
SECURING RMI COMMUNICATION

Vincent Naessens
K.U.Leuven,Campus Kortrijk (KULAK)
vincent.naessens@kulak.ac. be

Bart Vanhaute
K.U.Leuven, Dept. of Computer Science, DistriNet
bart.vanhaute@cs.kuleuven.ac.be

Bart De Decker
K. U.Leuven, Dept. of Computer Science, DistriNet
bart.dedecker@cs.kuleuven.ac.be

Abstract: Application programmers often have to protect their applications themselves in
order to achieve secure applications. Therefore, they have to possess a lot of
knowledge about security related issues. The solution to this problem is to
separate the security-related modules as much as possible from the real
application and transparently invoke these security modules. By doing this, the
application programmer can build his distributed application without
considering the security requirements.

The case study presents how to achieve transparent security in the RMI
(remote method invocation) system, an API provided by Java to implement
applications in a distributed environment. The presented framework is also
flexible enough to support different levels of security.

Keywords: open distributed system, security framework

http://dx.doi.org/10.1007/978-0-306-46958-9_15

94 ADVANCES IN NETWORK AND DISTR. SYSTEMS SECURITY

1. INTRODUCTION

Enterprises are increasingly dependent on their information systems to
support their business activities. Compromise of these systems either-in
terms of loss or inaccuracy of information or competitors gaining access to
it- can be extremely costly to the enterprise. Security breaches, are
becoming more frequent and varied. These may often be due to accidental
misuse of the system, such as users accidentally gaining unauthorized access
to information. Commercial as well as government systems may also be
subject to malicious attacks (for example, to gain access to sensitive
information). Distributed systems are more vulnerable to security breaches
than the more traditional systems, as there are more places where the system
can be attacked. Therefore, security is needed in distributed systems. This
case study presents how to achieve transparent security in the RMI system.

Security protects an information system from unauthorized attempts to
access information or interfere with its operation. The key security features
we are concerned with are:
- identificationand authentication to verify parties who they claim to be.
- authorizationand accesscontrol to decide whether some party can

execute some action.
- protection of communicationbetween parties. This requires trust to be

established between the client and the server, which involves
authentication of clients to serversand authentication of servers to clients.
It also requires integrity and confidentiality protection of messages in
transit,

Apart from these security requirements, administration of security
- audit trail of actions.

informationis also needed.

In client/server applications, objects located at one host are
communicating with objects running on other hosts. The key security
features can be provided at two levels: at the location1 level and at the object
level. Security features provided at the location level secure communication
between two hosts. This kind of security is independent of the objects
communicating between these hosts. Each object can also be individually
protected if security is provided at the object level. It is clear that security
provided at the object level is more fine-grained than security provided at the

1Locations will mostly correspond with hosts; more precisely, they correspond to Java Virtual
Machine instantiations.

Securing RMI Communication 95

location level. We will discuss how each of these security features can be
built into the system.

The main goal of this case study is to provide a flexible and transparent
security framework for the RMI system. Flexibility means that it must be
possible to incorporate different mechanisms and services, according to the
degree of security that is required. Transparency mains that applications are
not aware of the security aspects built into the system. Hence, each of the
security features should be implemented into the RMI system itself. That
way, application programmers do not have to recompile their applications to
work with the secured framework.

A first section briefly describes the architecture of the RMI system. The
second section introduces the security components and discusses where these
services should be added in the RMI system. By including these components
in the RMI system itself, they are transparent with respect to the application.
The third section presents a security framework for RMI that is flexible
enough to support different levels of security. The next two sections discuss
the transparency and the flexibility of the framework. Next, we refer to some
related work in this area. The paper ends with a general conclusion.

2. THE RMI SYSTEM

f \ f Server \
V. application J V. application J

n A
Jf

Stub/ skeleton layer
| j

Remote Refbrence Layer

Transpht Layer

Figure 1. the RMI system

The RMI system [1] consists of three layers: the stub/skeleton layer, the
remote reference layer and the transport layer. The application itself runs on
top of this RMI system. When a client invokes an operation on a server
object, a stub object passes the method to the reference layer that initiates the

96 ADVANCES IN NETWORK AND DISTR. SYSTEMS SECURITY

call. The remote references are mapped to locations. A specific reference
semantics is executed at that moment depending on the implementation of
the reference layer. For instance, this layer can support point-to-point calls,
calls to replicated objects, etc. The remote reference layer also sets up a
connection to the server side by creating a new connection or reusing an
existing connection. Depending on the implementation of the transport layer,
TCP [2], UDP [3] or other types of connections are supported. When a
server receives information on an incoming connection, the information will
be forwarded to the reference layer that executes code according to a specific
semantics. Finally, the remote object executes the method and sends the
result back to the client side in the same way.

3. SECURITY COMPONENTS

To achieve a secure execution environment, some security components
must be added into the distributed system. The security components
discussed in this paper are the association component, the authentication
component, the access control component, and the audit trail component.
This section shows where these four security services are added into the RMI
system. By including these services in the RMI system, they are transparent
to the application.

Services can be added at two levels: the location level and the object
level. Services provided at the location level are executed between hosts.
Information provided at that level are the IP addresses of the communicating
hosts, the principals executing at each of the two hosts, etc. Services
provided at the object level are executed between objects. More information
is available at that level. The method name and parameters of the remote
invocation are known. Moreover, an object can be running on behalf of a
certain principal. An access controller at the object level can make use of
this information.

Cli

Figure 2.Security services in the RMI system.

Securing RMI Communication 97

3.1 Secure association service

Before messages are sent over the wire, a secure association must be
established between two hosts: the client and the server. This service is
provided at the location level. As a result of this phase, both parties possess
a key that will be used to exchange further messages. Thus, setting up a
secure association guarantees the confidentiality of the data that is exchanged
between both parties. The secure RMI system performs this task after the
connection is established and before the actual method invocation from the
stub object to the server object takes place. This task can be fully executed at
the transport layer, making use of the connection. The resulting key is also
kept at the transport layer. As this service does not require any information
about the objects, the same secure association can and will be reused over
multiple calls between the two hosts.

3.2 Authentication service

Once a secure association is set up, an authentication service can be
executed. Often, both parties will want to know the correct identity of the
party they are dealing with, for instance as basis for authorization decisions.
Alternatively, they may want to act anonymously. Authentication can be
performed in a kind of handshake phase where trust is gained in the other
party’s identity and where security attributes are exchanged. This service
can be fully performed at the transport layer, immediately after a secure
association is set up. The resulting security attributes are also stored at the
transport layer. Depending on the implementation, authentication is executed
at the location level and/or at the object level. The presented framework only
presents authentication at the location level.. This corresponds to the idea that
users are typically controlling locations, and they are the principals we want
to authenticate.

3.3 Access control service

The access control service (or authorisation service) gives a party the
possibility to allow/disallow an action of the other party involved in the
communication. In an object oriented environment, access decisions can be
based on the method and the parameters that are sent to the server. This
service is performed at the object level. Thus, access control must be
performed at the reference layer, after the necessary information is
unmarshalled and before the method will be invoked. This service can also
make use of the security information that is stored at the transport layer.

98 ADVANCES IN NETWORK AND DISTR. SYSTEMS SECURITY

3.4 Audit trail service

The audit trail service is responsible for logging information. Two types
of logging are introduced. In the transport layer (i.e. at location level),
information about the authentication procedure is logged. At the reference
level (i.e. at object level), information about the authorisationand the method
invocation is logged.

4. THE SECURITY FRAMEWORK

We developped a security framework for RMI that is flexible enough to
support different security levels and mechanisms. By consulting a property
file, the security components are loaded into the RMI system at runtime. By
changing the values of this property file, other components are loaded into
the system. On the one hand, objects are loaded that are responsible for
holding security information. They are called security context objects (or
security contexts). On the other hand, objects are loaded that are responsible
for executing a specific security service. They are called security service
objects (or security services). Security services can modify the information
stored in the security contexts and query them to make decisions.

Figure 3 . The security framework

Securing RMI Communication 99

4.1 Security context objects

To obtain a secure execution environment, two types of security contexts
are introduced in the RMI system: a connection security context and an
invocation security context. They are responsible for storing security-related
data.

A connection security context contains security information specific for
a particular connection. This context contains information exchanged during
the secure association phase and the authentication phase at location level.
More specifically, a connection security context can hold a session key, the
time when the connection is created, the user or client that makes use of the
connection, etc. Thus, every time a new connection is created, a
corresponding new connection security context is initiated at the same level
in the RMI system i.e.at the transport level. A connection security context
disappears when the corresponding connection is closed.

An invocation security context holds information that is specific for a
particular invocation such as the time the invocation is executed, the
operation that must be executed and the parameters that belong to the
operation. Thus, a new invocation security context is created each time a
new call is initiated and is removed when the method call is finished. This is
analogous to the first type of security context. When authentication is
executed at object level, additional information is added into this context.

Remark that a connection security context can be considered a part of an
invocation security context. Every invocation security context holds a
pointer to a connection security context. However, the lifetime of a
connection security context can be longer than the lifetime of an invocation
security context. This is because the same connection can be reused during
subsequent method calls.

4.2 Security service objects

Security service objects are responsible for executing some kind of
security service. When a client invokes a method on a server object, a secure
association is established and a particular authentication protocol is
performed between the client and the server. To achieve these two tasks, a
vault object [4] is introduced at the transport level. A vault object can
perform these two tasks itself or delegate the work to an association object
and an authentication object.

100 ADVANCES IN NETWORK AND DISTR. SYSTEMS SECURITY

incaiffrca
vmut

VauMOhliicil
asiub) A-ioociillonOio|oc1

-JtolhObJ AjjIhtmltcaltlinQtileM
•lnitO.HKur:|J.lliiii<:<lti|Hx|(cHll Call) linnl

T . , ^ k
AuamiUIMiriUlppni'l I AtKtWHitlCjtlllnOblOCt

• ;olupv<all Call) baol | •aulhonlk«to«all Ca«):bool

O '•."/

Asgqc/atfoft Antftertttaittor?
• iaiutt'cajjCajjO coo/ •*<rf.1ier,fAcarfi'ca(rc»'n JP.->O/

Figure 4. TheVault Object

When a call is initiated at the client side and a new unsafe connection is
created, the association object can decide to exchange a session key with the
association object on the server side. Several encryption libraries provide
implementations of key agreement algorithms [5] . The resulting session key
is stored at both sides in the connection security context. As a result of this
step, further information can be sent in encrypted form to the connection
object. In other words, encryption is done on top of a connection and
therefore, it does not affect the implementation of a connection type.
Moreover, if the association object sees that the connection itself is
implemented to support secure communication (for instance by using SSL
secure sockets), it can decide not to execute this first step. When a
connection already exists, the association object can decide to update the
connection security context if necessary. For instance when the time a
particular key is valid, is exceeded, the vault object can ask for a new key
agreement session to take place.

After this, the vault object calls an authentication object if
authentication is not already done. Depending on its implementation, the
authentication object explicitly asks the user for authentication information
or makes use of credentials that are created when the user logs in on the
system. These credentials are generated automaticalIy when the user logs in
on the system. It can happen that authentication is performed in several
successive steps. For instance, the server side can ask for additional
credentials or can conclude that the authentication data are not valid any
more. In these two cases, the authentication continues. Authentication

Securing RMI Communication 101

information can be sent along a secure data stream making use of the session
key obtained in the previous step. The authentication information is stored in
the connection security context and can later be used to make access
decisions.

Access control in an object-oriented environment mostly depends on the
method that must be executed and the parameters of the method call. At that
point in the execution, the information must be in an unmarshalled form.
Marshalling and unmarshalling happens in the remote reference layer. This
information is passed to the invocation security context object. After this
information is set, an access control object can make a decision using the
information kept by the security context. At the client side, access control
can be checked just before marshalling information; at the server side access
control executed after unmarshalling the operation and parameters and just
before the information is dispatched to the application level.

Figure5.Access controller

To provide a flexible access control mechanism, the access control object
can be implementedusing the composite design pattern [6]. A tree of access
controllers makes an access decision. At the leaf level, the access controllers
give a negative veto or advice, or a positive veto or advice to the intermediate
nodes in the tree. This information is propagated to the top level of the tree
that makes a final decision. Each access controller makes a particular
decision. For instance, there can be user access controllers, rights access
controllers, .. . These access controllers can be implemented totally
independent of the actual application. To give the application the possibility
to attach his own access controller to the tree, it can give a series of access
controllers to the constructor of an application object. The constructor then
appends the controllers to the tree in a predefined way.

102 ADVANCES IN NETWORK AND DISTR. SYSTEMS SECURITY

Two types of log objects are introduced in the system: association log
objects and operation log objects. Association loggers are introduced at the
transport level and log information concerning the association. For instance,
an association logger can save which client is trying to make a connection, if
the authentication is successful, etc ... Operation loggers are introduced at
the reference layer and log information about the operations that have to be
executed or that have already been executed. For instance, an operation
logger can store the method a client tries to execute, the return value of the
access control decision object, the result of the method call, etc. In contrast
to vault objects and access control objects, we want to provide the possibility
to pick up several log objects at each level.

5. TRANSPARENCY

Because the presented security features are all built into the RMI system,
it can be reused for every application. Access control and operation logging
happens at the reference layer; setting up a secure association and logging
associations happens at the transport layer. This also implies that stub
objects remain the same. Therefore, the rmic compiler that generates stubs,
does not have to be changed. This implies full transparency from the point of
view of the applicationprogrammer.

Providing full transparency to the end user of the application is difficult
to achieve. A secure distributed system wants the user to be authenticated at
some point in the execution. Depending on the implementation of the
authentication object, the user has to do it explicitly during the application
runtime or the authentication object can make use of the credentials created
when the user logs on the system.

From the point of view of the administrator of the system, one can say
that he has to make a decision about which security components have to be
loaded into the RMI system. He has to make a property file. The RMI
system consults this property file at runtime in order to know which instances
of the security components to create.

The presented framework can also be considered to be relatively
transparent to the RMI implementation because security components are
added to the system by loading security related objects and not by adapting
the implementation of existing objects in the system. For instance, a typical
connection implementation (UDP or TCP) does not have to be adapted
because encryption is provided on top of it.

Securing RMI Communication 103

6. FLEXIBILITY

Four types of objects are introduced in the framework: security context
objects, access control objects, log objects and vault objects. In turn, a vault
object can call an association object and an authentication object. An
appropriate interface for each of these object types is available so that the
RMI system can invoke a method of an object via this interface. The
property file indicates which objects to load at runtime in the system.
Separating the security components from the RMI system this way provides
us a flexible way of working. Although a secure RMI package can provide
us with implementations of each of these objects, new implementations can
be introduced as long as they implement methods of the interface in an
appropriate way.

Flexibility is also needed within the proposed security components. For
instance, by implementing an access decision object as a tree of access
controllers, new access controllers can be added dynamically. Vault objects
present a similar degree of flexibility in that way they can decide to contact
an association object and an authentication object, contact one of those two
types of objects or contact no other object at all according to the level of
security that is preferred in the system.

7. RELATED WORK

The Java Secure Socket Extension (JSSE) [7] is a Java optional package
that provides Secure Socket Layer (SSL) and Transport Layer Security (TLS)
support for the Java 2 Platform. Using JSSE, developers can provide for the
secure passage of data between a client and a server. Secure sockets can be
added into the RMI system at transport level to set up a secure association.
This way, they are transparent in front of application programmers. In the
presented framework, the Vault object is responsible for setting up a secure
association between two hosts. An implementation of that Vault object can
use JSSE.

The Java Authentication and Authorization Service (JAAS) [7] is a
framework that supplements the Java 2 platform with principal-based
authentication and access control capabilities. It includes a Java
implementation of the standard Pluggable Authentication Module (PAM)
architecture, and provides support for user-based, group-based, or role-based
access controls. These modules can also be added transparently into the
presented framework. The Java Authentication Service provides

104 ADVANCES IN NETWORK AND DISTR. SYSTEMS SECURITY

authentication at object level. The framework we presented provides
authentication at location level. However, we can extend the RMI security
framework with authentication at object level as suggested in paragraph 3.
The authorisation modules of JAAS can also be inserted into the framework
in the Access Decision Object. But the security framework is flexible
enough to support other types of access control. For instance, access control
can also be based on the parameters and the operation that is invoked.
Because Java has not specified standards for other types of authorisation, we
have to make an own implementation of each of these services if that is
required.

The Common Object Services specification (CORBASec) [4] describes
security related tasks and requirements needed for CORBA. The
specification is quite long and attempts to address an extremely wide range
of security issues. The topic of distributed objects is complicated enough
when considered on its own and it certainly does not get any simpler with the
addition of security. Due to this, there are many issues that are
underspecified and open to interpretation at this time, which gives scope for
R&D in this area. To furtherextend the RMIsecurity architecture with more
advanced security services like delegation, a lot of inspiration can be found
in this specification. Depending of the implementation of an ORB, different
services are provided. This is similar with the flexibility of the presented
RMI security framework.

The Java Community [8] is working on the definition of a high-level
API for network security in JavaTM 2 Standard Edition RMI, covering basic
security mechanisms: authentication (including delegation), confidentiality,
and integrity. The main problem is that the proposals are not transparent
enough towards applications. Our framework tries to achieve more
transparency towards application programmers because all of the security
features are built into the RMI system itself. However, the framework also
enables application programmers to load their own security modules into the
RMI system.

8. CONCLUSION

The presented framework gives the possibility to add different security
services to the RMI system: setting up a secure association, authentication,
authorisation and logging. These services are added to the RMI system in a
transparent and flexible way. The implementation of the suggested objects in
the framework depends on the level of security and the degree of complexity

Securing RMI Communication 105

that is needed. A simple implementation can already provide a good level of
security. For a more advanced implementation of each of these objects, a lot
of principles suggested by security specifications of other distributed systems
such as CORBA [4], can be used.

REFERENCES

1. Java™ Remote Method Invocation Specification - JDK1.2 Beta 1, October 1997
2. RMI implementation provided by SUN using TCP connections.

http://iava.sun.com/products/jdk/rmi/
3. RMI implementation provided by Ninja using UDP connections.

http://ninja.cs.berkelev.edu/ninja/
4. Corba Security Service Specification - november 1996.
5. IAIK: http://www.iaik.tu-graz.ac.at/

ABA: http://aba.net.au/
6. Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, 'Design Patterns,

elements of reusable objectoriented software', Addison-Wesley 1995
7. http://www.java.sun.com/security/
8. http://java.sun.com/aboutJava/communityprocess/jsr/jsr 076 rmisecuritv.html

	SECURING RMI COMMUNICATION
	1. INTRODUCTION
	2. THE RMI SYSTEM
	3. SECURITY COMPONENTS
	3.1 Secure association service
	3.2 Authentication service
	3.3 Access control service
	3.4 Audit trail service

	4. THE SECURITY FRAMEWORK
	4.1 Security context objects
	4.2 Security service objects

	5. TRANSPARENCY
	6. FLEXIBILITY
	7. RELATED WORK
	8. CONCLUSION
	REFERENCES

