD for {¢1,¢2,¢3} ; andD; — Dy is the CRD for {{;}. The complexities
of the three manipulations are all O(|Dy| - |D2|).

Set-extraction (|) selects zones satisfying certain features from a zone set.
Suppose D is the CRD for {(i,...,¢x} and D’is the CRD for {¢],---,¢h},
thenDID! = {(; |1 i< kIl <j< hVz—2' ~d € {i{d+# o=
z —z' ~d € ()} The complexity is also O(|Dy| - | Ds)).

Given two zones {; and {,, {; * {,is a new zone representing the space-
intersection of {; and {,. Formally speaking, for every x, x' with {1 (z, 2"y =
(~1,d1) and Ca(z, ') = (~2,d2), C1 *(a(z, 2') = (~1,d1)ifdy < d2V(d) =
daA ~1= “<”); or G1 * Ga(z, &) = (~2,d2) otherwise. Space-intersection (*)
of two CRDs D and D,, in symbols Di * D,, is a new CRD for{{i *¢2 | {1 €
Dy; (o € Dy}. Our current implementation of the manipulation has complexity
O(|D1? - | Daf?).

3.24 CRD and BDD. It is possible to combine CRD and BDD into one
data-structure for fully symbolic manipulation. Since CRD only has one sink
vertex: true, it is more compatible with BDD without FALSE terminal vertex

243

which is more space-efficient than ordinary BDD. There are two things we
need to take care of in this combination. The first is about the interpretation of
default values of variables. In BDD, when we find a variable is missing during
valuating variables along a path, the variable’s value can be interpreted as either
TRUE or FALSE. But in CRD, when we find a variable for constraint x — x'is
missing along a path, then the constraint is interpreted as x — x' < co.

The second is about the interpretation of CRD manipulations to BDD vari-
ables. Straightforwardly, “U” on Boolean variables is interpreted as "v" on
Boolean variables. “N” and “|” on Boolean variables are both interpreted as
“A” on Boolean variables. D1 — D, on Boolean variables is interpreted as
Dy A =Dy when the root variable of either D or D, is Boolean. For Dy * D,
the manipulation acts as “A” when either of the root variables are Boolean. Due
to page-limit, we shall omit the proof for the soundness of such interpretation.

From now on, we shall call it CRD+BDD a combination structure of CRD
and BDD.

3.2.5 Variable ordering in CRD. In our BDD+CRD, we found the fol-
lowing evaluation ordering quite efficient in our experiment.

o All discrete variables precede those clock inequality variables in the eval-
uation ordering.

o Let0 <z <... <xy. Forclocks x, x’, v, y'€ {0, x1,...,x,}, x — x
precedes y — y"iff either (1)(z <y Az <y)V(z' <yAz' <y'); or
Qz<yAz=y Az’ =y.

Especially, the condition (2) of item 2 puts variable like x, — x| immediately
below x; — x; and allows us to efficiently check for some trivial negative cycles.

!

4. CASCADE CRD

Reduced CRD indeed can be very space-efficient, as reported in [17], for
some applications. But it is more difficult to efficiently decide the containment
relation between two zones with reduced CRD. For example, we may have the
reduced CRD in figure 2(a) for the state-space represented by formulus (1) in
the following.

(r1—22 < —2A22—24 < -3Az4—2z1 <5Az = 23) 1)
\Y% (Z1—$2S—2/\$2—£L‘4S—3/\$4—£I:1 S5)

As can be seen that the zone of the first conjunction is actually contained in
that of the second. This containment relation can be easily computed with
all-pair shortest-path difference relation between clock pairs. But when we
transform a given CRD into its reduced CRD, there is not enough information
left to efficiently derive such containment relation. In specific, we cannot use
the simple reduce operations described in the last paragraph of subsection 3.2.3
to eliminate zones which are contained by others in the same CRD. Thus, many

244

- - 1 — T2

Vd L8 ~
Ot}
N ~—— o Z
=-—-=i z1 — Zg
<~
< -2 s0 < oo
- T3 — Ty
’ ~
!) <0
~ Pl
-~ - T4 — T T4 —2T1
<5
=-8 D =8 @
Ty —
<5 _ 2 cascade
. ’ ~ s <2 CRD
t = after
T2 — T L2 — T
SN 2 <4 3 2 2 reduction
= < -3
® T4 — 2y
(a) classification <5 (©
reduced of clock values — cascade
CRD true CRD
(31-125—2/\::2—::45——3/\:4——2:155) before
V (z1-2z2<-2Az2~24< —83Aza—~21 L5AZ1=23) reduction

Figure 2. reduction in cascade CRD

many zones may be represented in CRD for the reachable zone set which are
actually subsets of zones already generated before. This problem may result in
huge waste in both space and computation time. Actually, in our experiment,
none of the web-camera implementations can be verified with reduced CRD.

Here we propose another representation scheme of CRD, called cascade
CRD, which allows us to efficiently control CRD complexity with the simple
reduction operations mentioned at the end of subsection 3.2.3. For the conve-
nience of defining cascade CRD, we first define the cascade form of zones. A
cascade CRD is merely a CRD, all whose zones are represented in their cascade
form. Just like closure form and reduced form of zones, the cascade form of
a zone is also a canonical representation of zone-characterizable state-spaces.
The idea is to add a few more inequalities to zones in reduced forms to facilitate
the decision of zone containment relation. Cascade CRD is especially designed
for those systems which can have states in which many clocks have identical
values. This kind of states may happen because of clock-reset operations at
a synchronization, between a sender and a receiver, which is very common in
modelling tightly-coupled interactions in concurrent systems.

In figure 2(b), we illustrate how we compute the cascade zone from its non-
cascade zone represented by the first conjunction of formulus (1), that is:

(2:1—1‘2S—2/\:L‘2—.’E4S—3/\(I:4—{L‘155/\1‘1:1'3)

245

Given a zone {, we use {° to denote the cascade form of {. The procedure to
compute {5 from { can be presented as the following steps.

1 We classify the clocks in a state into equivalence classes, just as what has
been done in [14]. Two clocks x, x" are in the same equivalence classes
inazone (iffx—x'=de {“forsomede N. (x—x'=de {Cis
a shorthand forz — 2/ < d € (° Az — ¢ < —d € ¢©.) For example,
in the first conjunction of formulus (1), all four clocks are in the same
equivalence class; while in the second conjunction, only clock x1, x2, x4
are in the same equivalence class.

In the following, then we divide the task into two subtasks. The first
task is for adding inequalities in {5 between those clocks in the same
equivalence classes while the second task is for adding inequalities in &5
between those clocks in different classes.

2 Case of clocks in the same equivalence class: Suppose we are given an
equivalence class of clocks in a zone (.

(a) We first classify clocks in the given equivalence class into identity

(b)

(©)
(d)

(©)

classes. Two clocks are in the same identity class if they have the
same reading. For example, in the first conjunction of formulus
(1), only clocks x, x3 are in the same identity class and all other
two clocks are not in the same identity class. But in the second
conjunction, no two clocks are in the same identity class.

Then we arrange the identity classes in a linear sequence according
to their less-than relation. For example, in the first conjunction of
formulus (1), we have the following sequence.

{z1, 23} =2 {22} = {24}

Here the label of —2 is on the first “—” because x| —x, < — 2
and x3— x2 < —2. But in the second conjunction, the sequence
for the equivalence class {x|, x2, x4} is

-2 ~3
{z1} — {22} — {=z4}
For each two clocks x, x" in the same identity class, let {5(x, x') =
(%, 0).

For two clocks x, x’ such that the identity class of x just precedes
that of of x'in the linear sequence, let {5 (x, x") = {(x, x).

For a clock x in the last identity class and a clock x'in the first
identity class, let {5 (x, x) = {C(x, x').

3 Case of clocks not in the same equivalence class: Suppose we are given
clock x, x"not in the same equivalence class. If x is in the last identity

246

class of its equivalence class and x'is in the first identity class of its
equivalence class, then let CS (x, x") = Cc(x, x").

4 For any two inequivalent clocks x, x' such that (x, x') is redundant in C,
we let &8 (x, x) = (<, o).

5 For all other clock difference relation not covered in the above-mentioned
steps, we let £5 (x, x') = (<, o).

In the same style of the manipulation algorithm presented in [17], we can imple-
ment the above-mentioned procedure with symbolic CRD+BDD manipulation
routines. But due to page-limit, we shall only present the above procedure. Af-
ter CRD are stored with zones in cascade form (see for example in figure 2(c)),
we can then use the reduction operation mentioned at the end of subsection 3.2.3
to efficiently eliminate many contained zones (see for example in figure 2(d)).

One good property of our cascade CRD is that for a zone { wihtout non-
trivial identity classes (a class is trivial if it has only one element), then the
corresponding zone in cascade form have the same number of inequalities as
its counterpart in reduced form.

LEMMA 1 : Given a zone { such that no two clocks are in the same identity
class in {, then {Sand {* have the same number of inequalities of the form
x — x' ~ dwith either “~"£<” or d # co.
Proof : When there is no nontrivial identity class, we will skip step 2(c) in the
our procedure. This skip makes our procedure essentially identical to the one for
constructing zones in reduced form presented in [14], except for the following.
For an equivalence class with clock x and without clock x’, an inequality like
x — x'" ~dis called an incoming arc while one like x"—x ~ d is called an
outgoing arc. In the zones in reduced form constructed according to [14], only
incoming and outgoing arcs to the clocks in the first trivial identity class in the
sequence can be kept. But in our cascade zones, outgoing arcs are recorded for
the clocks in the first trivial identity class in the sequence while incoming arcs
are recorded for the clocks in the last trivial identity class in the sequence. With
this way of accounting, it is easy that both cascade form and reduced form of
the same zone have the same number of clock inequalities. ||
Lemma 1 shows that our cascade CRD only adds to complexity when it is
making effect on its target zones.

5. IMPLEMENTATION AND EXPERIMENTS

We have implemented our CRD-technology in version 3.0 of our tool red
which was previously announced in [15, 16] (version 1.0, 2.0) and supports
the modelling and safety-analysis of real-time systems with multiprocesses,
pointer data-structures, and synchronizations (synchronous send and receive)

247

from one process to another. The new version, together with benchmarks, is
now available at:

http://www.iis.sinica.edu.tw/~farn/red

Each process can use global and local variables of type clock, discrete, and
pointer. Pointer variables either contain value NULL or the identifiers of pro-
cesses. Thus in the models input to red, we allow complicate dynamic networks
to be constructed with pointers.

At this moment, red supports backward reachability analysis. We have
also implemented a reduction techniques in red. That is the reduction by
elimination of inactive variables[13, 18] which is always executed. A variable
is inactive in a state iff it is not read in any computation from the state before
its content is overwritten. Contents of inactive variables can be omitted from
state information without any effect on the computations.

We have tested our verifier with four implementations of the web-camera
system, each with only one client. We have cooperated with Metamedia, a local
company specializing in driver and peripheral software
(http: //www.mmedia.com.tw), to test our new CRD-technology. One of
their current projects is web cameras with browser interface (HTML language).
The product supports multi-user connections, with web browsers, to dynam-
ically monitor remote activities through internet. The software operates in
application layer with an event queue and software interrupt handling. We
want to analyze how long the event queue buffer needs to be.

In the following, we shall first describe how we model the system behavior,
and then present our analysis result in section 5. There are three parameters
in the system: number of clients (in symbols #C), maximal length of queue
(L), and the communication delay between server and clients [B,0]. We have
modeled implementations of the system with various values of #C, L, and
[B, o]. The total number of processes we need is 3 + 2#C. The processes are
described in the following.

o The event queue which supports operations of dequeue and enqueue; and
signalling of new event in the queue to the server. We need variables
eo,e1, ...,erL—1 to records the content of the queue; variable / to records
the current length of the queue.

o The camera process is also modeled by the single-mode automaton which
outputs a video image every 20 time units. The video-ready event will
be caught by the queue process throught a synchronizer.

e #C timer processes for communication respectively with #C clients.
A timer process signals the first timeouts when its corresponding client
does not respond in 40 time units. Then the server will send a new frame
to the client. If still no response is received in 30 time units, the channel
is disconncted.

248

o #C client processes which acknowledges within time interval [, o] the
reception of a frame or dies.

* The server process which processes the events in the queue in the follow-
ing way.

— When the event is “VIDEO_READY” by camera, the server sends
out a video-frame to each client. The processing time per client per
video-frame is 5 time units. After processing the “VIDEO-READY”
event, a timer is activated with timeout value 40 time units for each
client.

— When the event is “TIME_OUT}” for client j at 40 time units,
the server sends out a video-frame to client j again (in 5-time-unit
processing time) and activates a timer with timeout value 30 time
units.

— When the event is “TIME_OUT;” for client at 30 time units, then
the server thinks that the client is dead and disconnect the service
to client i.

— When the event is “ACK;” (acknowledgment) from client i, then it
disables the timer activated for client .

Two variables, each with possible values, orthogonally generate the four im-
plementations. The first variable is L, the event queue maximal length, with
possible values of 1 and 2. The second variable is the response time interval
from the client [B, o] with possible intervals of [1, 1] and [20,40]. The property
to verify is whether the queue will overflow or not.

With reduced CRD, our tool cannot finish the verification task in 6 hours for
any of the four implementations. But with cascade CRD, our tool is capable of
coming up with the following performance data.

| [L=1] L=2]

[B,a] =[1,1] no overflow/584s/812k | no overflow/2946s/3257k

[B, o = [20, 40] overflow/2320s/1378k | no overflow/3072s/2829k
s: seconds; k: kilobytes of memory in data-structure;

The performance data is collected on a Pentium II 366MHz with 256MB mem-
ory running Linux.

6. CONCLUSION

CRD gains its power primarily from intensive data-sharing. But its ma-
nipulations are usually burdened with high overhead. At this moment, CRD-
technology only shows its edge when number of clocks is large (see the ap-
pendix). But we believe that as a new data-structure for the verification of
timed automata, there can be much room for improvement on CRD. Especially,
we will try out various zone forms and verification techniques appropriate for
CRD.

249

REFERENCES

[1] Asarin, Bozga, Kerbrat, Maler, Pnueli, Rasse. Data-Structures for the Verification of Timed
Automata. Proceedings, HART’97, LNCS 1201.

[2] R. Alur, C. Courcoubetis, D.L. Dill. Model Checking for Real-Time Systems, IEEE LICS,
1990.

[3] F. Balarin. Approximate Reachability Analysis of Timed Automata. IEEE RTSS, 1996.

[4] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.Dill, L.J. Hwang. Symbolic Model Check-
ing: 1020 States and Beyond, IEEE LICS, 1990.

[5] M. Bozga, C. Daws. O. Maler. Kronos: A model-checking tool for real-time systems. 10th
CAV, June/July 1998, LNCS 1427, Springer-Verlag.

[6] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, Wang Yi. UPPAAL - a Tool Suite for
Automatic Verification of Real-Time Systems. Hybrid Control System Symposium, 1996,
LNCS, Springer-Verlag.

[7] G. Behrmann, K.G. Larsen, J. Pearson, C. Weise, Wang Yi. Efficient Timed Reachability
Analysis Using Clock Difference Diagrams. CAV’99, July, Trento, Italy, LNCS 1633,
Springer-Verlag.

[8] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation, IEEE Trans.
Comput., C-35(8), 1986.
[9] E. Clarke, O. Grumberg, M. Minea, D. Peled. State-Space Reduction using Partial-
Ordering Techniques, STTT 2(3), 1999, pp.279-287.
[10] D.L. Dill. Timing Assumptions and Verification of Finite-state Concurrent Systems.
CAV’89, LNCS 407, Springer-Verlag.
[11] C. Daws, A. Olivero, S. Tripakis, S. Yovine. The tool KRONOS. The 3rd Hybrid Systems,
1996, LNCS 1066, Springer-Verlag.

[12] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic Model Checking for Real-
Time Systems, IEEE LICS 1992.

[13] P.-A. Hsiung, F. Wang. User-Friendly Verification. Proceedings of 1999 FORTE/PSTV,
October, 1999, Beijing. Formal Methods for Protocol Engineering and Distributed Sys-
tems, editors: J. Wu, S.T. Chanson, Q. Gao; Kluwer Academic Publishers.

[14] K.G. Larsen, F. Larsson, P. Pettersson, Y. Wang. Efficient Verification of Real-Time Sys-
tems: Compact Data-Structure and State-Space Reduction. IEEE RTSS, 1998.

[15

F. Wang. Efficient Data-Structure for Fully Symbolic Verification of Real-Time Software
Systems. TACAS’2000, March, Berlin, Germany in LNCS, Springer-Verlag.

[16] F. Wang. Region Encoding Diagram for Fully Symbolic Verification of Real-Time Sys-
tems. the 24th COMPSAC, Oct. 2000, Taipei, Taiwan, ROC, IEEE press.

[17] F. Wang. Clock Restriction Diagram: Yet Another Data-Structure for Fully Symbolic
Verification of Timed Automata, Technical Report TR-1IS-01-002, IIS, Academia Sinica,
Taiwan, ROC.

[18

F. Wang, P.-A. Hsiung. Automatic Verification on the Large. Proceedings of the 3rd IEEE
HASE, November 1998.

[19] S. Yovine. Kronos: A Verification Tool for Real-Time Systems. International Journal of
Software Tools for Technology Transfer, Vol. 1, Nr. 1/2, October 1997.

250

Appendix: Performance comparison between our CRD-based
tool and Kronos and UPPAAL

The following table, from [17], shows performance data from Kronos, UPPAAL, and red
w.r.t. implementations of benchmarks with various numbers of concurrent processes. Fis-
cher’s mutual exclusion protocol are modified from [3, 13, 15, 18]. CSMA/CD is extracted
from [19] while FDDI is from [5, 11]. Information on the three benchmarks can be found in
http://www.iis.sinica.edu.tw/"farn/red.

‘ benchmarks ‘ concurrency H Kronos ‘ UPPAAL ‘ red no CRD ‘ red (w. CRD) ‘

Fischer’s 3 processes 0.03s 0.014s 45.42s/1448k 1.12s/48k
mutual 4 processes 0.14s 0.197s | 871.2s/12703k 8.09s/162k
exclusion 5 processes 0.989s 5.94s O/M 48.6s/471k
6 processes Oo/M 537.7s O/M 278s/1271k
7 processes O/M O/M O/M 1593s/3208k
8 processes O/M o/M o/M 9352s/7788k
CSMA/CD 3 processes 0.032s 0.0046s o/M 0.89s/60k
4 processes 0.071s 0.028s o/M 3.63s/121k
5 processes || 0.309s 0.216s o/M 13.8s/278k
6 processes 1.915s 3.45s Oo/M 60.6s/707k
7 processes O/M 172s o/M 227s/1781k
8 processes Oo/M Oo/M O/M 709s/4426k
9 processes O/M o/M O/M | 3580s/10851k
FDDI 11 stations 399s 0.34s N/A 1.98s/502k
token-ring 12 stations Oo/M 0.487s N/A 2.90s/591k
passing 20 stations oM 4.05s N/A | 27.28s/1676k
30 stations O/M 25.27s N/A 151s/4165k
40 stations Oo/M 95.99s N/A 465s/7939k
50 stations Oo/M Oo/M N/A | 1107s/13513k
60 stations Oo/M Oo/M N/A | 1828s/21014k

data collected on a Pentium III 800MHz with 256MB memory running LINUX;
s: seconds; k: kilobytes of memory in data-structure; O/M: Out of memory; N/A: not available;

For the Fischer’s and CSMA/CD benchmarks, UPPAAL is invoked with options “~aSWD.” The
performance data shows that CRD-technology is still more space-efficient and scales better w.r.t.
number of clocks. For the FDDI benchmark, UPPAAL is invoked with options ‘“STDda” where
“d” is for depth-first-search and suits very well for highly synchronous algorithms like FDDI.
We remind the readers that compared to those well-established tools like Kronos and UP-
PAAL. For example, UPPAAL can pass most of the benchmarks in very short time if the option
of “convex-hull over-approximation” is switched on. But since our experiment was focused to
argue that “with similar and equivalent verification techniques, BDD-like data-structures can
outperform DBM,” we think it is better to just compare with Kronos and UPPAAL in the context
of precise verification. Definitely, the success experience of Kronos and UPPAAL will be the
guide for future enhancement of red. In the future, when such techniques are incorporated with
CRD-based technology, we believe there will be much room for performance enhancement.

	SYMBOLIC VERIFICATION OF COMPLEX REAL-TIME SYSTEMS WITH CLOCK-RESTRICTION DIAGRAM
	1. INTRODUCTION
	2. TIMED AUTOMATA
	3. BASICS
	3.1 Zones, closure form, and reduced form
	3.2 Clock Restriction Diagram

	4. CASCADE CRD
	5 . IMPLEMENTATION AND EXPERIMENTS
	6. CONCLUSION
	REFERENCES

