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Abstract
Time-resolved absorption spectroscopy is a powerful tool to unravel biological functions and has been a key technology for 
elucidating the working of electron transfer chains in photosynthesis or photorepair of UV-damaged DNA. Both of these areas 
have seen important contributions from laboratories all over the world, not the least of them stemming from the ingenious 
technical advances described by Klaus Brettel, first at the Technical University of Berlin (Germany), and later at the Atomic 
Energy Agency in Saclay (France). Now, after more than forty years of tireless scientific activity, Klaus is approaching 
retirement and this collection gathers together tributes in the form of scientific contributions from colleagues along the way, 
covering a spectrum of topics as diverse as photosynthesis, light-induced DNA repair, electron and proton transfer in light 
signalling, flavin based photo-enzymology, fluorescent marker photophysics, synthetic models and modelisation, delicate 
sample transient absorption spectroscopy. In an era where science is increasingly changing context from “fundamental” to 
“applied”, Klaus’ curiosity and tenacity worked hand in hand in a most effective manner to further both technical possibili-
ties and basic understanding.

1 � Flash absorption spectroscopy started 
in 1949 (by PM)

The technique of flash absorption spectroscopy was invented 
in 1949 by Ronald Norrish and George Porter, who were 
interested in rapid chemical reactions such as the explosive 
oxidation of hydrocarbons initiated by light [1, 2]. They used 
a combination of flash photolysis and flash spectroscopy: a 
molecule of interest (such as NO2, Cl2 or CS2) was dissoci-
ated by a strong flash, and the reactive intermediates were 
detected by weaker monitoring flashes sent through the reac-
tion vessel at variable times after the strong flash, permitting 
the recording of reaction kinetics. Their time resolution was 
as short as 20 microseconds. In 1967 they shared the Nobel 
Prize in chemistry for their invention.

When I started working in CEA Saclay in 1964 with the 
objective of studying fast reactions in photosynthesis, two 
groups were already active in the field, that of Bacon Ke in 
Yellow Springs, Ohio, and especially that of Horst T. Witt 
in Berlin [3, 4]. Witt’s group had made detailed studies of a 
large number of light-induced signals in chloroplasts (results 
brought together and updated in [5]). Their most successful 
study, in my opinion, concerned the pigments absorption 
shift attributed to a delocalized electric field across the thy-
lakoid membranes [6]. For the large number of signals they 
observed, they provided apparently definitive interpretations, 
and I was rather discouraged: is there still something to dis-
cover in photosynthesis by flash absorption spectroscopy? 
Fortunately, that was the time when Q-switch ruby lasers 
became available, delivering light pulses of about 30 ns and 
permitting a much better time resolution than the microsec-
ond flashes of Witt and Ke. With a Q-switch ruby laser, I set 
up an instrument with a sub-microsecond time resolution. 
My first results were to give a new look at a short-lived 
signal studied by Witt; I proposed a different interpretation 
in terms of triplet states of chlorophyll and of carotenoids 
[7]. At the same time, Britton Chance and Don De Vault 
also turned to the field of photosynthesis and published in 
1966 important observations on cytochrome oxidation in 
photosynthetic bacteria [8].
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In flash absorption spectroscopy, as applied to research 
in photosynthesis, reaction centers (RC) are excited with a 
short pulse of light. This starts a sequence of electron trans-
fer reactions that have to be unravelled. The technique per-
mits the identification of the chemical partners in these reac-
tions through the (more or less specific) difference between 
absorption spectra of the forms present before and after the 
excitation flash. We can thus determine the sequence of 
reactions and their kinetics. Studying the effect of important 
parameters such as temperature, pH, presence of inhibitors, 
and so on, would then allow to elucidate their mechanism. 
Moreover, there are a variety of RCs: photosystem 1 (PS I) 
and photosystem 2 (PS II) in plants, and others in several 
classes of photosynthetic bacteria so that there are enough 
questions to occupy a large number of laboratories during 
several decades!

In the 1970ties, additional advances were permitted by 
the availability of purified biological materials such as 
isolated RCs, and by technical advances such as picosec-
ond lasers. In my own laboratory, we contributed mostly 
by studying light-induced signals in the near infra-red, 
between 780 and 1300 nm. While no photosynthetic pig-
ments in plants absorb in this region, several light-induced 
species do. For instance, radical-cations of the primary 
electron donors (P-680 and P-700 in PS II and PS I, P-870 
or analogues in bacteria) display a significant absorption 
that allows the study of their formation and the kinetics of 
their re-reduction. I used these properties, with the help of 
several co-workers, Hélène Conjeaud and Pierre Sétif, and 
the essential contributions of Jaap van Best, a skilled elec-
tronician trained in Duysens’s lab in Leyden, and of Klaus 
Brettel, arriving with a PhD obtained in Witt’s lab in Berlin. 
We were also helped by visitors coming for a sabbatical stay, 
among them Ken Sauer and John Biggins, or coming with 
purified RCs, like Kimiyuki Satoh. We took advantage of the 
oncoming of two technical devices: the laser diodes emitting 
at 820 nm, a wavelength perfectly adapted to our projects, 
and the sensitive and high-quantum efficiency, fast-response 
photodiodes as photodetectors, which had to be coupled to 
a fast-response amplifier. Our results strongly questioned a 
number of apparently well-established interpretations last-
ing from 20 year old publications by Witt’s group, such as 
the kinetics of electron donation to P-680 in PS II and the 
sequence of electron acceptors in the PS I RC [9–14]. Later 
on, using our flash equipment in Saclay, my co-workers and 
myself have been involved mostly in studying parameters 
that govern electron transfer in purple bacteria [15–22].

As explained earlier, the technique of flash absorption 
spectroscopy, used by Norrish and Porter was what we 
now name the “pump-probe” method: the effect of a strong 
excitation flash (pump flash) is probed by the light from 
weak monitoring flashes (probe flashes) arriving before 
and at variable times after the excitation flash. This method 

has not been used later on, in the 1950’s and 1960’s, by 
researchers in the field of photosynthesis; for example, Witt 
and ourselves used only one (excitation) flash, the effect of 
which was probed by continuous monochromatic light sent 
through the sample. This method is straightforward but it is 
limited by the time resolution of the photodetector to around 
1 ns at the best. For sub-nanosecond and picosecond time 
resolution, the pump–probe technique has been re-adapted, 
first by Peter Rentzepis at the Bell Labs [23], and then by 
several other laboratories (see below). The later availability 
of femtosecond laser pulses has permitted the following of 
electron transfer in RCs with a time resolution of 1 fs. The 
pumping of tunable dyes easily provided monitoring light 
at selected wavelengths. The pump–probe technique saw 
another important facet, in the microsecond and millisecond 
time domains, with an apparatus developed by Pierre Joliot 
[24]. Thanks to a very careful management of the probe 
signal, he was able to obtain an extremely high sensitivity, 
around 5 × 10–5 absorbance units, even with rather turbid 
biological materials. Interestingly, with the development of 
solid-state electronics, the use of xenon flashes for pump-
probe spectroscopy is seeing a revival, as witnessed by the 
contribution by Hutchinson et al. in this issue [25].

In the 1970s and 1980s, many results have been obtained 
by flash absorption spectroscopy on photosynthetic reac-
tions, either in organelles or in purified RCs. I shall mention 
a few of the most active laboratories involved although the 
examples are far from being a complete list.

With nanosecond set-ups, in addition to Witt and co-
workers in Berlin, and to ourselves in Saclay, I should men-
tion Bill Parson in Seattle, Les Dutton in Philadelphia, Lou 
Duysens and his colleagues in Leyden, and many others 
[26–31]. But many research groups turned to picosecond 
spectroscopy because the field seemed promising and more 
open. Among the contributors, I wish to mention Jean-Louis 
Martin, with Jacques Breton and Marten Vos, at ENSTA; 
Vlad Shuvalov in Puschino; Rienk van Grondelle in Amster-
dam; Dewey Holten in St Louis; Maurice Windsor in Pull-
man; Alfred Holzwarth in Mülheim; Jim Allen and Neal 
Woodbury in Tempe, and others [32–39].

With the possibility of modifying RCs by site-directed 
mutations and determining their 3-D structures at the 
atomic level, precise questions could be raised and answered 
through collaborations between flash spectroscopists, 
molecular geneticists and X-ray crystallographers. It also 
became feasible to study the effect of temperature in a very 
broad range, or to selectively replace molecules in RCs by 
chemical analogues, such as quinones with different redox 
potentials, and to analyse the effects on the reaction kinet-
ics. Finally, with femtosecond time resolution, it became 
possible to address detailed questions on the mechanism 
of ultrafast energy transfer within the antenna and electron 
transfer in the RCs [36, 40].
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Flash-absorption spectroscopy also proved to be very 
useful to study photoreactions in artificial systems mostly 
made of chlorophyll-like molecules and of electron donors 
or acceptors. To avoid a list that is too long, I mention only 
a few aspects of my own contributions. I first modelled tri-
plet–triplet energy transfer from chlorophyll to carotenoids 
by associating the pigments in detergent micelles. I then 
studied the carotene radical-cation formed by electron 
transfer to excited thiazine dye molecules [41]. I then had 
a very fruitful collaboration with Devens Gust, Ana Moore 
and Tom Moore, from Tempe, on the photoreactions taking 
place in triad molecules made of a porphyrin, a carotenoid 
and a quinone [42, 43]. With Jean-Pierre Sauvage, from 
Strasbourg, we studied the properties of a bis-porphyrin 
supermolecule [44].

In addition to the study of photosynthetic systems, flash 
absorption spectroscopy has proved very useful for eluci-
dating practically all photobiological reactions, involving a 
large variety of pigments, such as rhodopsin, bacteriorho-
dopsin, and even phytochrome, in spite of its extremely weak 
concentration in whole cells (see e.g. [45]). Jean-Louis Mar-
tin and his group have carefully studied the photoreactions of 
carboxyhemoglobin, down to the femtosecond domain. Our 
laboratory contributed a little to understand the photocon-
version of protochlorophyllide into chlorophyllide, but the 
major developments were made rather recently, under the 
leadership of Klaus Brettel, with the study of flavo-enzymes 
involved in the repair of DNA (DNA photolyases) and in 
blue-light signalling (cryptochromes) ([46, 47], see also next 
section and other articles in this issue).

2 � Forty years at the crossroads of means 
and ends (by MB)

Before being hired in Saclay in 1991, where he spent the 
remainder of his career, Klaus Brettel studied physics and 
biophysics at the universities of Stuttgart and Gießen (Ger-
many). He obtained his PhD (1984) and “habilitation” in 
physical chemistry (1990) degrees for spectroscopic work 
on primary reactions in photosynthesis with Prof. H. T. Witt 
at the Max-Volmer-Institute of the Technische Universität 
Berlin (TUB).

During his PhD work, inspired by van Best & Mathis 
(see above [48]), Klaus constructed a transient absorption 
set-up with nanosecond resolution for the detection of flash-
induced absorption changes in the near infra-red (820 nm) 
where transient chlorophyll radical-cation and triplet species 
are observable. Together with Eberhard Schlodder, he also 
developed a nanosecond set-up for the detection of flash-
induced absorption changes in the red wavelength range 
(610–710 nm). This work was initially started by Hann-Jörg 
Eckert [49]. Both set-ups were designed to minimize the 

problem of flash-induced fluorescence background to enable 
the analysis of the reduction kinetics of oxidized P680 in 
oxygen-evolving PS II complexes from Synechococcus pre-
pared by Günther Schatz [29, 50–55]. In oxygen-evolving PS 
II, each flash advances the redox state of the water-splitting 
complex by one step. This made single flash acquisition an 
absolute requirement and led to the development of so-called 
“single flash transient absorption”, with the use of a fast 
detection system and the never-ending struggle for obtain-
ing a sufficient signal-to-noise ratio. Progress has also been 
made regarding the time resolution. A time resolution of 
slightly better than 1 ns was required to follow the charge 
recombination of the primary radical pair in PS II if the first 
quinone acceptor is reduced before the flash [56].

During a postdoc stay in Saclay (1985/86), Klaus started 
working on PS I together with Pierre Setif and Paul Mathis 
[14, 57].

Back at the Max-Volmer-Institute in Berlin, together 
with Stephan Gerken and Eberhard Schlodder, Klaus built 
a transient absorption setup with nanosecond resolution 
for detection in the near ultraviolet where the TyrZ-related 
absorption changes in PSII are observable [58, 59]. This 
apparatus turned out useful also for the detection of quinone 
(A1) related absorption changes in PS I. This period also 
includes the collaboration with the ESR group at the Free 
University Berlin around Ina Sieckmann, Christian Bock, 
Andreas Kamlowski, Art van der Est and Dietmar Stehlik, 
on the nanosecond time resolution of the spin-polarized sig-
nal in the secondary radical pair of photosystem I [60–63].

The first years in Saclay, in the group of Paul Mathis, 
were dedicated to photosynthesis research and are described 
in more detail in the first part of this contribution [64–74].

In the new century, while maintaining active in photo-
synthesis research with Alain Boussac, Winfried Leibl and 
others [75–90], inspired by an idea of Paul Mathis a few 
years before his retirement, Klaus’ centre of interest shifted 
towards DNA photolyases [46, 91, 92]. This ancient pro-
tein uses blue-UVA light to repair DNA damage inflicted 
by UVB/C exposure (main nucleobase absorption band). 
Here was the chance to demonstrate the universality of the 
skills gained in photosynthesis research, to apply transient 
absorption spectroscopy to a “real” enzymatic reaction. And 
it became better: beyond DNA repair, it turned out that pho-
tolyase also uses visible light to tune the redox state of its 
catalytic cofactor, FAD, and these photo-reduction reactions 
involve intra-protein electron transfer from a distant trypto-
phan residue. At the time, this so-called photo-activation 
reaction was thought to proceed in a single 0.5 microsecond 
step [93]. It was Klaus’ intuition, insight, and insistence that 
allowed the establishment (with colleagues André Eker, 
Marten Vos, Martin Byrdin and initially Corinne Aubert), 
over the following ten years, of the involvement of several 
other amino acids as stepping-stones, allowing for some of 
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the single steps to be as short as a few picoseconds. Investi-
gation of the functioning of this nanowire made photolyases 
one of the paradigm systems for the study of intra-protein 
electron transfer [47, 94–100].

In the meantime, photorepair was still evading time-
resolved detection, for a number of reasons, such as irre-
versibility of the reaction, high background absorption of the 
substrate, signature bands in the UV, to name but a few. The 
main difficulty, however, was that the existing single-shot 
flash photolysis setups were limited to a time resolution of a 
few nanoseconds, too slow for the expected ultrafast electron 
transfer between FAD and the damaged DNA. It was not 
until 2010 that Klaus Brettel had pushed the time resolution 
limit of single-shot flash photolysis by an order of magni-
tude to the required 200 picoseconds [101] that consequently 
allowed the direct detection of photorepair [102].

Meanwhile, ever-new members of the photolyase pro-
tein family (comprising also the structurally homologous 
blue light receptors of the cryptochrome group) [103], had 
been discovered and astonishing variations of the electron 
transfer ladder were found in the wake, sometimes coupled 
to (de)protonation steps. Together with his new co-worker 
Pavel Müller [104–106], Klaus continued to study them, 
at the beginning in collaboration with Margaret Ahmad 
[107–109] and later with Lars-Oliver Essen and Pascal Plaza 
[110–113].

But once more, as with photosynthesis several years ear-
lier, after a basic understanding of the system, Klaus sought 
for new challenges. All along, the particular combination 
of the setups that Klaus Brettel had developed turned out to 
be of crucial importance for further discoveries. On the one 
hand, the “photorepair setup” allowed privileged access to 
the “nanosecond gap” (most flash photolysis setups are not 
fast enough to attain a resolution of one nanosecond; while 
most pump-probe setups have stability issues for such long 
delays). On the other hand, the “millisecond setup” provided 
for ultra-high sensitivity in the millisecond regime (better 
then 10–4 in quasi-single shot mode). Their combination and 
adaptation allowed Klaus and Martin Byrdin to be the first 
to detect the long sought-for triplet state of GFP-type fluo-
rescent proteins [114] and to discover its surprisingly long 
lifetime (milliseconds instead of microseconds as earlier 
believed based on experiments with fluorescence correla-
tion spectroscopy).

Another challenge arose upon the discovery by Fred Beis-
son and Damien Sorigué of a novel photo-enzyme of bio-
technological relevance [115]. Indeed, the newly discovered 
Fatty Acid Photodecarboxylase (FAP) also harbours a flavin 
cofactor involved in electron and proton transfer reactions 
with the substrate. Klaus’ expertise allowed the initiation of 
the elucidation of the intricate kinetic steps in this photo-
enzymatic reaction [116, 117]. Thus, again the happy com-
bination of a spectroscopist’s skill and a physico-chemists 

insight allowed unravelling one more aspect of light-induced 
electron transfer.

During his years at the Service de Bioenergetique in 
Saclay, Klaus interacted with a constant flow of PhD stu-
dents, postdocs, short- or long-time visitors and colleagues, 
sharing his views on the art of “photobiological physical 
chemistry”: Marc Polm [71], Thomas Schwartz [118], 
Krzysztof Dobek [119], Frans van Mieghem [64, 65], 
Anja Krieger-Liskay, Krzysztof Gibasiewicz [85, 87–89, 
120], John Golbeck [63, 66, 79, 82], Peter Faller [75, 78], 
Fabrice Rappaport [83, 84, 86], Corinne Aubert [46, 91, 
92], Valérie Sartor [47], Rufat Agalarov [76, 80, 81], Martin 
Byrdin, Baldiserra Giovanni [107, 108], Sandrine Villette 
[96–98], Agathe Espagne [111, 112, 121, 122], Thiagara-
jan Viruthachalam [100–102, 122], Pavel Müller, Junpei 
Yamamoto [105, 110, 112, 123], Ryan Martin [105, 112, 
123], Gabor Sipka [90], many of whom are today proudly 
contributing to this special issue (see last section). Klaus 
also strived to overcome the sometimes challenging barriers 
between “Material” and “Live” sciences, as exemplified by 
his collaboration with next-door “Material” spectroscopist 
Thomas Gustavsson.

Among the basic lessons Klaus conveyed were those to 
always keep an eye on the essential, to distinguish inter-
pretation from observation and to maintain a critical view 
upon one's own work. Klaus always professed that Science 
advances best if results are discussed with equal attention to 
the arguments of everyone, regardless of their status or age. 
Another of Klaus’ imperatives was to expose his thoughts 
and findings in a way that would allow others to reproduce 
his experiments and conclusions without difficulty. Plato 
comes to mind who, in his “Meno” dialogue, had Socrates 
state that to become knowledge, insight needs to be duly 
documented.

When we informed Klaus about this special issue, he 
asked whether it would be possible to reproduce a hardly 
accessible “early” publication where he had outlined 
approaches and tricks to optimize time-resolution and sig-
nal-to-noise ratio in transient absorption spectroscopy of 
delicate samples [124]. We are happy to announce that this 
paper is now freely available online and it is highly recom-
mendable reading, not only for beginning spectroscopists. 
More recent developments are documented in well-known 
journals: the crucial novel setup with 200 ps time resolution 
[101], the implementation of polarized transient absorption 
as a method to monitor fast electron transfer between species 
that are chemically identical, but oriented differently [98], 
the introduction and characterization of the commercially 
available and highly stable [Ru(bpy)3]2+ complex as a ref-
erence for amplitude and time resolution in fast and ultra-
fast transient absorption, that should facilitate quantitative 
comparison of data obtained on different set-ups/in different 
laboratories [101, 125, 126].
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Beyond permanently reflecting on possible solutions to 
the problem he was struggling with, Klaus was also con-
cerned with scientists’ societal responsibility and the condi-
tions under which science is made, as reflected by his long-
standing involvement with the German union of democratic 
scientists (“Bund demokratischer Wissenschaftler:innen”), 
and the French movement to save the research (“Sauvons la 
recherche”).

Over the years, Klaus has never missed an opportunity 
to promote Photobiology, a broad discipline that includes 
the various aspects of his work. As a very active member of 
the executive committee of the Société Française de Photo-
biologie, SFPb (2003–2017) and of the Scientific Advisory 
Board of the European Society for Photobiology (ESP, since 
2011), he contributed to the scientific program of the ESP 
congresses and proposed outstanding speakers and symposia 
at the cutting-edge of our science.

3 � Legacy, tribute, continuation…

We are happy to announce that today, this virtual volume 
unites 18 contributions by scientists from 17 countries (Can-
ada, Czech republic, Finland, France, Germany, Hungary, 
India, Italy, Japan, Lebanon, Poland, Russia, Spain, Switzer-
land, Taiwan, UK, US) touching upon the wide variety of the 
subjects dealt with by Klaus at various times [25, 127–143].

Three papers are dedicated to photosynthetic systems 
[127–129]: Agostini et al. used optically detected magnetic 
resonance (ODMR) to study the antenna triplet states in 
heliobacterial reaction centers. They propose that the triplet 
states are localised on the cytoplasmatic side of the complex, 
not far apart from each other but far away from both the elec-
tron transport chain and the carotenoid bound to the com-
plex, thus suggesting a sacrificial role for ROS protection 
[127]. Cherepanov et al. used ultrafast spectroscopy with 
720 nm excitation to study PS I from Synechocystis sp. PCC 
6803 with mutations around A-1 on both branches. They 
found that in certain mutants the reduction of A1 occurred 
with a decreased quantum yield of charge separation, cor-
related with a slowing of the phylloquinone reduction, but 
not with the initial transient spectra measured at the short-
est time delay. Their results support a branch competition 
model [128]. Gibasiewicz et al. used nanosecond spectros-
copy with 532 nm excitation to investigate the temperature 
dependence of charge recombination in mutant Rhodobacter 
sphaeroides reaction centers. They studied the role of pro-
tein dynamics and concluded that the modifications of the 
protein environment affect the overall back electron transfer 
kinetics primarily by changing the redox potential of the 
accessory bacteriochlorophyll BA and not by changing the 
protein relaxation dynamics [129].

The role of surprisingly slow protein dynamics is at the 
heart of a quasi-steady-state spectroscopic study: Rumfeldt 
et al. used UV–Vis absorption spectroscopy on a seconds-to-
hours timescale to study solvent access to the chromophore 
binding pocket in bacterial phytochrome from Deinococcus 
radiodurans [130]. They propose a model where a protein 
hairpin fluctuates slowly between open and closed confor-
mations, thereby controlling the deprotonation process of 
the chromophore on a minute time-scale. “Slow” takes a 
different meaning in the context of the study by Zhuang 
et al. on the flavoprotein TrmFO from Thermus thermophi-
lus [131]. The authors used ultrafast spectroscopy and MD 
simulations to study excited flavin lifetimes as a probe for 
active site dynamics. In a mutated variant, they observed 
that no exchange occurs between different configurations on 
the timescale up to at least 2 ns, despite the presumed flex-
ibility of the quenching residue Trp214. In a related study, a 
Hungarian-French-British collaboration used the same pro-
tein (along with some other flavoproteins) to establish the 
vibrational marker of the recently discovered tyrosine cation 
radical by ultrafast transient infrared spectroscopy [132].

Femtosecond Mid-IR spectroscopy is also used for 
the study of ultrafast proton release in photoexcited 
(λex = 580 nm) phycocyanobilin in methanol solution by 
Theiß et  al. [133]. The authors observed IR absorption 
continua that are assigned to inter- and intramolecular 
H-bonded networks, allowing them to propose an exten-
sion of the existing model for phycocyanobilin excited state 
deactivation.

A French-German team of Klaus’ long-time collabora-
tors used ultrafast spectroscopy in the visible spectral region 
to explore the electron transfer chain starting from an oxi-
dized FAD in NewPHL, a recently discovered subgroup 
of ancestral photolyases [134]. The authors found that an 
unprecedentedly fast deprotonating tryptophanyl radical (in 
less than 100 ps) cannot prevent rapid recombination and 
conclude that conversion of the fully oxidized FAD to the 
semi-quinone state should be rather difficult in vivo.

A synthetic FAD derivative (εFAD), which may confer 
an increased DNA repair efficiency, was the subject of the 
ultrafast spectroscopic study performed by Jacoby-Morris 
et al. to study the possible role of intra-FAD electron transfer 
for DNA repair by photolyases [135]. The authors found that 
the excited state flavin accepts an electron from the modified 
adenine in less than 10 ps followed by rapid charge recom-
bination. They postulate that in εFAD-reconstituted DNA 
photolyase, the εAde moiety acts as a real intermediate in 
the photoinduced electron transfer reaction.

Gindt et  al. studied the oxidation of native semiqui-
none FADH° in VcCRY-1, a member of the cryptochrome 
DASH family, whose flavoproteins may use blue light both 
for repairing CPDs and for signal transduction [136]. The 
authors found both pH and substrate-binding-dependent 
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oxidation kinetics. They used resonance Raman spectros-
copy to probe for structural changes near the cofactor related 
to the observed changes in the rate of FADH° oxidation and 
found that only substrate-binding seemed to induce a struc-
tural change near the FAD cofactor while the pH effect is 
ascribed to a conserved glutamate residue.

A paper from Protasova et al. investigates the mechanism 
of colour change in mKate2, an engineered red fluorescent 
protein used as popular marker in cell biology [137]. The 
authors found that the unsual red-to-green transformation 
is in fact due to a pre-existing green fraction that becomes 
better visible upon bleaching of the red form.

Three more papers deal with chemical model systems 
for light-induced electron transfer [138–140]. Gotico et al. 
applied microsecond-resolved transient absorption to study 
the proton controlled action of an imidazole a rectifying 
electron relay in a photoredox triad, while Maffeis et al. 
use picosecond resolved fluorescence on the paradigmatic 
push–pull dye P1. The work by Dhenadhayalan et al. com-
bines the two techniques for the characterization of syner-
gistic dynamics of photoionization and photoinduced elec-
tron transfer in micelles containing coumarin 450. Gotico 
et al. synthesised modular complexes comprised of a Ru-
chromophore, an imidazole electron relay function, and 
a terpyridine unit as coordination site for a metal ion and 
studied light-induced electron transfer sequences by tran-
sient absorption. They observed the transient formation of an 
imidazolyl radical which is clear evidence for the function of 
the imidazole group as an electron relay [138]. Maffeis et al. 
used comparative femtosecond fluorescence upconversion 
measurements in solution and in films to show that the P1 
dye undergoes a picosecond electronic relaxation from the 
bright Franck–Condon (FC) state to a low-emitting charge-
transfer (CT) state in a polar environment [139]. Dhenad-
hayalan et al. found that the photoionisation of coumarin 
450 is monophotonic in nature and the yield is dependent 
on the charge of the micelles. The presence of various aro-
matic amines functioning as electron donor quenches the 
coumarins’ photoionized state by rapid re-reduction [140].

Finally, three papers are dedicated to the study of the 
binding of redox-active cofactors (flavins and quinones) and 
how they impact protein function [141–143]. Morimoto et al. 
used both nanosecond molecular dynamics simulations and 
a repair essay on a minute timescale to assess the role of the 
protein in binding and functioning of the antenna cofactor 
8-HDF in Xenopus (6–4) photolyase. In silico simulations 
indicated that a hydrophobic amino acid residue located 
at the entrance of the binding site dominates translocation 
of a loop upon binding of 8-HDF, and a mutation of this 
residue caused dysfunction of the efficient energy transfer 
in the DNA repair reaction [141]. Lafaye et al. modified 
the cofactor binding specificity of the engineered flavopro-
tein miniSOG to enhance the production yield of singlet 

oxygen ΦΔ. They identified the R57Q mutant as a flavo-
protein that selectively binds riboflavin in cellulo, with a 
modestly improved ΦΔ [142]. No collection on biological 
electron transfer is complete without a contribution dealing 
with efforts to describe what happens via theoretical simu-
lations. Here, the paper by Dhananjayan et al. analyses the 
binding of the quinone in respiratory complex I from T. ther-
mophiles (and other organisms). Touching upon three of the 
main themes of this special issue (protein dynamics, role of 
cofactors, electron transfer), this work highlights the impor-
tance of soft mode protein motions for quinone entrance into 
the enzyme’s narrow binding site and the ensuing possible 
functional role for quinone reduction by the terminal iron-
sulfur cluster [143].

We are especially happy to conclude the collection with 
a paper dedicated to the construction and testing of a new 
kind of transient absorption spectrometer that aims at obtain-
ing wavelength-resolved microsecond kinetics in the visible 
spectral region [25]. Interestingly, the design mirrors that 
of the original Norrish/Porter pump-probe principle, only 
adapted to today’s technological possibilities. It thus appears 
that Norrish and Porter are the fathers and grandfathers of 
an unexpected large and diverse family.
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