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Abstract
Deep neural networks can provide accurate automated classification of human sleep signals into sleep stages that enables 
more effective diagnosis and treatment of sleep disorders. We develop a deep convolutional neural network (CNN) that attains 
state-of-the-art sleep stage classification performance on input data consisting of human sleep EEG and EOG signals. Nested 
cross-validation is used for optimal model selection and reliable estimation of out-of-sample classification performance. 
The resulting network attains a classification accuracy of 84.50 ± 0.13% ; its performance exceeds human expert inter-scorer 
agreement, even on single-channel EEG input data, therefore providing more objective and consistent labeling than human 
experts demonstrate as a group. We focus on analyzing the learned internal data representations of our network, with the 
aim of understanding the development of class differentiation ability across the layers of processing units, as a function of 
layer depth. We approach this problem visually, using t-Stochastic Neighbor Embedding (t-SNE), and propose a pooling 
variant of Centered Kernel Alignment (CKA) that provides an objective quantitative measure of the development of sleep 
stage specialization and differentiation with layer depth. The results reveal a monotonic progression of both of these sleep 
stage modeling abilities as layer depth increases.
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Introduction

Sleep disorders affect both the duration and quality of sleep, 
negatively impacting neuro-cognitive function, as well as 
overall health and quality of life of the affected individ-
ual [17]. At a societal level, sleep disorders lead to enormous 
costs due to reduced productivity and increased public health 

expenditures associated with various comorbidities [10]. It 
is, therefore, in the best interests of individuals and society 
to facilitate the identification of sleep disorders with a view 
toward providing prompt and effective treatment.

The diagnosis of sleep disorders relies on the process of 
sleep stage scoring, which maps human sleep physiological 
signals to sequences of symbols that correspond to the dif-
ferent stages of sleep. Sleep stage scoring has traditionally 
been performed by highly trained human experts who visu-
ally detect patterns associated with individual sleep stages 
and make classification decisions based on guidelines such 
as those from the American Academy of Sleep Medicine 
(AASM) [4]. Automated sleep stage scoring can more effi-
ciently and consistently provide accurate results than human 
scorers.

In this paper, we report a convolutional neural network 
architecture for performing sleep stage classification from 
electroencephalography (EEG) and electrooculography 
(EOG) human sleep signals. Sleep stage classification or 
scoring is the process of classifying each 30-s sleep period 
(known as a sleep epoch) as one of five classes: Sleep Stages 
1, 2, 3, REM (Rapid Eye Movement), or Wake. We use 
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nested cross-validation to select the best configuration from 
among network architectures of different widths, depths, 
and layer structures, and to evaluate performance of the 
networks on unseen data. We analyze the impact that the 
amount of waking data included in training has on the mod-
els’ generalization.

A main focus of the paper is on understanding the internal 
representations of the data that develop within the network 
during learning. We apply t-distributed Stochastic Neighbor 
Embedding (t-SNE) [48] to the internal responses of the 
trained network to visualize how sleep stage categorization 
ability of the network layers improves with increasing depth. 
Adapting a technique first introduced in [23], we use Cen-
tered Kernel Alignment (CKA) [11] to quantify sleep spe-
cialization of the network’s internal layers, and to validate 
the t-SNE visualization results. We propose the use of an 
additional pooling step prior to CKA to reduce the dimen-
sionality of the network layer representations, providing an 
effective quantitative measure of sleep stage specialization 
that can be used to track internal feature development. This 
paper substantially extends the earlier version that appeared 
as [31]; in particular, all of the CKA-related work is new.

Related Work

A number of related works use the same dataset as in the 
current paper, the SleepEDF data set from the Physionet 
database [16]. That database comprises raw data from 20 
patients, across three signal channels (two EEG, one EOG), 
together with polysomnograms that provide the sleep stage 
labels for the raw data in 30-s epochs. Most related work 
trains models in one of two settings, corresponding to dif-
ferent preprocessing decisions regarding what time period 
is retained in each instance of the SleepEDF data: (1) Sleep 
periods only; or (2) sleep periods plus 30 min of Wake data 
before and after sleep. We describe these two settings in the 
paragraphs below. Other papers use a different version or 
signal choice for the SleepEDF data [22, 25], greater record-
ing length [19, 20], merged sleep stages [8], or a different 
dataset altogether [5, 7, 34, 42, 43], preventing direct com-
parison with this paper.

Setting 1: Sleep Periods Only. The first of the two set-
tings mentioned above uses only data from sleeping periods 
(in-bed, after sleep onset). Tsinalis, Matthews, and Guo [46] 
applied ensemble learning in this setting, using an ensem-
ble of stacked sparse autoencoders on hand-picked time-
frequency analysis features extracted from the raw signals, 
and achieved 78% accuracy over single-channel EEG data. 
Tsinalis, Matthews, Guo, and Zafeiriou [47] used a convo-
lutional neural network and reported 74% accuracy, again 
using a single EEG channel. Our previous work [33, 40, 
41] in this setting used data from the three signal channels.

Setting 2: Sleep Periods Plus 30  min of Wake Data 
Before and After Sleep. The second setting in previous work 
includes 30 min of Wake data before and after sleep, in addi-
tion to sleep periods. Supratak, Dong, Wu, and Guo [45] 
implemented a deep learning model in this setting with bidi-
rectional Long Short-Term Memory (LSTM) and obtained 
78% accuracy on single-channel EEG data. Mousavi, 
Afghah, and Acharya [29] employed a sequence-to-sequence 
model that yielded 84.26% accuracy on single-channel EEG 
data. Phan et al. [36] trained attention-based recurrent neu-
ral networks in both settings; the accuracy was reported as 
79.1% in the first setting and 82.5% in the second.

Our previous work  [33, 40, 41] considers setting 1 
described above. We developed a deep convolutional neu-
ral network (CNN) for automated sleep stage scoring. That 
architecture achieved a classification accuracy of 81% over 
polysomnographic data corresponding to sleep periods only. 
The cumulative confusion matrix showed that the perfor-
mance of the model in scoring sleep stages 1 (S1) and Wake, 
which are under-represented classes, is not as good as for the 
other classes, namely sleep stages 2 (S2), 3 (S3), and REM.

The present paper considers setting 2. We carry out a 
more thorough model selection that considers a greater 
number and variety of architectural hyperparameter types 
and values, employing nested cross-validation, with the 
aim of improving out-of-sample predictive performance for 
mid-sleep wakefulness episodes and light sleep stage S1. 
We compare our results with the state of the art, and with 
published studies on the performance of human scorers. 
We investigate how interpolating between the data from the 
two settings by including varying amounts of pre-sleep and 
post-sleep wake data, affects model performance. We go on 
to study the development of internal representations across 
the layers of our network both visually and quantitatively, as 
outlined below in “Contributions”.

Contributions

We present in the present paper an optimized deep convo-
lutional neural network architecture for sleep stage scoring, 
and evaluate its out-of-sample performance. The classifi-
cation accuracy of our model architecture exceeds human 
inter-scorer agreement [38], and is comparable with recent 
work over the same dataset [29].

We investigate the role of including additional wake 
data in improving the model’s classification performance. 
We find that waking epochs before and after sleep help to 
improve prediction of waking epochs in the middle of sleep 
slightly, and are considerably easier to label accurately than 
mid-sleep waking epochs. We visualize the responses of 
models’ internal units using t-SNE, more clearly showing 
their ability to differentiate between sleep stages as layer 
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depth increases, as compared with activation maximization 
approaches.

Additionally, we measure the sleep stage modeling ability 
of the network’s internal units and layers using our adap-
tation of the centered kernel alignment (CKA) approach 
of [23]; namely, we use max pooling prior to CKA to reduce 
data dimensionality without significantly altering the CKA 
results. Our max-pooling CKA approach yields quantitative 
descriptions of per-stage specialization of units and layers, 
and of improvements in the network’s ability to differenti-
ate among sleep stages as layer depth increases, that can be 
computed effectively on high-dimensional data. The max-
pooling CKA results validate the t-SNE visualization results 
quantitatively, and allow detection of instances in which the 
visual information alone can be misleading.

Background

Human Sleep

During sleep, the human body undergoes cyclical physiolog-
ical changes, usually described in terms of a small number of 
sleep stages such as those in the AASM standard [4]: Wake 
(as brief periods of wakefulness can occur during sleep); 
REM (rapid eye movement); and three non-REM stages that 
we will refer to by the terms S1 (light sleep); S2; S3 (deep 
sleep). The notations N1, N2, N3 also occur in the literature. 
We will sometimes abbreviate the Wake stage as W and the 
REM stage as R, especially in contexts in which space is at 
a premium (some figures, in particular).

Certain overall features are typically observed in the 
architecture of sleep, that is, in the overall pattern of alter-
nation among stages during the course of the night. For 
example, sleep stage progression typically exhibits some-
what cyclical behavior, in periods of 90 min or so. Cycles 
evolve during sleep: deep sleep is more prominent earlier in 
the night, and an alternation between REM and sleep stage 
S2 is observed later in the night [6]. To diagnose patients 
with sleep disorders, doctors rely on the appearance of unu-
sual patterns in the sleep cycle. To capture the sleep cycle, 
physiological signals are first measured by body sensors dur-
ing all-night sleep in polysomnography (PSG), including 
electroencephalograms (EEG), electrooculograms (EOG), 
electrocardiograms (ECG), and electromyograms (EMG).

The polysomnogram is mapped to a sequence of sleep 
stages in the process of sleep stage scoring, also known as 
sleep staging. In staging, a sleep expert splits signals into 
30-s segments, called epochs, and examines those segments 
for the presence of patterns known to be associated with 
particular sleep stages. For example, based on the AASM 
standard [4], sleep spindles, low-amplitude 11–16 Hz bursts 
of 0.5–2 s duration, are common in sleep stage S2; higher 

amplitude low-frequency (delta band) waves in sleep stage 
S3; and sawtooth waves with 2–6 Hz content in stage REM. 
The process of sleep scoring by human experts is tedious 
and error-prone. A major study estimates the mean rate of 
inter-scorer agreement to be 82.6% [38]. Another study sug-
gests that agreement might be lower than 80% in some cases, 
and that differentiating between sleep and wakefulness is 
especially challenging [50].

Activation Vectors

To measure the development of internal features in deep 
networks in an objective, quantitative manner (as a comple-
ment to visual techniques such as [51]), we consider the 
responses, or activations, of the internal units of the network 
over the input data. These responses are known as activa-
tion vectors. Formally, if p is an internal network unit (filter 
or neuron), and if X = [x

1
, x

2
, x

3
,… , xn]

T is a set of n data 
instances, then the activation vector of p over X is the vector 
ap that consists of the activation values ap(xi) of unit p over 
each of the n data instances xi , as in Eq. (1):

The activation of a given network unit results from forward 
propagation of the input data through the units in earlier 
layers, generally reflecting a composition of affine transfor-
mations, such as convolutions, and nonlinear transforma-
tions, such as pooling and ReLU functions. We also consider 
activation vectors at the level of entire layers of units, by 
collecting together the activation vectors of the individual 
units of that layer as the columns of a matrix. If layer P 
consists of neurons [p

1
, p

2
,… , pm] , then the correspond-

ing set of activation vectors of layer P is the n × m matrix 
aP = [ap1 , ap2 , ap3 ,… , apm ].

A small number of recent works have studied ways to 
measure similarity between pairs of activation vectors. Wang 
et al. [49] viewed similarity between sets of neurons as a dis-
tance between subspaces spanned by the activation vectors 
of those neurons. Rather than directly compute a distance 
between two subspaces, Raghu et al. [37] assumed that the 
features from different layers may be associated with differ-
ent rotations of the subspaces, and introduced the Singular 
Vector Canonical Correlation Analysis (SVCCA) algorithm 
to align the two subspaces as closely as possible. Kornblith 
et al.  [23] discussed some undesirable properties of the 
SVCCA algorithm, and proposed using Centered Kernel 
Alignment (CKA) [11] for measuring similarity between 
feature subspaces in a way that better detects similarity of 
representations resulting from different initializations of the 
same network. We elaborate on the CKA technique in the 
following subsection.

(1)ap ∶= ap(X) = [ap(x1), ap(x2), ap(x3),… , ap(xn)]
T
.
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Kernel Alignment

Kernel-based learning algorithms, such as support vector 
machines (SVMs) and kernel Fisher discriminant analysis 
(KFD), map data from the input space into a feature space 
and apply learning algorithms in the feature space. Rather 
than mapping data points into the feature space directly, the 
mapping is given implicitly by specifying a positive-definite 
kernel function that computes the inner products of all pairs of 
data points in the feature space, without the need for explicitly 
embedding these data points in the often much higher dimen-
sional feature space. Kernel alignment [12] measures similar-
ity between two kernel functions. Cortes et al. [11] described 
theoretical and empirical shortcomings of standard kernel 
alignment, and proposed Centered Kernel Alignment (CKA), 
which mean-shifts the kernel features before calculating kernel 
alignment.

CKA was originally introduced in [11] with the aim of pro-
viding a similarity metric for kernel learning. Recently, [23] 
suggested that CKA can be applied on two sets of activation 
vectors to measure the similarity of learned internal features 
in different layers of a neural network. In the present work, we 
use CKA with linear kernels. This is in keeping with previous 
work on measuring layer similarity described in “Activation 
Vectors” (e.g., [37]), which seeks linear transformations that 
align the subspaces spanned by the activation vectors.

Linear-kernel CKA between centered X and Y can be com-
puted as in Eq. (2), where X and Y are the two sets of data 
representations being compared [23]

In the present context, X and Y can be activation vectors cor-
responding to two layers, as described at the beginning of 

(2)CKA(X,Y) = ||YTX||2∕(||XTX|| ⋅ ||YTY||).

“Activation Vectors”, or they could be class labels or logits, 
as in “Feature Development Quantification”.

Methodology

This section describes the human sleep data used in this 
paper (“Dataset”); general features of the deep network 
architectures that we considered (“Model Architecture”); 
nested cross-validation for training, performance evaluation, 
and model selection (“Model Training, Selection, and Eval-
uation”); and the methods employed for visualization and 
quantification of internal feature development in the trained 
network (“Understanding Internal Feature Development”). 
Figure 1 summarizes the steps involved in key components 
of the work.

Dataset

We used data of 20 patients from the SleepEDF (expanded) 
database [21] in the Physionet repository [16]. For each 
patient but one, data comprise two nights of signals in EEG 
Fpz-Cz, EEG Pz-Oz, and EOG (horizontal) channels, sam-
pled at 100 Hz, with hypnograms that provide the sleep stage 
for each 30-s epoch; the database includes only one night 
of data for the remaining patient. As described in  [28], the 
physiological signals were recorded using cassette record-
ers with frequency response range from 0.5 to 100 Hz, and 
then were digitized at a sampling frequency of 100-Hz. Each 
hypnogram was scored by one of six human experts. The 
resulting distribution of sleep stage labels in the data is as 
shown in Table 1. We note that S1 is the least frequently 
occurring stage.

Fig. 1  Flow diagram of preprocessing; model training, evaluation, selection; and analysis of internal representations
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As described in “Related Work”, for most of the work 
reported in this paper, we retain a limited amount of Wake 
data before and after sleep, removing Wake epochs prior 
to 30 min before the first observed non-Wake sleep epoch 
and those over 30 min after the end of sleep. In selected 
experiments discussed in “Performance on Wake”, we con-
sider varying durations of this non-sleep data, to understand 
how the amount of such data affects model performance. 
To eliminate signal artifacts due to movement, we remove 
movement epochs entirely; there are only 62 such epochs in 
total, of which 60 occur during the sleep period.

When a human expert classifies or scores a given data 
epoch, information from neighboring epochs is also consid-
ered [4]. Hence, data in the present work were preprocessed 
into 5-epoch, or 150-s, samples; models were trained to clas-
sify the middle epoch as one of the five sleep stages, S1, S2, 
S3, Wake, and REM.

Model Architecture

The model architectures considered in this paper use 1-D 
convolutional layers stacked in stages separated by pooling 
layers, as shown in Fig. 2.

Each convolutional layer computes an affine transforma-
tion on the activation vector of the preceding layer; each 
such layer is followed by a regularization layer and an acti-
vation layer. Regularization layers are either batch normali-
zation or dropout layers. Activation layers are ReLU linear 
rectifiers. At the deep end of the model, we add a dense layer 
with softmax activation to output a probability distribution 
over the five sleep stages. We use a single fully connected 
layer, because experiments in our prior work [33, 40, 41] 
suggest that a multi-layer fully connected structure does not 
enhance performance significantly.

We considered several alternative model architectures 
during model selection, described by the hyperparameters 
shown in Table 2. Salient points concerning hyperparameter 
options are described below. Details of the model selection 
procedure are discussed in “Model Training, Selection, and 
Evaluation”.

Comments on Hyperparameter Options

The number of filters (width) is assumed to double after 
each stage, not exceeding 128 due to computational resource 

constraints. Thus, the number of filters in each stage is deter-
mined by the number of filters in the first stage.

We consider several options for the number of convo-
lutional layers per stage: 6 layers in the first stage and 3 
layers in other stages [33, 40, 41], a pattern that we denote 

Table 1  Distribution of human expert-scored sleep stage labels in the 
SleepEDF data

S1 S2 S3 Wake REM

6.63% 42.07% 13.48% 19.58% 18.24%

Fig. 2  Model architecture. The final model is constructed by select-
ing hyperparameter values by plurality among the outer folds of the 
nested cross-validation procedure described in “Model Training, 
Selection, and Evaluation”. Class values are Wake (W), sleep stages 
S1, S2, S3, and REM (R)

Table 2  Hyperparameters and values considered in model selection 
(inner folds of nested cross-validation)

C, P denote convolutional, pooling layers, respectively

Hyperparameters Values considered

No. of filters in first stage 8, 16
Padding for conv layers Yes, no
Stride of conv layers 1, 2, 4
Kernel sizes of conv layers 50, 100, 200, 400
Pooling sizes of pooling layers 2, 3, 5
Layer pattern in each stage 6C/P/3C/P, 3C/P, 1C/P
Batch norm or dropout BN, dropout
Dropout layer at final layer Yes, no
No. of conv layers [d − 3, d + 3] (see 

“Model Architec-
ture”)



 SN Computer Science (2021) 2:318318 Page 6 of 19

SN Computer Science

6C/P/3C/P; 3 convolutional layers per stage (3C/P); 1 con-
volutional layer per stage (1C/P).

For the number of convolutional layers (depth), we first 
calculate how the effective receptive field of the network 
units varies as a function of depth [2, 24].

A unit’s effective receptive field is the portion of the input 
window that affects that unit’s input, and thus its activa-
tion. From this information, the value, d, is extracted, such 
that the receptive field of the last layer covers the entire 
5-sleep-epoch input; then, we consider depths in the range 
[d − 3, d + 3].

Model Training, Selection, and Evaluation

Below, we first describe the training setup for a given model, 
and then the nested cross-validation procedure that performs 
model selection and performance evaluation. Finally, we 
describe the bootstrap sampling procedure that was used to 
obtain confidence intervals for accuracy and other perfor-
mance metrics.

Training

For each model considered in the nested cross-validation 
procedure described below in “Model Selection and Evalua-
tion”, we used stochastic gradient descent to minimize cross-
entropy loss at the softmax output, with mini-batches of size 
180, adaptive learning rate with initial value of 0.01, training 
time up to 300 epochs with early stopping threshold of 30 
epochs. Models were built in Tensorflow [1] and Keras [9], 
under NVIDIA CUDA, using NVIDIA K80/P100 GPUs.

Weights were initialized according to [18], which adapts 
the “Xavier” approach of Glorot and Bengio [15] to the case 
of ReLU activation functions. Weights entering layer l were 
randomly sampled from a normal distribution with zero 
mean and standard deviation 

√
2

nl
 , where nl is the effective 

fan-in, that is, the product of the number of input channels 
and the number of weights per filter in layer l.

Model Selection and Evaluation

Nested 5 × 4 cross-validation was used to select hyperpa-
rameter values, to train models, and to estimate their out-
of-sample classification performance. An illustration of the 
nested cross-validation procedure appears in Fig. 3, show-
ing the first (a) and second (b) of the five outer folds of the 
procedure.

In each of the 5 outer cross-validation folds, 4 patients’ 
data were reserved for (outer) testing; the remaining 16 
patients’ data were used for training and hyperparameter 
selection. The inner level performed hyperparameter selec-
tion by dividing the 16 outer training patients’ data into an 
inner training set of 10 patients’ data, an inner validation set 
of 2 patients’ data, and an inner test set of 4 patients’ data.

For each fold of the inner loop, a greedy search of the 
hyperparameter space was performed, sequentially optimiz-
ing test performance over one hyperparameter at a time, fix-
ing its value before adjusting the next hyperparameter; the 
search order considered hyperparameters with the smallest 
possible number of values first, to reduce the search space 
as little as possible at each step.

Fig. 3  Nested cross-validation is used for hyperparameter selection 
and for validation of performance on unseen data. We first randomly 
divide data into five parts. (a) In the first outer fold, we keep one of 
the five parts as a test set, and use the other four parts to find the best 
hyperparameter values by 4-fold cross-validation in the inner folds; 

a new model is trained with those hyperparameter values on the four 
inner parts and evaluated on the test set. (b) In the second outer fold, 
we keep another part (out of five) as a test set and repeat the process. 
We do the same for the remaining three outer folds
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Once the four folds of the inner loop had been completed, 
a model with the best-performing hyperparameter values 
from among the four inner folds was then trained on the 
16 outer training patients’ data, using 14 patients’ data for 
training and 2 patients’ data for validation; this model’s per-
formance was then evaluated over the outer test set of 4 
patients’ data reserved in the outer level. The entire process 
was repeated for each of the five outer folds.

Final Model. After nested cross-validation was complete, 
a single set of hyperparameter values was selected by plu-
rality among those of the five best-performing models from 
the outer folds of the cross-validation procedure, and used 
to train a final model over the full set of all 20 patients. This 
final model is used throughout the experiments reported in 
this paper. Cross-validated estimates of the performance 
metrics for this final model were calculated by aggregating 
the confusion matrices of the five models used in the outer 
folds of the nested cross-validation procedure.

Boostrapped Performance Estimates

We used bootstrap sampling to compute confidence intervals 
of radius one standard error for overall classification accu-
racy. For per-stage performance, precision, recall, and F1 
score were used instead, as the substantial class imbalance in 
the resulting per-stage binary classification tasks would yield 
misleadingly high accuracy values. We generated bootstrap 
samples by randomly selecting one of 20 patients, sampled 
the selected patient’s data with replacement (without chang-
ing the total number of sleep epochs), and made class predic-
tions using the model from the outer training fold that the 
patient was not in. The process was repeated 1000 times to 
produce an aggregate confusion matrix over all bootstrap 
samples.

Understanding Internal Feature Development

We aimed to understand the feature representation of the 
sleep data that arises within our deep network (see “Model 
Architecture”) as a result of training. Sleep stage specializa-
tion is an aspect of internal feature development that is of 
particular interest; this term refers to the extent to which 
individual processing units, or layers of units, respond dif-
ferently to input data epochs of different sleep stages.

We focused on approaches based on the objective quanti-
fication of the learned internal features via an analysis of the 
activation vectors of the units and layers of the network (see 
“Activation Vectors”). Visualization techniques were used 
to provide insight into sleep stage specialization information 
that is embedded in the activation vectors; thus, visualization 
was not used as a competing standalone approach, but rather 
as a means to extracting information that is rooted directly 
in these quantitative measurements. Additional quantitative 

analysis of the activation vectors was carried out using 
Centered Kernel Alignment (CKA). We describe the com-
plementary visual and quantitative elements that enter into 
describing internal feature development below.

Feature Development Visualization

We used t-distributed Stochastic Neighbor Embedding 
(t-SNE)  [48] to visualize the trained network’s internal 
activation levels via a low-dimensional embedding that 
preserves pairwise similarity under a Gaussian conditional 
model. The t-SNE perplexity hyperparameter was set to 30.

Since it is possible, in principle, that the nonlinearity 
inherent in t-SNE might distort the relationships among 
instances of different classes, and, in particular, that it 
might suggest greater or lesser class separation than actually 
occurs in the space of predictive attributes, we also carried 
out experiments in which we applied the linear technique of 
principal components analysis (PCA) to the activation vec-
tors, which uses an orthogonal projection based on a trans-
formation that preserves lengths and angles.

Additionally, we tested both multidimensional scaling 
(MDS) and UMAP [27] for visualization. Metric MDS was 
used. UMAP hyperparameters were set as follows: n_neigh-
bors = 15, min_dist = 0.1. Sleep stage specialization of 
internal units was studied at both the level of individual units 
(filters), and of entire layers, using human sleep samples as 
network inputs. At the unit level, we obtained a unit’s acti-
vation and directly applied t-SNE to embed the activation 
into 2-dimensions. At the layer level, we first reduced the 
dimensionality of the layer’s response by taking the maxi-
mum value of each unit’s activation along its time axis, and 
then applied t-SNE to the resulting vector of time-aggre-
gated responses of all of the units in the layer. We explored 
alternatives to the maximum for time-aggregation, using the 
mean or median for pooling instead.

Feature Development Quantification

We applied Centered Kernel Alignment (CKA)  [11] to 
measure the quality of the network’s internal representations 
of sleep data. We did this by computing the following two 
measures: (1) Stage Specialization, a stage-specific measure 
that gauges the association between the learned represen-
tations of internal units with each stage, is calculated by 
applying CKA between an activation vector and logits of 
each stage; and (2) Stage Differentiation, an all-stage meas-
ure that gauges internal units’ ability to distinguish among 
the various classes, is computed by applying CKA between 
an activation vector and one-hot encoded class labels. An 
illustration is presented in Fig. 4.

We have found that the dimensionality of the convolu-
tional layer responses in shallow layers can be very large, so 
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that direct application of CKA would exceed the available 
computational resources. For example, the output of the first 
layer of our network, as shown in Fig. 2, has shape (15,000, 
16), which is 240,000 elements when vectorized. Therefore, 
we performed dimensionality reduction on the activation 
vectors before applying CKA by grouping selected elements 
of the activation vectors along the time axis, taking their 
maximum or mean values. This is equivalent to applying a 
max pooling or averaging pooling layer to the activation vec-
tor with the stride equal to the kernel size. An appropriate 
pooling size can be selected, so that applying CKA becomes 
computationally feasible. In this work, for each activation 
vector, we dynamically picked a pooling size, such that the 
dimension-reduced vector is approximately a square matrix.

We tested whether using pooling before applying CKA 
significantly changes the results of CKA, as follows. We 
first selected two networks with identical architecture: 
the final model and the best model selected in the second 
outer fold of the nested cross-validation procedure (see 
Table 3); we will subsequently refer to the latter model as 
the outer2 model. The final model and the outer2 model 
differ slightly due to differences in initial parameter val-
ues, and due to the use of slightly different data sets: the 
final model was trained on the full data set, whereas the 
training data set for the outer2 model did not include the 
samples in the reserved outer2 fold. We applied CKA to 
calculate the layer similarity of pairs of selected layers 
whose activation vectors are small enough for CKA to be 
computed without using pooling. We compared the CKA 

layer similarity values without using pooling, with those 
using max pooling prior to CKA, and with those using 
average pooling prior to CKA.

To select between max pooling and average pooling, we 
considered, as in [23, 37], the idea that for two networks 
with the same architecture, the same layers in the two net-
works should be similar. A comparison was performed 
using two models resulting from the model selection pro-
cedure, specifically, the best model from the outer2 fold 
and the final model. The winning pooling approach was 
then used in all subsequent CKA experiments.

Fig. 4  Quality of the network’s modeling of sleep is captured quan-
titatively as Stage Differentiation, a measure of classification ability 
obtained by applying CKA between activation vectors and one-hot 

encoded class labels; and as Stage Specialization, a stage-specific 
measure of the ability to identify the given stage (S2 shown here), 
obtained by applying CKA between activation vectors and class logits

Table 3  Best hyperparameter set for each outer fold. Each column 
represents the best hyperparameter values for one outer fold of nested 
cross-validation procedure

Hyperparam. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Initial filters 16 16 16 16 16
Padding Yes Yes Yes Yes No
Stride 1 1 1 1 1
Kernel size 100 100 100 100 100
Pooling size 5 3 5 3 3
Pattern 6C/P/3C/P 3C/P 3C/P 3C/P 3C/P
BN/dropout BN BN BN BN BN
Dropout final No No No 0.1 No
# conv layers 13 13 10 13 13
Accuracy 83.44% 83.77% 85.32% 85.26% 85.04%
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Results

Model Selection

The best-performing set of hyperparameter values for each 
outer fold of the nested cross-validation model selection 
procedure (“Model Training, Selection, and Evaluation”) 
is shown in Table 3. We found that the best hyperparam-
eters in different folds have many values in common. Pad-
ding provides better performance than no padding in all 
folds but one; in fold 5, not using padding yields a small 
margin in accuracy. Similarly, the 3C/P layer pattern wins 
in all folds except fold 1, in which 6C/P/3C/P is slightly 
better. No dropout after convolutional layers is best except 
for fold 4, in which dropout of 0.1 has a slim advantage. 
All folds select 13 convolutional layers as being best, 
except for fold 3, which uses 10 layers. Only pooling size 
differs more substantially among folds: in folds 2, 4, 5, 
a pooling size of 3 is best, while a size of 5 is better in 
folds 1, 3.

We constructed the final model by selecting hyperpa-
rameter values by plurality among the outer cross-vali-
dation folds. This yields a model with 13 convolutional 
layers in the 3C/P pattern, with a filter size of 100 and a 
stride of 1, regularization by batch normalization, and a 

pooling size of 3. The final model was trained on the full 
dataset, using 17 patients’ data for training and the other 
3 patients’ data for validation prior to t-SNE visualization 
of internal activations (“Internal Feature Development”). 
The classification performance reported in “Model Perfor-
mance” is computed during model selection, as described 
in “Model Training, Selection, and Evaluation”.

Model Performance

Table 4(a) shows the cumulative confusion matrix of the 
five outer models on unseen patients. Overall accuracy is 
84.57%. A bootstrap estimate of overall accuracy was also 
computed, yielding the confidence interval 84.50 ± 0.13 %, 
of radius one standard error around the bootstrapped mean 
accuracy of 84.50%. The predictive accuracy of our model 
comfortably exceeds published figures for human expert 
inter-scorer agreement of 82.6% [38]. Overall performance 
of our model also compares favorably with recent work over 
the same data set, such as  [29] (84.26% accuracy on single-
channel EEG data) and  [36] (82.5% accuracy).

As mentioned in “Model Training, Selection, and Evalua-
tion”, per-stage accuracy values would be misleadingly high. 
We therefore assessed per-stage performance using preci-
sion, recall, and F1 scores. Table 5 shows performance con-
fidence intervals for each class spanning one standard error 

Table 4  Performance of models 
trained on different numbers 
of input channels: (a) two EEG 
channels and one EOG channel, 
(b) two EEG channels, and (c) 
one EEG channel

Cumulative confusion matrices show precision, recall, and F1 scores. Each entry is the number of sleep 
data epochs of the stage with that row label that the model classifies as the column label

S1 S2 S3 Wake R Recall F1 score

(a) Three channels (2 EEG + 1 EOG)
  S1 1287 647 17 501 352 45.90% 47.32%
  S2 595 15,609 679 253 663 87.70% 87.34%
  S3 3 652 5025 21 2 88.11% 87.78%
  Wake 495 199 15 7473 102 90.21% 89.17%
  R 255 837 10 229 6386 82.75% 83.90%
  Precision 48.84% 86.99% 87.45% 88.16% 85.09%

(b) Two EEG channels
  S1 1295 594 10 484 421 46.18% 45.49%
  S2 670 15,377 537 457 758 86.39% 87.24%
  S3 10 706 4897 79 11 85.87% 87.74%
  Wake 525 135 14 7377 233 89.05% 86.29%
  R 390 640 2 417 6268 81.22% 81.36%
  Precision 44.81% 88.11% 89.69% 83.70% 81.50%

(c) One EEG channel
  S1 1215 679 14 499 397 43.33% 44.61%
  S2 482 15,516 1103 148 550 87.17% 86.57%
  S3 10 656 4999 38 0 87.66% 83.10%
  Wake 522 148 81 7440 93 89.81% 90.09%
  R 414 1047 132 107 6017 77.97% 81.45%
  Precision 45.97% 85.98% 78.99% 90.38% 85.26%
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below and above the mean precision, recall, and F1 scores. 
Mean values differ slightly between Table 4(a) and Table 5, 
because bootstrapping was only used for the latter. Model 
performance on sleep stages S2, S3, Wake, and REM is very 
good. Performance is worst on the least frequent class, S1.

Dependence on the Number of Signal Channels

We trained two additional models: one that uses only the 
two EEG channels (no EOG), and another that uses only 
one EEG channel (Fpz-Cz, the best performing of the chan-
nels [33, 40, 41]). We did not redo hyperparameter selec-
tion, due to limited computational time. Overall accuracies 
of these models are 83.23% and 83.17% , respectively, both of 
which are still higher than human expert inter-scorer agree-
ment of 82.6% [38].

Tables  4 (b) and (c) show the cumulative confusion 
matrices of the two models. Mean F1 values for the REM 
stage drop slightly in the absence of EOG information, from 
83.9% for the three-channel model to 81.4% or so for both 
EEG-only models. This is not surprising, as eye movements 
are a defining feature of REM. Mean F1 score on Wake is 
likewise slightly lower for the two-channel model at 86.3%, 
as compared with the three-channel model’s 89.2%. Notably, 
the model based on a single EEG channel outperforms the 
other two models on Wake, attaining a mean F1 value of 
90.1% on that stage.

Performance on Wake

The performance on sleep stage Wake reported in this paper 
greatly improves on our previous work [33, 40, 41] in preci-
sion, recall, and F1 score. The F1 score attained by the three-
channel model on sleep stage Wake has increased from 57% 
to 89% (see Table 4(a)). One source of this improvement is 
the greater number Wake epochs in the dataset. Whereas 
our previous work included only mid-sleep awakenings in 
the dataset, as in [46, 47], the present paper also includes 
30 min of Wake epochs before and after sleep, as in [29, 45]. 
Huy Phan et al. [36] trained their models in both settings.

We wondered whether the improved performance on 
Wake that results from including pre- and post-sleep data 
is due to better generalization resulting from the greater 
amount of Wake data available for training, or whether 
perhaps the additional Wake epochs before and after sleep 
are easier to classify than the mid-sleep Wake epochs. As 
noted in “Dataset”, we removed all movement epochs; 
hence, artifacts associated with such events are not respon-
sible for the observed performance improvement. Aiming 
to understand this matter, we tested the models trained 
with 30-min Wake data before and after sleep on the mid-
sleep data and found that F1 score on Wake is 65%, which 
is only 1% higher than the models trained on the mid-
sleep epochs. This shows that including additional Wake 
data before and after sleep does not improve generaliza-
tion nearly enough to account for the overall improvement 
described in the preceding paragraph.

We retrained our models on the mid-sleep data only. 
Due to computational limitations, we kept the original 
hyperparameters. We tested the models on a sequence 
of data sets, adding X minutes of Wake epochs before 
and after sleep. See Fig. 5. At X = 0 (mid-sleep epochs 
only), the F1 score on Wake is 64%. As X increases (more 
pre- and post-sleep Wake epochs), Wake performance 
improves, even though the additional data were not used in 
training. This suggests that the additional Wake epochs are 
different from Wake epochs during sleep, and are easier to 
predict (consistent with [36]), accounting for much of the 
performance improvement.

Table 5  Bootstrapped confidence intervals for performance of three-
channel (2 EEG + 1 EOG) model on each sleep stage, in format mean 
± SE

Sleep stage Precision Recall F1 score

S1 49.64 ± 0.58% 45.49 ± 0.60% 44.11 ± 0.42%

S2 86.85 ± 0.22% 87.51 ± 0.24% 86.84 ± 0.16%

S3 86.75 ± 0.32% 88.23 ± 0.23% 86.90 ± 0.19%

Wake 88.48 ± 0.28% 90.18 ± 0.26% 88.70 ± 0.15%

R 85.22 ± 0.29% 83.72 ± 0.34% 83.69 ± 0.21%

Mean 79.39 ± 0.16% 79.03 ± 0.17% 78.05 ± 0.15%

Fig. 5  F1 performance on Wake stage by three-channel models 
trained on mid-sleep data only. Means (blue) and mean ± SE inter-
vals (red) calculated from bootstrapped samples. Models make more 
accurate predictions on Wake data before and after sleep, leading to 
increased F1 as more pre- and post-sleep Wake data are included in 
the test set. Overall level of Wake performance is lower here than in 
Table 5 due to the use here of mid-sleep training data only
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Internal Feature Development

Feature Development Visualization

We used visualization to study the responses to human sleep 
data of individual network filters and entire network layers. 
As described in “Feature Development Visualization”, we 
compared t-SNE visualization with PCA, MDS, and UMAP.

Visualization of whole-layer activations used pooling 
over time for dimensionality reduction, as explained in “Fea-
ture Development Visualization”. We compared the results 
obtained using the maximum, mean, and median as pooling 
operators. Using the mean led to results that are qualitatively 
similar to those obtained using the maximum; using the 
median led to noticeably poorer results. We used the maxi-
mum as the pooling operator for the remaining experiments.

PCA and t-SNE produced qualitatively similar results in 
terms of the degree of spatial separation that they suggest 
between classes. As an example, Fig. 6 shows similar dif-
ferentiation among stages in the activation vectors associated 
with an early layer of our network. This implies that the 
inherent nonlinearity of t-SNE does not affect the result-
ing visual assessments of stage separation. MDS to some 
extent, and both t-SNE and UMAP especially, were found 
to provide better resolution than PCA for the more complex 
activation patterns that tend to emerge in deeper network 
layers. An example is shown in Fig. 7. Taking all of these 
results into account, we selected t-SNE for use in the work 
reported in this paper.

Figure 8 shows the t-SNE results for sample filters at 
different depths within the network. Filters in early layers, 

(a)–(c), respond similarly to data instances of different 
stages, therefore providing poor differentiation among 
stages. For middle layers, (d)–(f), we see some separation 
among sleep stages in the t-SNE output. In deep layers, 
(g)–(i), some filters are seen to separate instances of a par-
ticular stage from those of other stages.

We find that the t-SNE results are consistent with our 
previous work [33], in which we examined sleep stage spe-
cialization of individual filters by stage-based activation 
maximization for those filters [14, 26, 30, 39]: the t-SNE 
visualization of a filter that activates maximally to a par-
ticular stage shows that the filter responds differently to the 
instances of that stage than to instances of other stages, as 
evidenced by spatial separation between the locations of the 
instances in the t-SNE plot. For example, in Fig. 8, the filter 
in (g) separates Wake instances (right) from other stages, the 
filter in (h) separates S2 instances (left) from other stages, 
and the filter in (i) separates S3 instances (top) from other 
stages; in each case, the stage that has been singled out is the 
one that most often maximizes the given filter’s activation.

Furthermore, t-SNE gives us additional information 
about a filter’s capabilities than does activation amplitude 
alone. For example, the t-SNE visualization in Fig. 9c shows 
that the filter in question differentiates among several sleep 
stages quite well, while activation maximization only identi-
fies one of these stages. We are not arguing that activation 
visualization using t-SNE (or UMAP) is superior in absolute 
terms to activation maximization [14, 26, 30] or other tech-
niques that aim to assign credit to particular aspects of the 
input based on activation [3, 39, 44], but rather that it more 
directly addresses the specific issue of stage differentiation. 

Fig. 6  Sample visualizations of whole-layer activation vectors in 
a shallow layer of the three-channel model using (a) t-SNE and (b) 
PCA. Stage labels coded by color. Axes correspond to the embedding 
coordinates, which are dependent on the visualization technique in 

each case. Inputs to the models are random samples of 15% of data 
from each of the 20 patients. The two techniques suggest similar 
degrees of separation among stages in the given layer
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Activation maximization and related techniques are valuable 
tools in identifying input signal characteristics most closely 
associated with particular network units, and can provide 
information that complements both activation visualization 
and quantitative techniques such as CKA that constitute the 
focus of this paper.

We also applied t-SNE to the responses of all units within 
a given layer. Since the dimensionality of the responses of 
the whole layer can be very large, we first reduced dimen-
sionality by taking the time-maximum of the response of 
each unit in the layer, before applying t-SNE to visualize 
the layer activations. Figure 10 shows the embedded activa-
tion plots for different layers. Fig. 10a Shows that the very 
first layer can differentiate between stages (Wake, REM) 

and stages (S2, S3). Fig. 10b Shows a mid-depth layer that 
provides improved separation among sleep stages. Fig. 10c 
Shows a deep layer that differentiates all stages well.

EOG‑Dependence of Wake and REM Performance

The t-SNE visualization of (Fig. 10a) suggests that very 
early (shallow) layers of our model are able to differentiate 
the pair of stages (Wake, REM) from the pair of stages (S2, 
S3). It is possible, in principle, that the early layers rely on 
eye movement information in the EOG channel to make this 
differentiation, as eye movements are more likely to occur 
in the Wake and REM stages. To investigate this possibility, 
we apply t-SNE to the responses of internal units of the first 

Fig. 7  Sample visualizations of whole-layer activation vectors in a 
deep layer of the three-channel model using (a) t-SNE, (b) PCA, (c) 
MDS, and (d) UMAP. Stage labels coded by color. Inputs to the mod-

els are random samples of 15% of data from each of the 20 patients. 
t-SNE, UMAP, and MDS show a more noticeable separation among 
stages than PCA does in the given layer
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layer for each of two networks trained, respectively, on two 
EEG channels and one EEG channel only (no EOG channel), 
as described in “Dependence on the Number of Signal Chan-
nels”. Figure 11b shows that the model trained on two EEG 
channels only can still differentiate stages (Wake, REM) 
from stages (S2, S3) in the very early layers; (c) shows that 
the model trained on a single EEG channel can still dif-
ferentiate REM stage instances from those of other stages, 
though Wake is no longer well separated from other stages, 
in contrast with the model that uses both EEG channels. Our 
results suggest that the EEG-only networks begin to develop 
the ability to identify REM sleep very early, despite their not 
having access to the EOG channel.

Feature Development Quantification

We first tested the relative change that occurred in the CKA 
values as a result of either max-pooling or average-pooling 
dimensionality reduction as described in “Feature Devel-
opment Quantification”. In all cases, the average pairwise 
absolute difference between the CKA values obtained with-
out prior pooling of the data and those obtained after pooling 
was less than 0.015, which is much smaller than the range of 
variation of the CKA values overall, which varied from 0.76 
to 0.96. The average percentage difference is less than 1.7%.

Next, we selected between max-pooling and aver-
age-pooling approaches by comparing the CKA values 

Fig. 8  Embedded t-SNE unit responses for the three-channel model. 
Inputs to the model are stratified samples of 15% of data from each of 
the 20 patients. Left column shows unit responses in shallow layers, 

middle column shows unit responses in middle layers, and right col-
umn shows unit responses in deep layers. The results demonstrate an 
improvement in stage differentiation with increasing depth
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obtained after each of these pooling types. CKA was used 
to compare layers at equal depths in the final model and 
the best model from the outer2 fold of the nested cross-
validation model selection procedure described in “Model 
Training, Selection, and Evaluation”.

Figure 12 shows the CKA similarity results of the two 
networks, using either max pooling prior to CKA (left) or 
average pooling prior to CKA (right). The results suggest 
that using max pooling is preferable to using average pool-
ing, as the heat map on the left in Fig. 12, corresponding 

Fig. 9  t-SNE embeddings of units in deep layers of the three-channel 
model that activate strongly to a particular sleep stage (respectively, 
REM, S3, REM), showing these units’ ability to also differentiate 

among multiple stages. Model inputs are stratified samples of 15% of 
data from each of the 20 patients

Fig. 10  Embedded layer responses in the three-channel model using t-SNE. The inputs to the final model are stratified samples of 15% of data 
from each of the 20 patients. The results show the improvement in the network’s class differentiation ability with increasing depth

Fig. 11  t-SNE layer responses in models trained on (a) three channels 
(2 EEGs + 1 EOG), (b) two EEG channels, and (c) one EEG (Fpz-
Cz) channel. Model inputs are stratified samples of 15% of data from 

each of the 20 patients. The results show that separation of (Wake, 
REM) from (S2,S3) in shallow layers relies mainly not on EOG, but 
on both EEG channels
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to max pooling, shows higher similarity along the main 
diagonal than does the heat map on the right, which corre-
sponds to average pooling. Based on this result, we selected 
max pooling for dimensionality reduction prior to CKA 
computation.

At the individual filter level, we used CKA between a 
filter’s response to samples of human sleep signals and logits 
of each sleep stage to measure the filter’s sleep stage special-
ization. Table 6 shows the resulting CKA quantification of 
filters’ stage specialization in different layers of the network, 
along with references to their corresponding t-SNE plots. 
The results show a low level of stage specialization in early 
network layers, and a higher level of specialization in deeper 

layers. The results are consistent with the visual embedded 
response using t-SNE. For example, Filter 38 in Layer 13 
has a CKA specialization value of 0.6321 in sleep stage S2, 
the highest among all of the stages, and the corresponding 
t-SNE plot in Figure 8h similarly suggests a separation of 
stage S2 instances (left) from the other stages.

At the whole-layer level, we measured various layers’ abil-
ity to identify individual stages via our stage specialization 
measure, using max pooling over time to reduce dimensional-
ity of the layer activation vectors before applying CKA. Fig-
ure 13a shows that the ability of the final model to identify 
individual stages improves with increasing depth; the “all 
stages” line shows that the ability to differentiate among stages, 

Fig. 12  Comparison of dimensionality reduction by max pooling 
(left) and average pooling (right) prior to layerwise CKA similarity 
measurement between slightly different initializations and training 
data samples for the same network architecture. Inputs to the mod-

els are stratified samples of 15% of data from each of the 20 patients. 
Max pooling shows stronger diagonal dominance, making it prefer-
able to average pooling

Table 6  CKA stage specialization values for filters shown in Figs. 8 
and 9. Corresponding filter identity and t-SNE figure number indi-
cated at left end of each row. Increased occurrence of larger CKA 
values in second and third three-row groups from top connotes an 
increase in stage specialization with layer depth. Largest value in each 

row matches a stage that is visually well separated from others in the 
corresponding t-SNE plot. See text. Results show that CKA yields a 
quantitative measure of stage specialization that validates t-SNE visu-
alization

Layer Filter Corresponding Stage Specialization

t-SNE plot S1 S2 S3 Wake REM

1 15 8(a) 0.0405 0.0184 0.2726 0.0268 0.1077
1 4 8(b) 0.0025 0.1799 0.0015 0.3416 0.0056
1 13 8(c) 0.0064 0.1645 0.0158 0.3156 0.0156
8 48 8(d) 0.0047 0.1969 0.0039 0.5879 0.0169
9 32 8(e) 0.0290 0.0223 0.5673 0.1847 0.0901
9 63 8(f) 0.0198 0.2084 0.0514 0.2470 0.0016
13 92 8(g) 0.0053 0.1068 0.0510 0.7133 0.0499
13 38 8(h) 0.0070 0.6321 0.0939 0.1519 0.1037
13 61 8(i) 0.0018 0.1270 0.5529 0.0009 0.0296
12 26 9(a) 0.0013 0.0245 0.1152 0.1293 0.6588
13 52 9(b) 0.0140 0.0472 0.7479 0.0513 0.0695
13 17 9(c) 0.0024 0.0303 0.0989 0.1122 0.6786
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and hence make a correct class prediction, also increases with 
depth. We verified the results using other models with the 
same architecture as the final model. The results are shown 
in Fig. 13b–d. Despite slight variations in the detailed growth 
patterns among the individual figures, all of the models show 
the same trend in the increase in class specialization and class 
differentiation with layer depth.

Discussion

The convolutional neural network architecture developed 
in this paper attains an overall classification accuracy of 
84.50% ± 0.13% , which is comparable to that of recent 
published results over the same data set, such as  [29] 

Fig. 13  CKA quantifies the improvement in stage specialization 
(individual stage labels in figures) and stage differentiation (“All 
Stages”) with layer depth. Models trained on three-channel data. The 
notation “Outeri - innerj” refers to the model resulting from the jth 
inner fold of the ith outer fold of the nested cross-validation proce-

dure. Precise results differ slightly among networks with the same 
architecture (different parameter initializations and training data sam-
ples), but show a very similar overall growth trend for every one of 
the sleep stages
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(84.26% accuracy on single-channel EEG data) and [36] 
(82.5% accuracy). Unsurprisingly, we see in Table 4(a) 
that predictive performance is weakest on stage S1, which 
is under-represented in the data (Table 1) and has low 
inter-scorer reliability among human experts  [35]. We 
used oversampling of the S1 data instances in an attempt 
to improve performance on this stage. The results show 
only a minimal improvement in the F1 score of sleep stage 
S1; furthermore, a deterioration in predictive performance 
on other stages occurs, with a consequent decrease in the 
classification accuracy of the model. Similar results using 
oversampling were reported by [42], which used a differ-
ent dataset.

As observed in Table 4, the one-channel model (c) 
slightly outperforms the other two models (a), (b) on Wake 
data, as measured by F1 score, for example. We hypoth-
esize that this may be a matter of sample complexity: mod-
els that use a greater number of input channels have cor-
respondingly larger numbers of parameters, and therefore 
(e.g., [13]) can be expected to require more data points to 
attain a comparable level of generalization performance 
relative to their asymptotic (large sample) performance 
limit, as compared with the single-channel model. If this 
hypothesis is correct, one expects that the three-channel 
model will perform best on a larger data set. We have not 
yet attempted experiments on a larger dataset to verify 
this prediction.

Taken collectively, our work and that of other groups 
(e.g., [29] and [36]) shows that the state of the art in auto-
mated sleep stage scoring now matches or exceeds human 
expert performance; for comparison, mean human expert 
inter-scorer agreement has been reported to be 82.6% [38]. 
We therefore focused our attention in this paper to studying 
the internal representations learned by high-performing deep 
learning models, which are known to be highly difficult to 
interpret.

Our approach combines visualization of activation vec-
tors using t-SNE with quantification of stage differentia-
tion using CKA after pooling. We found this combination 
to be effective. For example, it allows us to establish a 
near-monotonic improvement in sleep stage specialization 
with layer depth within our network, with partial stage dif-
ferentiation even in shallow layers. We found, further, that 
CKA can be useful for validating the visual information 
provided by t-SNE. For example, at first, the embedded 
response of the filter in Fig. 8f gave us the impression that 
the filter specializes in sleep stage Wake, but the CKA 
value shows a low level of specialization. We revisited the 
t-SNE plot, and found that we had visually misjudged the 
filter’s degree of specialization, due to the order in which 
instances of the various stages had been plotted: instances 
of sleep stage Wake had been plotted last, overlaying them 
on other instances in a way that suggested a higher degree 

of separation of Wake from the other stages than was actu-
ally present in the two-dimensional projection.

Conclusions

We have developed a deep convolutional neural network 
for sleep stage classification that attains an overall clas-
sification accuracy of 84.50 ± 0.13 % over three-channel 
(two EEG and one EOG) polysomnographic data, which 
is better than human expert inter-scorer agreement [38]. 
Single-channel performance is only slightly lower, and 
is competitive with contemporary results over the same 
dataset [29, 36].

Our prior work [33, 40, 41] used mid-sleep data only. 
In the present work, we used 30 additional minutes of pre-
sleep and post-sleep Wake data to better align our evalu-
ation approach with related work. We found that Wake 
epochs before and after sleep have only a minor impact on 
mid-sleep generalization, but that they are easier to predict 
than mid-sleep Wake epochs.

Our main focus was on the interpretation of the internal 
representations that develop within our deep network dur-
ing training. We explored these representations through 
a combination of visual and quantitative means. Low-
dimensional t-SNE plots of the activation vectors of dif-
ferent units and layers of the network provided insight into 
the degree of stage differentiation that arises across the 
network. The visual information was complemented by 
applying CKA to different measurements on the activation 
vectors, yielding quantitative measures of differentiation 
among stages and of specialization in particular stages.

We proposed the use of pooling over time to make the 
CKA computations feasible by reducing the dimensional-
ity of the activation vector data. Our approach enabled 
us to establish a gradual increase in stage specialization 
and stage differentiation ability with increasing layer depth 
within the network, and to reveal that partial stage differ-
entiation occurs even in shallow layers.

Many methods developed for interpreting and under-
standing deep learning focus on activation maximiza-
tion [14, 26, 30] or on input credit assignment based on 
maximum impact on activation [3, 39, 44]. Our results in 
this paper suggest that the use of embedding techniques 
such as t-SNE could be helpful in providing further insight 
into the internal representations in deep networks. Our 
results further suggest that the visual inspection of such 
low-dimensional data embeddings can be validated and 
enhanced by using Centered Kernel Alignment (CKA) to 
provide objective quantitative descriptions of the develop-
ment of internal feature representations during learning.
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Future Work

Possible avenues for future work include investigating the 
use of CKA with nonlinear kernels, the application of our 
proposed techniques to alternative network types such as 
recurrent neural networks, and the simultaneous and com-
plementary use of CKA-based quantification and activa-
tion maximization approaches. Our work in progress [32] 
involves the latter direction.
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