24

A METHODOLOGY TO DETECT
TEMPORAL REGULARITIES IN USER
BEHAVIOR FOR ANOMALY
DETECTION

Alexandr Seleznyov

Computer Science and Information Systems Department
University of Jyvdskyld

P.O. Box35, FIN-40351, Jyvaskyld, Finland
alexandr@jytko.jyu.fi

Abstract

Keywords:

Network security, and intrusion detection in particular, represents an area
of increased interest in security community over last several years. However,
the majority of work in this area has been concentrated upon implementation
of misuse detection systems for intrusion patterns monitoring among network
traffic. In anomaly detection the classification was mainly based on statistical
or sequential analysis of data often neglecting temporal events’ information as
well as existing relations between them. In this paper we consider an anomaly
detection problem as one of classification of user behavior in terms of incoming
multiple discrete sequences. We present an approach that allows creating and
maintaining user behavior profiles relying not only on sequential information
but taking into account temporal features, such as events’ lengths and possible
relations between them. We define a user profile as a number of predefined
classes of actions with accumulated temporal statistics for every class, and matrix
of possible relations between classes.

Network Security, Intrusion Detection, Anomaly Detection, Online
Learning, User Profiling, User Recognition

1. INTRODUCTION

Our society is becoming increasingly dependent on the rapid access and
management of information. More information is being stored and processed


http://dx.doi.org/10.1007/978-0-306-46998-5_33

340 Part Nine Network Security and Intrusion Detection

on network-based computers. Increased connectivity not only provides access
to larger and varied resources of data more quickly than ever before, it also
provides an access path to the data from virtually anywhere on the network
(Power, 1995). Thus, there is a need to have means to protect computer systems
against abuse.

There are intrusion prevention and detection techniques used to protect com-
puter systems. The intrusion prevention techniques such as authentication and
authorization, safe programming, and information protection serve as a first line
of defense in computer systems. However, recently the amount of successful
intrusion incidents has grown quite high: even 99% of all major companies have
reported at least one major intrusion incident (Sundaram, 1998). Computer
systems tend to be more and more complicated introducing new weak points
that allows to exploit them in order to penetrate systems’ defenses. Hardware or
software failures, incorrect system administration increase intrusion’s chances
to be successful. Software bugs also represent a great danger, since software
designers are not learning from past mistakes, still reproducing "classical" pro-
gramming mistakes (such as buffer overflow in sendmail (Sendmail, 2000)).
In many cases, the security controls themselves introduce weaknesses. Thus,
it shows that the usage of intrusion prevention alone is not sufficient to reli-
ably defend computer system and there is a strong need to have another line of
defense, such as intrusion detection.

Intrusion detection is a security technology that attempts to reveal and isolate
intrusions against computer systems; therefore it is an important component of
security system. Intrusion detection systems (IDSs) use a number of generic
methods for monitoring of vulnerabilities’ exploitation. They are useful not
only in detecting successful breaches of security, but also in monitoring at-
tempts to breach security, which provides important information for timely
countermeasures. Thus, IDSs are useful even when a computer system has a
high degree of confidence (Kumar, 1995). The intrusion detection approaches
may be roughly divided into two main categories: misuse and anomaly detec-
tion systems (Smaha, 1993).

Misuse intrusion detection systems, for example (Kumar and Spafford, 1995)
and STAT (Ilgun and Kemmerer, 1995), detect intrusions that follow well-
known patterns of attack (or signatures) that exploit known software vulnera-
bilities. These misuse intrusion detection systems include encoded knowledge
about poor or unacceptable behavior and directly search for it (Smaha, 1993).

The intrusion detection systems of the second category (for example IDES
(Lunt et al., 1992)) are detecting abnormal behavior or use of computer re-
sources. They classify usual or acceptable behavior and report other irregular
behavior as potentially intrusive. Techniques used in anomaly detection are var-
ied. Some of them rely mainly on statistical approaches and result in systems
that have been used and tested extensively. Techniques based on prediction of



A Methodology to Detect Temporal Regularities in User Behavior for Anomaly 341

future patterns of behavior utilizing already gathered patterns is an examples of
approaches tried in intrusion detection (Lane and Brodley, 1998).

In this paper we formulate an anomaly detection problem as one of user
behavior classification in terms of incoming multiple discrete sequences. Al-
though, here we focus on user-oriented anomaly detection. Monitoring multiple
streams of discrete events, such as GUI events, system call traces, keystrokes, a
system learns in order to classify (or recognize) user according to his behavior.
By developing our approach we aim to eliminate, as much as possible, manual
and ad hoc elements from the creation and manipulation of the user profiles by
introducing online learning. We develop an approach that allows creating and
maintaining users’ behavior profiles relying not only on sequential event infor-
mation but taking into account events’ lengths and possible relations between
them. Information about user "normal"” behavior is accumulated in user profile.
We define it as a number of predefined classes of actions with accumulated tem-
poral statistics for every class, and matrix of possible relations between classes.
Every class contains a number of instances, i.e. a number of patterns that are
allowed for this class. In other words, an instance of a certain class contains
temporal information that is peculiar for a certain pattern. A relation matrix
describing possible relations between classes gives us possibility not only to
check the "normality" of each action in incoming sequence of events, but also
to check whether current relations between actions are "normal" for a certain
user.

In this paper we develop an approach to the problem of anomaly detection.
In particular, automatically matching encoded patterns against current event
streams in order to find deviations from normal behavior; and than decide
whether it intrusion or normal user behavior changes. Our approach is based
on the assumption that the user’s behavior includes regularities that can be
detected and coded as a number of patterns. The information derived from
these patterns could be used to detect the abnormal behavior and to learn the
intrusion detection system. It is a hitherto untried approach in the field of
anomaly detection.

A definition and description of temporal-probabilistic trees are given in Sec-
tion 2. In Section 3 we present an approach aimed to differentiate normal
behavior from abnormal by monitoring deviations between incoming events
and stored in profile. Finally, in Section 4 conclusions to this work are given.

2. CLASS APPROACH TO USER PROFILE BUILDING

Traditionally, in anomaly detection, user profiles have been built by cal-
culating statistics for different characteristics, such as consumed resources,
command count, typing rate, command sequences, etc. (Lane and Brodley,
1998). In our approach we construct a user profile by defining classes or cases,



342 Part Nine Network Security and Intrusion Detection

which are used as a bricks in constructing a model of user behavior, and analyze
information inside classes basing on its context. We present an incoming infor-
mation as a set of temporal intervals that gives us possibility to apply Allen’s
algebra (Allen, 1983) to discover relations between temporal intervals and to
store them for further classification. In the following subsections we describe
definitions and basic concepts of our approach.

2.1. DEFINITIONS AND BASIC CONCEPTS

In this section we provide necessary definitions and describe basic concepts
of our approach. Here we consider a problem of user profile building as a
bringing to conformity events, provided by operating system log facilities, with
notions used to build a user behavioral model. Thus, the system may possibly
have several streams of discrete events such as GUI events, system call traces,
network packets, and keystrokes. It needs to automatically build a profile for
every user in order to recognize him in a future fitting current behavior into
behavioral model described in his profile. During this process, the system
should use as less as possible manual and ad hoc elements. In other words our
aim is not only to develop an approach for behavioral model description, but
also to automate all processes used for creation and manipulation of the user
profiles as much as possible.

At the beginning we introduce a layer structure of events (Seleznyov and
Puuronen, 1999a), which is a three levels used for describing incoming infor-
mation on different abstraction levels.

The term event ! has been widely used within the temporal database area giv-
ing it different meanings. We define the event as a single indivisible occurrence
on the time axis. As can be seen from this definition that the type of a possible
occurrence is not defined. Therefore, we may conclude that the event meaning
may depend on source of the incoming information. In other words, applying
the concept of event on different types of source information we are going to
have different results. For example, for a GUI log an event may be represented
by a GUI message, for network packets it may be a header of a single packet,
etc. Applying our definition to the examples we can conclude that in these cases
a single record in a log file represents an event.

In order to describe an information abstraction way we define a notion of
layer that reflects different levels of information generalization. The higher
layer the more general and more descriptive the notions describing the user
behavior are. Thus, on the highest layer we describe the user behavior using
most general way not depending on a source where information is coming from.

In this work we are using an underlying assumption that a person’s interac-
tion with a computer consists of different activities that he performs in order
to achieve his goals. These activities consist of actions. Each action causes



A Methodology to Detect Temporal Regularities in User Behavior for Anomaly 343

series of events in the operation system. Each user performs similar activities
which are expressed by repeated sets of actions and which differ on a per-user
basis. This gives the possibility to differentiate an intruder from a valid user
(Seleznyov and Puuronen, 1999a).

Layer is a concept generalization level of relations between occurrences, each
of which represents a single event on a different abstraction level (Seleznyov and
Puuronen, 1999b). At the lowest instant layer all occurrences are represented
as a time points (instants) on an underlying time axis. A single occurrence on
this layer is called an event. It is equivalent to a single line in the audit trail. An
event is described by a single instant relative to a particular user. Information
on this layer is source-dependent (for example, it depends on operating system
or logging facility used to collect it). Thus, same occurrence may be defined
differently on this layer.

On the interval or action layer events with their simple relations are described
and they form actions. The action is considered as a temporal interval, as for
example: LOGIN-LOGOUT. A relation defines a temporal relation between
two events as one of Allen’s point temporal relations (Allen, 1983) and has
a Name. The difference of any two-time points is likewise a rational number
(Kautz and Ladkin, 1991). There are three basic relations that are used to
represent relations of events: < - "less" relation, = - "equal" relation, and > -
"greater" relation.

The most complicated level is the activity layer, which is represented by
actions and relations between them. It describes them in a general source-
independent way. Because the actions are extended in time, different actions
may overlap in time and interact. One LOGIN-LOGOUT temporal interval, for
instance, includes dozens of mail check intervals. A single occurrence on this
level we call an activity. A Relation between two actions (temporal intervals)
is defined as one of Allen’s interval temporal relations (Allen, 1983).

These three layers are the way by which systems classify certain patterns
of change. No one is more correct than other, although some may be more
informative for certain circumstances. They are aimed to manage incoming in-
formation from multiple sources. For example, if system detects that a WWW
browser is active and it exchanges information using HTTP protocol then it may
conclude that user is browsing WWW pages in Internet. If the system observes
network packets’ headers it may come to the same conclusion when it detects
connection establishment between user workstation and some server on port 80
followed by an information exchange. It may come to a same conclusion when
observing some sequence of system messages between different modules of
an operating system. Therefore, our point is - by monitoring different sources
(sequences of events) it is possible to come to the same conclusions or, in other
words, build a string of user activities, which are source and platform inde-
pendent. And layer structure is aimed to make this transformation from event



344 Part Nine Network Security and Intrusion Detection

to activity layer, making possible to combine multiple strings from different
sources. Moreover, wide usage of I/O cashing introduced some uncertainty in
determining exact time points for a certain events. System read and write op-
erations may be delayed and appear later in system logs than the user actually
performed them. Getting confirmations from different sources the system is
able to reason about actual time the user has requested a certain operationZ,

2.2 USER PROFILE

Above we have described a possible structure of information that may be
gathered from operation system. This structure is used for abstracting infor-
mation obtained from audit log files to more general - source or platform in-
dependent, giving it more meaning in context of person-computer interaction.
How to store and process the obtained information? Below we present a way
to construct user profiles using information obtained from different sources.

In contrast to definitions related to the structure of information layers, where
all notions were defined in a way that more general were given in terms of more
specific. For a user profile description we are going to move in a reverse direc-
tion. Hence, the structure of user profile definitions resembles an inheritance
mechanism in object-oriented programming languages. Thus, we go from gen-
eral to more specific, where more specific definition is formed by inheriting all
features of "parent" one and adding some additional value to it.

As a general concept we define action class which describes one of the
possible kind of action. It provides a formal description of an action without
providing any specific details. Action class contains descriptions of events
that start and end that action and possible events between them. Continuing
our previous example consider a hypothetic action class “Web browsing”. It
may be defined by Web browser activity interval. Also if we monitor network
packets we may define same action class by a long sequence of events. For
example, a request for connection establishment between some server and a
user workstation port 80 (handshake protocol) followed by some information
exchange and closing connection. As a matter of fact a number of all possible
actions is limited by operation system tools and additionally installed programs,
therefore, a number of action classes is finite and known beforehand.

An action class instance is an instance that describes a certain group of
actions that belong to the same action class and have similar temporal charac-
teristics. By similar temporal characteristics we imply temporal distances (time
lengths) that characterize actions. These distances must be distributed normally
in order to be grouped into a same instance. In figure 3.a it is possible to see
an example of an action class that contains three instances. These instances
described by three normal distributions each of which has own parameters - u
and o. Finally, every instance contains n - number of actions grouped in it.



A Methodology to Detect Temporal Regularities in User Behavior for Anomaly 345

It is used for calculation of probability distribution of instances inside a single
action class.

As was mention before an action class instance is formed by a number of
actions with similar temporal parameters. Every action has information to
which action class it belongs and it represents a concrete happening. Since an
action has a beginning and an ending it is described by a temporal interval that
has length (action’s length).

Class

R

Instance

|

Action

Figure 1  Structure of information stored in user profiles.

In this section we presented a way to represent information about user actions
taking into account their temporal parameters. It describes user events by
forming actions, classifying them, and splitting them into instances of the same
action class. In figure 1 it is possible to see a structure that describes a part of
a user profile presented in this section.

23. RELATIONS BETWEEN ACTION CLASSES

Looking at previous work we may summarize that traditionally, in anomaly
detection, user profiles have been built basing on different characteristics, such
as consumed resources, command count, typing rate, command sequences,
etc. In these cases information analysis has been made using system log files,
command traces, and audit trails. In most cases the classification was based
on the sequence of events in time. However, the sequential data is not the only
information that is possible to get from a stream of discrete happenings. It
also contains some hidden information that is usually neglected: time relations
between events are not taken into account at all or only very little attention
is given to it. Sometimes time relations play a crucial role in attempting to
classify events, i.e. determining whether an event is a part of anomalous or
normal behavior. For instance, if an account has been under an IP spoof attack
(Phrack, 1996), it is easier to recognize it relying on time relations between
events, since the misuse activity appears as a continuation of the normal behavior



346 Part Nine Network Security and Intrusion Detection

within a single session. To be able to expose and later use of relations between
actions it is necessary to introduce additional concepts.

Relation class is a notion that describes one of all possible relations between
any two actions: Action; and Action;. It is defined as one of Allen’s interval
temporal relations (Allen, 1983) and it has a Name.

Name € { before, after, meets, met — by, during, includes, overlaps,
overlapped — by, starts, started — by, finishes, finished — by, equals}

(1
According to (Allen, 1983):

m given any interval, there exists another interval related to it by each of
the thirteen relationships;

m the relationships are mutually exclusive;

m the relations have a transitive behavior, e.g. if A is "before" B, and B
"meets" C then A is "before" C.

Relation class instance describes some set of relations that have similar
temporal characteristics and each of them belongs to the same relation class.
In other words, a relation instance has a Name and describes some distribution
of temporal parameters of relations grouped by this instance.

Relation is a relation (one of thirteen presented above) between two any
actions Action; and Action;. It is characterized by a name and a temporal
distance between these actions. Thus, name is a qualitative parameter that
describes what kind of relation it is, and temporal distance is a quantitative
parameter that shows how strong the relation is or how much of it is possible
to find between two current actions.

What is a temporal distance in context of user behavior expressed by a se-
quence of actions? Below we consider all possible relations between actions
and define a notion of temporal distance for them. There are thirteen possible
relationships between two actions (Allen, 1983). In our approach we are not
using all of them. Since we have qualitative temporal characteristics we may de-
fine several basic relations, which with different temporal parameters produce
all possible relations. For example, if Al : before A2 and temporal distance
(distance between end of A1 and beginning of A2) is zero then Al : meets A2.

We define two relations as basic: "before", "during". Figure 2 shows them.

Below we define temporal distances ¢ for basic relations.

V Al : before A2, t(Al : before A2) = A2 pegin — Al ena 2)

Ift (A1 : before A2) = 0 then we have case when Al : meets A2. If
t(A1l : before A2)<0interms of Allen’s temporal relations we may say that
Al : overlaps A2.



A Methodology to Detect Temporal Regularities in User Behavior for Anomaly 347

Al: before A2 Al: during A2
I |
Al A2 ! :<£>: |
(- 1 A2 I
t ' -
— v ! ! I

Figure 2 Basic relations.

V Al : during A2,t(Al : during A2) = A2 pegin — Al _begin 3)

As it is possible to see from figure 2 a position of the interval A1 relatively to
A2 is defined by #'and ¢". If #' = O then this basic relation forms Al : starts A2
relation. In case when t” = 0 we have Al : finishes A2. When both ' = 0
and ¢" = 0 then A1 : equals A2. For our purposes we do not need to calculate
and store ¢". Since we have a relation Name, #' and A1 length we are always
able to reconstruct " when we need it. That is why we defined the temporal
distance for a "during" relation as ¢

As we can see our two basic relations include all seven Allen’s relations3-
Therefore, in order to create a user profile we transform incoming information
into vector of N classes with instances inside them. To take into account
important relations between actions we need to discover them and store their
temporal characteristics.

To represent relations between actions we use a square matrix N X N -
relational matrix. In every cell {i, j}, matrix holds relational classes that are
allowed between two classes i and j. Thus, cells i, j when j > i contain direct
relations for Ai and Aj, and cells i, j when j < i contain reverse ones.

Using the relational matrix we may check whether there is a certain relation
between any of two classes and if it fits into a certain relation instance.

3. DETECTING ABNORMAL BEHAVIOR

In this section we are going to discuss how to use described above action
and relation classes to discover abnormal behavior by monitoring deviations
between current user behavior and a model stored in profile. N action classes
and a relational matrix are considered as tools that describes the model of user
behavior. Every action class has one or more instances that represent some
user action characterized by statistic parameters of time distribution - mean and
standard deviation. Role of transactions’ description between actions fills the
relational matrix, every relation instance in which is characterized by same kind
of temporal parameters. These tools are used to classify user behavior. There-



348 Part Nine Network Security and Intrusion Detection

fore, deviations from current values of its sequential and temporal parameters
are considered as a consequence of abnormal behavior. To estimate the value
of deviation we introduce coefficient of reliability - r = m It is assigned to
every active user and shows probability that the user is someone who he claims
to be. During classification the system monitors deviations between expected or
predicted user behavior and current one. According to this deviations it calcu-
lates some penalty (negative) or encouragement (positive) value, which reduces
or increases the coefficient by A,. At a root node the coefficient is assigned to
0.5 since there is no yet any evidence neither of distrust nor of trust. Therefore,
the coefficient of reliability has an ability to grow as well as diminish. If it is
crosses a certain threshold it means that there is a sequence of actions where
parameters of each action are not in admissible intervals. It is considered as a
case of abnormal behavior and thus, an alarm should be fired.

Coefficient A, is calculated at the each step of classification. Each time the
system gets a new case for classification it needs to determine correct action
class and instance. Finding a correct class is relatively easy. Knowledge an
action’s name points to a certain class. After this it is necessary to find a correct
instance inside the class. Below we present our way to automatically determine
the instance, where the current action belongs, among several inside one class:

1 first it is necessary to determine a distribution where a new action belongs
-te [u-20;u+20];

2 if there are more then one interval found on step one, then we find
min |y — t| among them;

3 if there are more then one instance with same temporal distances be-
tween them and a current action, we chose the one with smallest standard
deviation: min [o].

In normal distribution 95% of all cases are lying in interval [u — 20; u + 20].
During first step we use this to determine where a new case belongs. If there
are some action instances that are overlapping each other and the new case is in
overlapping area we use step two and three to introduce additional restrictions
to find a right instance for the new case.

Below we consider calculations of the temporal-probabilistic characteristics
for an action instance. In order to save computer resources a system does not
need to keep a history of events, it needs only to have two parameters that
describe a distribution inside this instance. Therefore, if a new case comes
that supports a current instance we update its temporal parameters. For every
i node its mean and standard deviation calculated each time it being used for
classification:

M:px(n 1) +¢ @

n



A Methodology to Detect Temporal Regularities in User Behavior for Anomaly 349

where n - number of cases in this instance;
t - temporal length of being classified action.

U:\/azx (7L~1)'+(/l,—/,)2 (5)

’IL2

The same formulas may be applied for calculations of temporal parameters
of relation instances. In this case ¢ is a temporal length of being classified
transition.

How we may use these temporal characteristics of action and relation in-
stances to detect abnormal behavior? Well, if we take one instance it contains
some distribution described by ¢ and 6. We separate all area outlined by this
curve into three areas:

= Area limited by one G - 68% of all area. In case when a new case is in this
area we consider this case as a strong match that supports this instance.
Therefore, the coefficient of reliability should be "encouraged".

= Area between one and two G - 27% of all area. When a new case gets
into this area it is a weak match. In other words, we have proofs that the
new case belongs to this instance, but it does not support it as much as in
previous case. Thus, the coefficient of reliability should not be changed.

m  Area beyond two G. In this situation the value of penalty for the coefficient
of reliability should be calculated.

Below we present a formula for calculations of the coefficient of reliability
changes:

0 <t<pu— 20,1 X m:p(%{‘l) — exp(—2)
p—20<t<u—o,0 6
o 1 B 2
Ar=q p—o<t<p+o,2x (eac’p(J;?"L) — exp(—0.5)) (6)
nr+o<t<pu+ 20,0
o 2
pwt20 <t < oo,y X Prp(—%—g{iL) — exp(—2)

where c - coefficient that limits n and determines system’s sensitivity to devia-
tions;
v; - coefficient of security significance of the action (in other words, how much
danger improper usage of this action may cause); it is defined by system ad-
ministrator for a certain kind of action.

Coefficient of reliability change calculations are based on following assump-
tions:

® how big difference is between predicted and current action lengths;



350 Part Nine Network Security and Intrusion Detection
= how big difference is between predicted and current transition lengths;
= security significance of the current action;

» how big standard deviation a current action instance has;
= how big standard deviation a current relation transition has.

At the end of classification process if a coefficient of reliability r is lower
than a certain threshold an alarm is fired. The alarm may also be issued during
classification process when the coefficient of reliability diminishes very fast
below the threshold. In the figure 3 we may see an example of some class
"X" and a graphical representation of distribution of coefficient of reliability
changes inside this class.

Numher of cases
4 N @ b
e ¢ 0 o
c 0 0 0
L e
?
.
i
"t
|
i
\
\
/
/
7
/
1
J\
A\
"
N
~
~
~
/
!
!
.

o
0.3 S B

0.z

| RN |
. ey /
o} /_/\\ y 7 . \/,4/ \,, . \\

—o.2l—

Punstiment tuchen

Figure 3 Class "X": a) three instances of the action class; b) dynamic A, changes inside this

action class.

In this section we presented an approach to expose regularities in user be-
havior. Using these regularities a user profile is built to monitor user’s current
behavior and detect anomalies in it. Basing on the amount of these anomalies
it is possible to decide whether the current user is the same user he claims to
be.

4. CONCLUSIONS

In this paper we proposed theoretical background for a new approach for
anomaly detection. This approach allows to create a profile for every user by



A Methodology to Detect Temporal Regularities in User Behavior for Anomaly 351

automatically finding regularities in his behavior and then constantly update
these profiles. The main assumption behind this approach is that the behavior
of each user follows regularities that may be discovered and presented using a
limited number of action and relation classes.

The profiles are created by forming a vector of N action classes each of
which contains several instances. In other words, it contains several temporal
patterns of some action. Every profile also contains a matrix of relation classes
(they are similar to action classes but describe relations). This matrix allows us
to check whether a relation is valid between every two action classes.

Using described profiles a monitoring system evaluates every user action
according to its length and relations with previous and next actions. During
classifications a coefficient of reliability is changed. Basing on it a decision is
made whether the current behavior is normal or anomalous.

The presented in this paper approach has some advantages. It is relatively
simple and easy to visualize. It is quite fast since it does not require many
calculations. The user profile is represented by action and relation classes,
which are described by same temporal parameters, and thus, it is possible to
use same formulas to calculate and update actions’ temporal parameters as well
as relations’.

At every time point every class contains several instances and therefore, may
be described by some curve (as in figure 3a). To eliminate some calculations it is
possible not to describe every instance as a distribution of temporal parameters,
but a distribution of a coefficient of reliability change value (as in figure 3b).
It would not require calculations of this value at every step and thus, increases
classification speed.

The approach presented in this paper is interesting from theoretical point of
view. However, we are still in the initial stages of our research and further devel-
opment, numerous tests and evaluations with real implementation are needed
to verify the practical aspects of this approach.

Notes

1. In this paper we attempt to use all definitions and terms in accordance with (?) and (?).

2. Since we are using a user-oriented approach we are interesting in time when a user has requested a
certain action not when it actually has been performed by operation system.

3. Six reverse relations we do not take into account. Later we explain reasons for this.

References

Allen, J. (1983). Maintaining knowledge about temporal intervals. Communi-
cations of the ACM, 26:832-843.



352 Part Nine Network Security and Intrusion Detection

Ilgun, K. and Kemmerer, R. (1995). State transition analysis: A rule-based
intrusion detection approach. IEEE Transactions on Software Engeneering,
21(3):181-199.

Kautz, H. and Ladkin, P. (1991). Integrating metric and qualitative temporal
reasoning. In Nine National Conference of Artificial Intelligence, CA, USA.

Kumar, S. (1995). Classification and Detection of Computer Intrusions. Phd,
Purdue University.

Kumar, S. and Spafford, E. (1995). A software architecture to support misuse
intrusion detection. In The 18th National information Security Conference,
pages 194-204.

Lane, T. and Brodley, C. (1998). Sequence matching and learning in anomaly
detection for computer security.

Lunt, T., Tamaru, A., Gilham, F., Jagannathan, R., Neumann, P., Javitz, H.,
Valdes, A., and Garvey, T. (1992). A real-time intrusion detection expert
system (ides) - final technical report. Technical, Computer Science Labora-
tory, SRI International.

Phrack (1996). Ip-spoofing demystified: Trust-relationship exploitation. Phrack
Magazine, available from http://www.fc.net/phrack/files/p48/, 7(48).

Power, R. (1995). Current and future danger. Computer Security Institute, San
Francisco, California.

Seleznyov, A. and Puuronen, S. (1999a). Anomaly intrusion detection systems:
Handling temporal relations between events. In 2nd International Workshop
on Recent Advances in Intrusion Detection, Lafayette, Indiana, USA.

Seleznyov, A. and Puuronen, S. (1999b). Temporal aspects of user profiling in
anomaly detection. In Fourteen International Symposium on Computer and
Information Sciences, Izmir, Turkey.

Sendmail (2000). Sendmail Mail Program. Description and new version avail-
able from http:
www.sendmail.org.

Smaha, S. (1993). Tools for misuse detection. In ISSA 93, Crystal City, VA.

Sundaram, A. (1998). An introduction to intrusion detection. ACM Crossroads.



	24 A METHODOLOGY TO DETECT TEMPORAL REGULARITIES IN USER BEHAVIOR FOR ANOMALY DETECTION
	1. INTRODUCTION
	2 . CLASS APPROACH TO USER PROFILE BUILDING
	2.1. DEFINITIONS AND BASIC CONCEPTS
	2.2. USER PROFILE
	2.3. RELATIONS BETWEEN ACTION CLASSES

	3. DETECTING ABNORMAL BEHAVIOR
	4. CONCLUSIONS
	References




