
16

COMMUNICATION-EFFICIENT GROUP KEY
AGREEMENT

Yongdae Kim
Dept. of Information and Computer Science

University of California Irvine

kyongdae@ics.uci.edu

Adrian Perrig
Computer Science Division

University of California Berkeley

perrig @cs.berkeley.edu

Gene Tsudik
Dept. of Information and Computer Science

University of California Irvine

gts@ics.uci.edu

Abstract Traditionally, research in secure group key agreement focuses on minimizing
the computational overhead for cryptographic operations, and minimizing the
communication overhead and the number of protocol rounds is of secondary
concern.

The dramatic increase in computation power that we witnessed during the
past years exposed network delay in WANs as the primary culprit for a negative
performance impact on key agreement protocols.

The majority of previously proposed protocols optimize the cryptographic
overhead of the protocol. However, high WAN delay negatively impacts their
efficiency.

The goal of this work is to construct a new protocol that trades off compu-
tation with communication efficiency. We resurrect a key agreement protocol
previously proposed by Steer et al. We extend it to handle dynamic groups and
network failures such as network partitions and merges. The resulting protocol
suite is provably secure against passive adversaries and provides key indepen-
dence, i.e. a passive adversary who knows any proper subset of group keys cannot
discover any other group key not included in the subset. Furthermore, the pro-
tocol is simple, fault-tolerant, and well-suited for high-delay wide area network.

Peer group key agreement, fault-tolerant protocolKeywords:

http://dx.doi.org/10.1007/978-0-306-46998-5_33

230 Part Six Secure Group Communications

1. INTRODUCTION

The proliferation of applications, protocols and services that rely on group
communication prompts the need for group-oriented security mechanisms (in
addition to the traditional requirements of fault-tolerance, scalability, and reli-
ability). Current group-oriented applications include IP telephony, video con-
ferencing, collaborative workspaces, interactive chats and multi-user games.
The security requirements of these applications are fairly typical, e.g., confi-
dentiality, data integrity, authentication and access control. These are achieved
through some form of group key management.

The peer nature of many group applications results in certain unique prop-
erties and requirements. First, every member in a peer group is both a sender
and a receiver. Second, peer groups tend to be small, with fewer than a hundred
members. Also, peer groups have no hierarchy and all members enjoy the same
status. Therefore, solutions that assign greater importance to some group mem-
bers are undesirable, since privileged members might behave maliciously; they
are also attractive targets of attacks. This essentially rules out the traditional
key distribution paradigm as it calls for higher trust in the group member who
generates and distributes keys. Finally, since all networks are prone to faults
and congestion, any subset of group members must be prepared to function as a
group in its own right. In other words, if a network partition splits the members
into multiple subgroups, each subgroup must quickly recover and continue to
function independently.

In the last two decades a lot of research has been conducted with the aim of
minimizing cryptographic overhead in security protocols. It has been long held
as an incontrovertible fact that heavy-weight computation – such as large num-
ber arithmetic which is the basis of many modern cryptographic algorithms –
is the greatest burden imposed by security protocols. We believe that, although
this has been the case in the past, rapid advances in computing have resulted in
drastic improvements in large-number arithmetic computations. For example,
three years ago, a top-of-the-line RISC workstation performed a 512-bit modu-
lar exponentiation in around 24 ms. Today, an 850 Mhz Pentium III PC (priced
at 1/5-th of the old RISC workstation) performs the same operation in under
1 ms.

In contrast, communication latency has not improved appreciably. Network
devices and communication lines have become significantly faster and cheaper.
However, the communication (especially via the Internet) has become both
accessible and affordable which resulted in drastic increase in the demand for
network bandwidth. Consequently, the explosion in the number of users and
their devices often causes network congestion and outages. Moreover, while
computation power and bandwidth are increasing, network delay is still faced
with a fundamental limit dictated by the speed of light.

Communication-Efficient Group Key Agreement 231

The bottleneck shift from computation to communication latency leads us
to start looking at cryptographic protocols in a different light: allowing more
liberal use of cryptographic operations while attempting to reduce the com-
munication overhead. The latter includes both round and message complexity.
Communication overhead is especially relevant in a peer group setting since
group members can be spread throughout a large network, e.g., the global In-
ternet.

We consider a protocol suggested by Steer et al. in 1988 [SSDW88], one of
the first group key agreement protocols. Their protocol is based on the Diffie-
Hellman key exchange and assumes the formation of a secure static group. We
extend their protocol to deal with dynamic groups and network failures. This
protocol – referred to as STR hereafter – was neglected due to its heavy com-
putation and communication requirements: O(n) communication rounds and
O(n) cryptographic operations are necessary to establish a shared key in a group
of n members. However, we extend STR and construct new communication-
efficient protocols that support dynamic groups. More concretely, we construct
an entire group key management protocol suite, that is particularly efficient in
a WAN environment where moderate to high network delays dominate. An
extended version of this paper that provides more detail of our algorithms and
security is available from the authors.

2. RELIABLE GROUP COMMUNICATION AND
GROUP KEY AGREEMENT

In this section, we set the stage for the rest of the paper with a brief overview of
the notable features of reliable group communication and group key agreement.

2.1. RELIABLE GROUP COMMUNICATION
SEMANTICS

Many modern collaborative and distributed applications require a reliable
group communication platform. Current reliable group communication toolkits
generally provide one (or both) of two strong group communication semantics:
Extended Virtual Synchrony (EVS) [MAMSA94] and View Synchrony (VS)
[FLS97]. Both semantics guarantee that: 1) group members see the same set
of messages between two sequential group membership events, and, 2) the
sender’s requested message order (e.g., FIFO, Causal, or Total) is preserved.
VS offers a stricter guarantee than EVS: Messages are delivered to all recipients
in the same membership as viewed by the sender application when it originally
sent the message. In the context of this paper we require the underlying group
communication to provide VS. However, we stress that VS is needed for the
sake of fault-tolerance and robustness; the security of our protocols is in no way

232 Part Six Secure Group Communications

affected by the lack of VS. More details on the interaction of key agreement
protocols and reliable group communication are addressed in [AAH+00].

2.2. COMMUNICATION DELAY

Due to the reliable group communication platform, network delay is am-
plified by the necessary acknowledgments between the group members. The
speed of light puts a lower bound on the minimum network delay. For example,
a laser pulse that travels through a fiber takes ≈ 10 ms between New York and
San Francisco, ≈ 21 ms between Paris and San Francisco, and ≈ 40 ms from
London to Sydney. In practice the networks today are slower than the lower
bound by about a factor of 4 (due to switching overhead, etc.).

To put this into perspective, an 850MHz Pentium III PC performs a single
512-bit modular exponentiation (one of the most expensive, but most basic pub-
lic key primitives) in under 1 ms. Moreover, the speed of computers continue to
increase. Comparing this with the WAN network delay, it is clear that reducing
the number of communication rounds is much more important in the long run
for an efficient group key agreement scheme than reducing the computation
overhead.

2.3. GROUP KEY AGREEMENT

A comprehensive group key agreement solution must handle adjustments to
group secrets subsequent to all membership change operations in the under-
lying group communication system. The following membership changes are
considered:
Join occurs when a prospective member wants to join a group.
Leave occurs when a member wants to leave (or is forced to leave) a group.
There might be different reasons for member deletion such as voluntary leave,
involuntary disconnect or forced expulsion.
Partition occurs when a group is split into smaller groups. A group partition
can take place for several reasons, two of which are fairly common:
� Network failure – this occurs when a network event causes disconnectivity
within the group. Consequently, a group is split into fragments.
� Explicit partition – this occurs when the application decides to split the group
into multiple components or simply exclude multiple members at once.
Merge occurs when two or more groups merge to form a single group:
� Network fault heal – this occurs when a network event causes previously
disconnected network partitions to reconnect.
� Explicit merge – this occurs when the application decides to merge multiple
pre-existing groups into a single group.

At first glance, events such as network partitions and fault heals might appear
infrequent and dealing with them might seem to be a purely academic exercise.

Communication-Efficient Group Key Agreement 233

In practice, however, such events are common owing to network misconfigu-
rations and router failures. In addition, in mobile ad hoc (and other wireless)
networks, partitions are both common and expected. Moser et al. present com-
pelling arguments in support of these claims [MAMSA94]. Hence, dealing with
group partitions and merges is a crucial component of group key agreement.

3. CRYPTOGRAPHIC PROPERTIES

In this section we summarize the desired properties for a secure group key
agreement protocol. Following the model of [KPT00], we define six such
properties:
� Weak Backward Secrecy guarantees that previously used group keys must
not be discovered by new group members.
� Weak Forward Secrecy guarantees that new keys must remain out of reach
of former group members.
� Group Key Secrecy guarantees that it is computationally infeasible for a
passive adversary to discover any group key.
� Forward Secrecy (Not to be confused with Perfect Forward Secrecy or PFS)
guarantees that a passive adversary who knows a contiguous subset of old group
keys cannot discover subsequent group keys.
� Backward Secrecy guarantees that a passive adversary who knows a contigu-
ous subset of group keys cannot discover preceding group keys.
� Key Independence guarantees that a passive adversary who knows any proper
subset of group keys cannot discover any other group key.

The relationship among the properties is intuitive. The first two (often typi-
cally called Forward and Backward Secrecy in the literature) are different from
the others in the sense that the adversary is assumed to be a current or a former
group member. The other properties additionally include the cases of inadver-
tently leaked or otherwise compromised group keys. Forward and Backward
Secrecy is a stronger condition than Weak Forward and Backward Secrecy. Ei-
ther of Backward or Forward Secrecy subsumes Group Key Secrecy and Key
Independence subsumes the rest. Finally, the combination of Backward and
Forward Secrecy yields Key Independence.

In this paper we do not assume key authentication as part of the group key
management protocols. All communication channels are public but authentic.
The latter means that all messages are digitally signed by the sender using
some sufficiently strong public key signature method such as DSA or RSA. All
receivers are required to verify signatures on all received messages. Since no
other long-term secrets or keys are used, we are not concerned with Perfect
Forward Secrecy (PFS) as it is achieved trivially.

234 Part Six Secure Group Communications

4 . P R O T O C O L S

We now describe the protocols that make up the STR key management suite:
join, leave, merge, and partition. All protocols share a common framework
with the following features:
� Each group member contributes an equal share to the group key; this share
is kept secret by each group member.
� The group key is computed as a function of all current group members’
shares.
� As the group grows, new members’ shares are factored into the group key
while remaining members’ shares stay unchanged.
� As the group shrinks, departing members’ shares are removed from the new
group key and at least one remaining member changes its share.
� All protocol messages are signed by the sender, i.e., we assume an authenti-
cated broadcast channel.

Before describing the protocols in detail, we review the basic STR key agree-
ment protocol and the notation used in the rest of the paper.

4.1. NOTATION

We use the following notation:

n, N
i, j
M i

r i

bri
k j

bk j

p
α

N 〈 j〉
IN〈 l 〉
LN〈 i〉
T 〈i 〉
B T 〈 i 〉

number of protocol parties (group members)
group member indices: i, j ∈ {1, . . . , N}
i -th group member; i ∈ {1, . . . , N}
Mi’s session random (secret key of leaf node Mi)
Mi ’s blinded session random, i.e. αr i mod p
secret key shared among M

j

1 ... M j

blinded kj , i.e. α k mod p
large prime number
exponentiation base

Tree-specific notation
Tree node j
Internal tree node at level l
Leaf node associated with member Mi

Tree of member Mi

Tree of member Mi including all of its blinded keys

Figure 1 shows an example of an STR key tree. The tree has two types of
nodes: leaf and internal. Each leaf node is associated with a specific group
member. An internal node IN〈i 〉 always has two children: another (lower)
internal node IN and a leaf node LN〈 i– 1 〉 〈 i+1 〉 . The exception is IN〈1〉 which is
also a leaf node corresponding to M . (Note that, consequently, r1 1 = k 1.)

Communication-Efficient Group Key Agreement 235

Figure 1 Notation for STR

Each leaf node LN〈i 〉 has a session random ri chosen and kept secret by Mi.
The blinded version thereof is bri = αr i mod p.

Every internal node IN 〈 j 〉 has an associated secret key kj and a public blinded
key bk j = α kj mod p. The secret key ki (i > 1) is the result of a Diffie-
Hellman key agreement between the node’s two children. (k1 is an exception
and is equivalent to r i .) k i (i > 1) is computed recursively as follows:

ki = (bk i –1)r i mod p = (br i)k i –1 mod p = α r i k i – 1 mode p if i > 1.

The group key in Figure 1 is the key associated with the root node:

We note that the root (group) key is never used directly for the purposes of
encryption, authentication or integrity. Instead, such sub-keys are derived from
the root key, e.g., by applying a cryptographically secure hash function to the
root key. All blinded keys bki are assumed to be public.

The basic key agreement protocol is as follows. We assume that all members
know the structure of the key tree and their initial position within the tree. (It
is simple to have an ordering that uniquely determines the location of each
member in a key tree.) Furthermore, each member knows its session random
and the blinded session randoms of all other members. The two members M1

and M 2 can first compute the group key corresponding to IN〈2〉 . M 1 computes:

k2 = (br2) r1 mod p = α r 1 r2 mod p, bk 2 = αk 2 mod p
k 3 = (br 3)k 2 mod p, bk 3 = αk 3 mod p
. . .
k N = (br N)k N –1 mod p

Next, M 1 broadcasts all blinded keys bk i with 1 ≤ i ≤ N – 1. Armed
with this message, every member then computes kN as follows. (As mentioned
above, members M 1 and M 2 derive the group key without additional broad-
casts.) Any Mi (with i > 2) knows its session random r i and bk i–1 from the
broadcast message. Hence, it can derive ki = bk mod p. It can then com- i– 1

pute all remaining keys recursively up to the group key from the public blinded

r i

session randoms: ki = bri + 1 k i mod p (i ≤ N).

236 Part Six Secure Group Communications

Following every membership change, all members independently update the
key tree. Since we assume that the underlying group communication system
provides view synchrony (see Section 2.1), all members who correctly exe-
cute the protocol recompute an identical key tree after any membership event.
The following fact describes the minimal requirement for a group member to
compute the group key:

Remark 1. If all members know all blinded session randoms of all other mem-
bers, there exist at least two members who can compute the group key.

Proof. This follows directly from the recursive definition of the group key. In
other words, both M1 and M2 (the member at the lowest leaf nodes) can obtain
the group key by computing pairwise keys recursively and using blinded session
randoms of other members. ��

Remark 2. Any member can compute the group key, if it knows: 1) its own
secret share, 2) the blinded key of its sibling subtree, and, 3) blinded session
randoms of members higher in the tree.

Proof. This also follows from the definition of the group key. To compute the
group key, member Mi needs 1) r i , 2) bk i – 1 , and 3) br i + 1 , bri + 2 , ... ,br N . �

The protocols described below benefit from a special role (called sponsor)
assigned to a certain group member following each membership change. A
sponsor reduces communication overhead by performing "housekeeping" tasks
that vary depending on the type of membership change. The criteria for selecting
a sponsor varies as described below.

4.2. MEMBER JOIN PROTOCOL

We assume the group has n users ({M1 , . . . , M n }), when the group commu-
nication system announces the arrival of a new member. Both the new member
and the prior group receive this notification simultaneously. The new mem-
ber M n+1 broadcasts a join request message that contains its own blinded key
bk n+1 (which is the same as its blinded session random brn+1) At the same
time, the current group’s sponsor (Mn) computes a blinded version of the cur-
rent group key (bk n) and sends the current tree BT 〈 n〉 to Mn +1 with all blinded
keys and blinded session randoms.

Next, each Mi first increments n = n + 1 and creates a new root key node
IN 〈 n〉 with two children: the root node IN 〈 n –1 〉 of the prior tree T 〈 i 〉 on the left
and the new leaf node LN 〈n corresponding to the new member on the right. 〉
Note that every member can compute the group key (see Remark 2):

All existing members only need the new member’s blinded session random
The new member needs the blinded group key of the prior group
In a join operation, the sponsor is always the topmost leaf node, i.e., the most

recent member in the current group.

�

�

Communication-Efficient Group Key Agreement 237

As described, the join protocol takes one communication round and two
cryptographic operations to compute the new group key (one before the message
exchange and one after.)

The join protocol provides backward secrecy since a new member is only
given a blinded key of the existing group. However, the protocol does not
provide key independence since knowledge of a group key used before the
join can be used to compute the group key used after the join. To remedy
the situation, we can modify the protocol to require the sponsor to change its
session random and the corresponding blinded value, br .n

4.3. MEMBER LEAVE PROTOCOL

We again have a group of n members when a member M (d ≤ nd) leaves
the group. If d > 1, the sponsor Ms is the leaf node directly below the leaving
member, i.e., M . Otherwise, the sponsor is Md– 1 2 . Upon hearing about the
leave event from the group communication system, each remaining member
updates its key tree by deleting the nodes LN d corresponding to M〈 〉 d and its
parent node IN 〈d〉 . The nodes above the leaving node are also renumbered. The
former sibling IN〈 of M is promoted to replace (former) Md –1 〉 d d ’s parent. The
sponsor Ms selects a new secret session random, computes all keys (and blinded
keys) up to the root, and broadcasts BT〈s〉 to the group. This information allows
all members to recompute the new group key.

In summary, the leave protocol takes one communication round and involves
a single broadcast. The cryptographic cost varies depending on two factors:
1) the position of the departed member, and 2) the position of the remaining
member who needs to compute the new key.

The total number of serial cryptographic operations in the leave protocol can
be expressed as (assuming n is the original group size):
� 2(n – d) + 1 + (n – d) + 1 = 3n – 3d + 2 when d > 2
� 3n – 7 when d = 1,2

In the worst case, M or M1 2 leave the group. The cost for this leave operation
is equal to the leave of member M3, which is 3n – 7. The average leave cost
is 3n /2 + 2.

The leave protocol provides forward secrecy since a former member cannot
compute the new key owing to the sponsor’s changing the session random.
The protocol also provides key independence since knowledge of the new key
cannot be used to derive the previous keys; this is, again, due to the sponsor
refreshing its session random.

4.4. GROUP PARTITION PROTOCOL

A network fault can cause a partition of the group. To the remaining members,
this actually appears as a concurrent leave of multiple members. With a minor

238 Part Six Secure Group Communications

modification, the leave protocol can handle multiple leaving members in a single
round. The only difference is the sponsor selection. In case of a partition, the
sponsor is the leaf node directly below the lowest-numbered leaving member.
(If M 1 is the lowest-numbered leaving member, the sponsor is the lowest-
numbered surviving member.)

After deleting all leaving nodes, the sponsor Ms refreshes its session random
(key share), computes keys and blinded keys going up the tree – as in the plain
leave protocol – terminating with the computation of αk n – 1 mod p. It then
broadcasts the updated key tree BT 〈s〉 containing only blinded values. Each
member including Ms can now compute the group key.

The computation and communication complexity of the partition protocol is
identical to that of the leave protocol. The same holds for its security properties.

4.5. GROUP MERGE PROTOCOL

We now describe the STR merge protocol for two groups. (A more general
protocol for merging larger number of groups is a straight-forward extension.)
We assume that, as in the case of join, the communication system simultaneously
notifies all group members (in both groups) about the merge event. Moreover,
reliable group communication toolkits typically include a list of all members
that are about to merge in the merge notification. More specifically, we require
that each member be able to distinguish between the group it was in from the
group that it is merging with. This assumption is not unreasonable, e.g, it is
satisfied in SPREAD [AAH + 00].

It is natural to merge the smaller group onto the larger one, i.e., to place a
smaller tree directly on top of the larger one. If the two trees are of the same size,
we can use an unambiguous ordering to decide which group joins which. (For
example, compare the identifiers of the respective sponsors.) Consequently,
the lowest-numbered leaf of the smaller tree becomes the right child of a new
intermediate node. The left child of the new intermediate node is the root of
the larger tree. Since the respective trees are known a priori (before the key
management starts), all nodes can construct the new key tree before receiving
or computing any cryptographic information.

In the first round of the merge protocol, the two sponsors (topmost members
of each group) exchange their respective key trees containing all blinded keys.
The highest-numbered member of the larger tree becomes the sponsor of the
second round in the merge protocol. Using the blinded session randoms of
the other group, this sponsor computes every (key, blinded key) pair upto the
intermediate node just below the root node. It then broadcasts the key tree
with the blinded keys and blinded session randoms to the other members. All
members now have the complete set of blinded keys, which allows them to

Communication-Efficient Group Key Agreement 239

compute the new group key. In any case, the merge protocol runs in two
communication rounds.

5. ROBUSTNESS

5.1. PROTOCOL UNIFICATION

Although described separately in the preceding sections, the four STR oper-
ations: join, leave, merge and partition, actually represent different expression
of a single protocol. We justify this claim with an informal argument below.

Obviously, join and leave are special cases of merge and partition, respec-
tively. It is less clear that merge and partition can be collapsed into a single
protocol, because in either case, the key tree changes and the remaining group
members lack some number (sometimes none) of blinded keys or blinded ses-
sion randoms which prevents them from computing the new root key. When
a partition occurs, the remaining members reconstruct the tree where some
blinded keys are missing. In case of a merge, a shorter tree A is merged into a
taller tree B. Any member in B now can compute the group key since it knows
blinded session random of any member in A. The deepest member in A also
can compute the group key since it knows the blinded session random of any
other member in A and blinded group key of B. Using the broadcast message
any member now can compute the new group key.

We established that both partition and merge initially result in a new key tree
with a number of missing blinded keys. In case of merge, the missing blinded
keys can be distributed in two rounds. This is because a sponsor in both of A
and B broadcasts its own subtree including all blinded keys. Any member in
a given subtree can compute the new root key after receiving both broadcasts.
The case of partition is very similar except that the missing blinded keys and
the new group key can be distributed in one round.

This apparent similarity between partition and merge allows us to lump the
protocols stemming from all membership events into a single, unified protocol.
The following figure shows the pseudocode.

receive msg (msg type = membership event)
construct new tree
while there are missing blinded keys

if (I can compute any missing keys and I am the sponsor)
compute missing blinded keys
broadcast new blinded keys

endif
receive msg (msg type = broadcast)
update current tree

endwhile

The incentive for this is threefold. First, unification allows us to simplify
the implementation and minimize its size. Second, the overall security and

240 Part Six Secure Group Communications

correctness are easier to demonstrate with a single protocol. Third, we can now
claim that (with a slight modification) the STR protocol is self-stabilizing and
fault-tolerant as discussed below.

5.2. CASCADED EVENTS

Since network disruptions are random and unpredictable, it is natural to
consider the possibility of so-called cascaded membership events. In fact,
cascaded events and their impact on group protocols are often considered in
group communication literature, but, alas, frequently neglected in the security
literature. Furthermore, the probability of a cascaded event is much higher on
a wide area network. A cascaded event occurs when one membership change
occurs while another is being handled. For example, a partition can occur while
a prior partition is processed, resulting in a cascade of size two.

We claim that the STR partition protocol is self-stabilizing, i.e., robust against
cascaded network events. In general, self-stabilization is a very desirable feature
since lack thereof requires extensive and complicated protocol "coating" to
either 1) shield the protocol from cascaded events, or 2) harden it sufficiently
to make the protocol robust with respect to cascaded events (essentially, by
making it re-entrant). The latter is often very complicated and inefficient as
seen from [AKNR+ 01].

The pseudocode for the self-stabilizing protocol is shown as below.

receive msg (msg type = membership event)
construct new tree
while there are missing blinded keys

if (I can compute any missing keys and I am the sponsor)
compute missing blinded keys
broadcast new blinded keys

endif
receive msg
if (msg type = broadcast) update current tree
else (msg type = membership event) construct new tree

endwhile

Based on view synchrony discussed in Section 2, we provide an informal
proof that the above protocol terminates on any finite number of consecutive
cascaded events. Due to view synchrony, every member has the same member-
ship view. We can further assume that the ordering of members in the group
communication system is same as that of the key tree. By Remark 1, at least a
member, say Mi can compute the group key if all of the blinded session randoms
are known. All members can then compute the group key using the broadcast
message of the member Mi by Remark 2.

Hence, it is enough to show that at least one member knows every other
member’s session random, eventually. In the above pseudocode, the sponsor
is the node below the lowest node whose blinded session random is missing.

Communication-Efficient Group Key Agreement 241

Now, if a sponsor Ms cannot compute the group key since some of the blinded
keys are missing, it broadcasts the key tree which includes every blinded session
random and blinded keys Ms knows. Then the sponsor of the next round will
be the one who owns the missing blinded session random. Note that every
member will have strictly more blinded session randoms and blinded keys as
number of round increases. Hence, as cascaded events stabilize in the group
communication system, the STR protocol also terminates.

6. DISCUSSION

6.1. SECURITY

The STR protocol suite and the structure of its group key form a special case
of the TGDH key agreement recently presented in [KPT00]. (The latter de-
fines a more general tree-based Diffie-Hellman key agreement.) As such, STR
benefits from the provable security of TGDH protocols. Briefly, in [KPT00]
it is shown that group key secrecy is reducible to the Decision Diffie-Hellman
(DDH) problem [MvOV97].

However, the basic property of group key secrecy is not sufficient for the
security of the entire protocol suite. Recall the desired security properties
defined in Section 3. We will show that STR offers not only group key secrecy
but also weak forward and backward secrecy properties. Furthermore, we show
that STR can provide key independence by modifying the protocol slightly.

We now present an informal argument for weak forward and backward se-
crecy.

The group key secrecy property implies that the group key cannot be derived
from the blinded keys alone. At least one secret key K is needed to compute all
secret keys from K up to the root key. Hence, we need to show that the joining
member M cannot obtain any keys of the previous key tree. First, M picks its
secret share r, blinds it and broadcasts αr as part of its join request. Once M
receives all blinded keys on its co-path, it can compute all secret keys on its key
path. Clearly, all these keys will contain M’s contribution (r); hence, they are
independent of previous secret keys on that path. Therefore, M cannot derive
any previous keys.

Similarly, we argue that STR provides weak forward secrecy. When a mem-
ber M leaves the group, the rightmost member of the subtree rooted at the
sibling node changes its secret share. Then, M’s leaf node is deleted and its
parent node is replaced with its sibling node. This operation causes M’s contri-
bution to be removed from each key on M’s former key path. Hence, M only
knows all blinded keys, and the group key secrecy property prevents M from
deriving the new group key.

As presented in Section 4, the STR protocols do not provide key indepen-
dence. This means that an active attacker who somehow acquires a group key

242 Part Six Secure Group Communications

used before an additive event (join or merge) can use the knowledge of that
key to compute a newer key used after such an event. The same does not hold
for subtractive events (leave and partition) since a sponsor always changes its
session random following each such event.

The join and merge protocols can be modified slightly to provide key inde-
pendence as explained in the join and merge protocol: Upon each join or merge
event, a sponsor (both sponsors, in case of a merge) changes its session random
and recomputes its blinded key before proceeding with the rest of the protocol.

This simple change results in key independence since each membership
change is followed by at least one session random change. (Of course, we
assume that individual members are honest and do not leak their session ran-
doms to the adversary. This behavior can be regarded as equivalent to revealing
the group key.)

6.2. COMPLEXITY ANALYSIS

This section compares the computation and communication of STR proto-
col to other recent group key agreement methods, Cliques GDH.2 [STW00],
Tree-Based Diffie-Hellman (TGDH) [KPT00], and Burmester/Desmedt (BD)
[BD94]. These protocols provide contributory group key agreement based on
different extensions of the two-party Diffie-Hellman key exchange. Moreover,
they all support dynamic membership operations.

We consider the following costs:
� Number of rounds: this affects serial communication delay. Total number of
messages: as the number of messages grows, the probability of message loss
or corruption is increased, and so is the delay.
� Number of unicasts and broadcasts: a broadcast is much more expensive
operation than a unicast, since it requires many acknowledgments within the
group communication system.
� Number of serial exponentiation: this is the main factor in the computation
overhead.
� Robustness: Lack of robustness requires additional measures to make the
secure group communication system robust against cascaded (nested) faults
and membership events.

Table 1 shows a comparison of the current approaches for group key manage-
ment. The bold text refers to a parameter that severely slows down the protocol
in a WAN deployment, for which STR is best suited.

In Cliques GDH.2 protocol, the number of new members k is considered,
since the merge cost depends on number of new members. The cost for TGDH
is the average value when the key tree is fully balanced. The partition or leave
cost for STR is computed on average, since it depends on the depth of the

Communication-Efficient Group Key Agreement 243

lowest-numbered leaving member node. For security reasons [STW00], BD
always has to restart anew upon every membership event.

Table 1 Protocol Comparison

As seen from the table, STR is minimal in communication on every mem-
bership event. We showed in Section 5 that robustness in the STR protocol is
not only easier to implement than in other protocols, but it also achieves higher
robustness to network partitions. Cliques GDH.2 is quite expensive protocol in
wide area network, since: 1) it is hard or very expensive to provide robustness
against cascaded events [AKNR+ 01] and 2) communication cost for merge in-
creases linearly as the number of new members does. In TGDH, the partition
protocol is expensive (relatively slow) which may cause more cascaded faults
and long delays to agree on a key. The cost of BD is mostly acceptable but
large number of simultaneous broadcast messages can be problematic over a
wide area network.

References
[AAH +00] Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru, T. Schlossnagle,

J. Schultz, J. Stanton, and G. Tsudik. Secure group communication in asyn-
chronous networks with failures: Integration and experiments. In ICDCS 2000,
April 2000.

[AKNR + 01] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton, and G. Tsudik. Exploring
robustness in group key agreement. In ICDCS 2001, 2001.

[BD94] M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distri-
bution System. In EUROCRYPT94, 1994.

[FLS97] A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partionable
group communication service. In ACM PODC ’97, Santa Barbara, CA, August
1997.

[KPT00] Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant key agreement for
dynamic collaborative groups. In ACM CCS 2000, November 2000.

[MAMSA94] L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal. Extended virtual synchrony.
In ICDCS ’94, June 1994.

[MvOV97] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press, 1997.

244 Part Six Secure Group Communications

[SSDW88]

[STW00]

D. Steer, L. Strawczynski, W. Diffie, and M. Wiener. A secure audio teleconfer-
ence system. In CRYPTO ’88, 1988.
M. Steiner, G. Tsudik, and M. Waidner. Cliques: A new approach to group key
agreement. IEEE TPDS, August 2000.

	16 COMMUNICATION-EFFICIENT GROUP KEY AGREEMENT
	1. INTRODUCTION
	2. RELIABLE GROUP COMMUNICATION ANDGROUP KEY AGREEMENT
	2.1. RELIABLE GROUP COMMUNICATIONSEMANTICS
	2.2. COMMUNICATION DELAY
	2.3. GROUP KEY AGREEMENT

	3. CRYPTOGRAPHIC PROPERTIES
	4. PROTOCOLS
	4.1. NOTATION
	4.2. MEMBER JOIN PROTOCOL
	4.3. MEMBER LEAVE PROTOCOL
	4.4. GROUP PARTITION PROTOCOL
	4.5. GROUP MERGE PROTOCOL

	5. ROBUSTNESS
	5.1. PROTOCOL UNIFICATION
	5.2. CASCADED EVENTS

	6. DISCUSSION
	6.1. SECURITY
	6.2. COMPLEXITY ANALYSIS

	References

