
Vol.:(0123456789)

SN Computer Science (2021) 2:318
https://doi.org/10.1007/s42979-021-00697-3

SN Computer Science

ORIGINAL RESEARCH

Capturing the Development of Internal Representations
in a High‑Performing Deep Network for Sleep Stage Classification

Sarun Paisarnsrisomsuk1 · Carolina Ruiz1 · Sergio A. Alvarez2

Received: 16 December 2020 / Accepted: 10 May 2021 / Published online: 3 June 2021
© The Author(s) 2021

Abstract
Deep neural networks can provide accurate automated classification of human sleep signals into sleep stages that enables
more effective diagnosis and treatment of sleep disorders. We develop a deep convolutional neural network (CNN) that attains
state-of-the-art sleep stage classification performance on input data consisting of human sleep EEG and EOG signals. Nested
cross-validation is used for optimal model selection and reliable estimation of out-of-sample classification performance.
The resulting network attains a classification accuracy of 84.50 ± 0.13% ; its performance exceeds human expert inter-scorer
agreement, even on single-channel EEG input data, therefore providing more objective and consistent labeling than human
experts demonstrate as a group. We focus on analyzing the learned internal data representations of our network, with the
aim of understanding the development of class differentiation ability across the layers of processing units, as a function of
layer depth. We approach this problem visually, using t-Stochastic Neighbor Embedding (t-SNE), and propose a pooling
variant of Centered Kernel Alignment (CKA) that provides an objective quantitative measure of the development of sleep
stage specialization and differentiation with layer depth. The results reveal a monotonic progression of both of these sleep
stage modeling abilities as layer depth increases.

Keywords Sleep · Deep learning · Learning representations · Kernel similarity · Feature visualization

Introduction

Sleep disorders affect both the duration and quality of sleep,
negatively impacting neuro-cognitive function, as well as
overall health and quality of life of the affected individ-
ual [17]. At a societal level, sleep disorders lead to enormous
costs due to reduced productivity and increased public health

expenditures associated with various comorbidities [10]. It
is, therefore, in the best interests of individuals and society
to facilitate the identification of sleep disorders with a view
toward providing prompt and effective treatment.

The diagnosis of sleep disorders relies on the process of
sleep stage scoring, which maps human sleep physiological
signals to sequences of symbols that correspond to the dif-
ferent stages of sleep. Sleep stage scoring has traditionally
been performed by highly trained human experts who visu-
ally detect patterns associated with individual sleep stages
and make classification decisions based on guidelines such
as those from the American Academy of Sleep Medicine
(AASM) [4]. Automated sleep stage scoring can more effi-
ciently and consistently provide accurate results than human
scorers.

In this paper, we report a convolutional neural network
architecture for performing sleep stage classification from
electroencephalography (EEG) and electrooculography
(EOG) human sleep signals. Sleep stage classification or
scoring is the process of classifying each 30-s sleep period
(known as a sleep epoch) as one of five classes: Sleep Stages
1, 2, 3, REM (Rapid Eye Movement), or Wake. We use

This article is part of the topical collection “AI and Deep Learning
Trends in Healthcare” guest edited by KC Santosh, Paolo Soda and
Zalelam Temesgen.

 * Sergio A. Alvarez
 alvarez@bc.edu

 Sarun Paisarnsrisomsuk
 spaisarnsrisomsu@wpi.edu

 Carolina Ruiz
 ruiz@wpi.edu

1 Department of Computer Science, Worcester Polytechnic
Institute, Worcester, MA 01609, USA

2 Department of Computer Science, Boston College,
Chestnut Hill, MA 02467, USA

https://orcid.org/0000-0001-9997-2536
https://orcid.org/0000-0001-5550-1492
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00697-3&domain=pdf

 SN Computer Science (2021) 2:318318 Page 2 of 19

SN Computer Science

nested cross-validation to select the best configuration from
among network architectures of different widths, depths,
and layer structures, and to evaluate performance of the
networks on unseen data. We analyze the impact that the
amount of waking data included in training has on the mod-
els’ generalization.

A main focus of the paper is on understanding the internal
representations of the data that develop within the network
during learning. We apply t-distributed Stochastic Neighbor
Embedding (t-SNE) [48] to the internal responses of the
trained network to visualize how sleep stage categorization
ability of the network layers improves with increasing depth.
Adapting a technique first introduced in [23], we use Cen-
tered Kernel Alignment (CKA) [11] to quantify sleep spe-
cialization of the network’s internal layers, and to validate
the t-SNE visualization results. We propose the use of an
additional pooling step prior to CKA to reduce the dimen-
sionality of the network layer representations, providing an
effective quantitative measure of sleep stage specialization
that can be used to track internal feature development. This
paper substantially extends the earlier version that appeared
as [31]; in particular, all of the CKA-related work is new.

Related Work

A number of related works use the same dataset as in the
current paper, the SleepEDF data set from the Physionet
database [16]. That database comprises raw data from 20
patients, across three signal channels (two EEG, one EOG),
together with polysomnograms that provide the sleep stage
labels for the raw data in 30-s epochs. Most related work
trains models in one of two settings, corresponding to dif-
ferent preprocessing decisions regarding what time period
is retained in each instance of the SleepEDF data: (1) Sleep
periods only; or (2) sleep periods plus 30 min of Wake data
before and after sleep. We describe these two settings in the
paragraphs below. Other papers use a different version or
signal choice for the SleepEDF data [22, 25], greater record-
ing length [19, 20], merged sleep stages [8], or a different
dataset altogether [5, 7, 34, 42, 43], preventing direct com-
parison with this paper.

Setting 1: Sleep Periods Only. The first of the two set-
tings mentioned above uses only data from sleeping periods
(in-bed, after sleep onset). Tsinalis, Matthews, and Guo [46]
applied ensemble learning in this setting, using an ensem-
ble of stacked sparse autoencoders on hand-picked time-
frequency analysis features extracted from the raw signals,
and achieved 78% accuracy over single-channel EEG data.
Tsinalis, Matthews, Guo, and Zafeiriou [47] used a convo-
lutional neural network and reported 74% accuracy, again
using a single EEG channel. Our previous work [33, 40,
41] in this setting used data from the three signal channels.

Setting 2: Sleep Periods Plus 30 min of Wake Data
Before and After Sleep. The second setting in previous work
includes 30 min of Wake data before and after sleep, in addi-
tion to sleep periods. Supratak, Dong, Wu, and Guo [45]
implemented a deep learning model in this setting with bidi-
rectional Long Short-Term Memory (LSTM) and obtained
78% accuracy on single-channel EEG data. Mousavi,
Afghah, and Acharya [29] employed a sequence-to-sequence
model that yielded 84.26% accuracy on single-channel EEG
data. Phan et al. [36] trained attention-based recurrent neu-
ral networks in both settings; the accuracy was reported as
79.1% in the first setting and 82.5% in the second.

Our previous work [33, 40, 41] considers setting 1
described above. We developed a deep convolutional neu-
ral network (CNN) for automated sleep stage scoring. That
architecture achieved a classification accuracy of 81% over
polysomnographic data corresponding to sleep periods only.
The cumulative confusion matrix showed that the perfor-
mance of the model in scoring sleep stages 1 (S1) and Wake,
which are under-represented classes, is not as good as for the
other classes, namely sleep stages 2 (S2), 3 (S3), and REM.

The present paper considers setting 2. We carry out a
more thorough model selection that considers a greater
number and variety of architectural hyperparameter types
and values, employing nested cross-validation, with the
aim of improving out-of-sample predictive performance for
mid-sleep wakefulness episodes and light sleep stage S1.
We compare our results with the state of the art, and with
published studies on the performance of human scorers.
We investigate how interpolating between the data from the
two settings by including varying amounts of pre-sleep and
post-sleep wake data, affects model performance. We go on
to study the development of internal representations across
the layers of our network both visually and quantitatively, as
outlined below in “Contributions”.

Contributions

We present in the present paper an optimized deep convo-
lutional neural network architecture for sleep stage scoring,
and evaluate its out-of-sample performance. The classifi-
cation accuracy of our model architecture exceeds human
inter-scorer agreement [38], and is comparable with recent
work over the same dataset [29].

We investigate the role of including additional wake
data in improving the model’s classification performance.
We find that waking epochs before and after sleep help to
improve prediction of waking epochs in the middle of sleep
slightly, and are considerably easier to label accurately than
mid-sleep waking epochs. We visualize the responses of
models’ internal units using t-SNE, more clearly showing
their ability to differentiate between sleep stages as layer

SN Computer Science (2021) 2:318 Page 3 of 19 318

SN Computer Science

depth increases, as compared with activation maximization
approaches.

Additionally, we measure the sleep stage modeling ability
of the network’s internal units and layers using our adap-
tation of the centered kernel alignment (CKA) approach
of [23]; namely, we use max pooling prior to CKA to reduce
data dimensionality without significantly altering the CKA
results. Our max-pooling CKA approach yields quantitative
descriptions of per-stage specialization of units and layers,
and of improvements in the network’s ability to differenti-
ate among sleep stages as layer depth increases, that can be
computed effectively on high-dimensional data. The max-
pooling CKA results validate the t-SNE visualization results
quantitatively, and allow detection of instances in which the
visual information alone can be misleading.

Background

Human Sleep

During sleep, the human body undergoes cyclical physiolog-
ical changes, usually described in terms of a small number of
sleep stages such as those in the AASM standard [4]: Wake
(as brief periods of wakefulness can occur during sleep);
REM (rapid eye movement); and three non-REM stages that
we will refer to by the terms S1 (light sleep); S2; S3 (deep
sleep). The notations N1, N2, N3 also occur in the literature.
We will sometimes abbreviate the Wake stage as W and the
REM stage as R, especially in contexts in which space is at
a premium (some figures, in particular).

Certain overall features are typically observed in the
architecture of sleep, that is, in the overall pattern of alter-
nation among stages during the course of the night. For
example, sleep stage progression typically exhibits some-
what cyclical behavior, in periods of 90 min or so. Cycles
evolve during sleep: deep sleep is more prominent earlier in
the night, and an alternation between REM and sleep stage
S2 is observed later in the night [6]. To diagnose patients
with sleep disorders, doctors rely on the appearance of unu-
sual patterns in the sleep cycle. To capture the sleep cycle,
physiological signals are first measured by body sensors dur-
ing all-night sleep in polysomnography (PSG), including
electroencephalograms (EEG), electrooculograms (EOG),
electrocardiograms (ECG), and electromyograms (EMG).

The polysomnogram is mapped to a sequence of sleep
stages in the process of sleep stage scoring, also known as
sleep staging. In staging, a sleep expert splits signals into
30-s segments, called epochs, and examines those segments
for the presence of patterns known to be associated with
particular sleep stages. For example, based on the AASM
standard [4], sleep spindles, low-amplitude 11–16 Hz bursts
of 0.5–2 s duration, are common in sleep stage S2; higher

amplitude low-frequency (delta band) waves in sleep stage
S3; and sawtooth waves with 2–6 Hz content in stage REM.
The process of sleep scoring by human experts is tedious
and error-prone. A major study estimates the mean rate of
inter-scorer agreement to be 82.6% [38]. Another study sug-
gests that agreement might be lower than 80% in some cases,
and that differentiating between sleep and wakefulness is
especially challenging [50].

Activation Vectors

To measure the development of internal features in deep
networks in an objective, quantitative manner (as a comple-
ment to visual techniques such as [51]), we consider the
responses, or activations, of the internal units of the network
over the input data. These responses are known as activa-
tion vectors. Formally, if p is an internal network unit (filter
or neuron), and if X = [x

1
, x

2
, x

3
,… , xn]

T is a set of n data
instances, then the activation vector of p over X is the vector
ap that consists of the activation values ap(xi) of unit p over
each of the n data instances xi , as in Eq. (1):

The activation of a given network unit results from forward
propagation of the input data through the units in earlier
layers, generally reflecting a composition of affine transfor-
mations, such as convolutions, and nonlinear transforma-
tions, such as pooling and ReLU functions. We also consider
activation vectors at the level of entire layers of units, by
collecting together the activation vectors of the individual
units of that layer as the columns of a matrix. If layer P
consists of neurons [p

1
, p

2
,… , pm] , then the correspond-

ing set of activation vectors of layer P is the n × m matrix
aP = [ap1 , ap2 , ap3 ,… , apm].

A small number of recent works have studied ways to
measure similarity between pairs of activation vectors. Wang
et al. [49] viewed similarity between sets of neurons as a dis-
tance between subspaces spanned by the activation vectors
of those neurons. Rather than directly compute a distance
between two subspaces, Raghu et al. [37] assumed that the
features from different layers may be associated with differ-
ent rotations of the subspaces, and introduced the Singular
Vector Canonical Correlation Analysis (SVCCA) algorithm
to align the two subspaces as closely as possible. Kornblith
et al. [23] discussed some undesirable properties of the
SVCCA algorithm, and proposed using Centered Kernel
Alignment (CKA) [11] for measuring similarity between
feature subspaces in a way that better detects similarity of
representations resulting from different initializations of the
same network. We elaborate on the CKA technique in the
following subsection.

(1)ap ∶= ap(X) = [ap(x1), ap(x2), ap(x3),… , ap(xn)]
T
.

 SN Computer Science (2021) 2:318318 Page 4 of 19

SN Computer Science

Kernel Alignment

Kernel-based learning algorithms, such as support vector
machines (SVMs) and kernel Fisher discriminant analysis
(KFD), map data from the input space into a feature space
and apply learning algorithms in the feature space. Rather
than mapping data points into the feature space directly, the
mapping is given implicitly by specifying a positive-definite
kernel function that computes the inner products of all pairs of
data points in the feature space, without the need for explicitly
embedding these data points in the often much higher dimen-
sional feature space. Kernel alignment [12] measures similar-
ity between two kernel functions. Cortes et al. [11] described
theoretical and empirical shortcomings of standard kernel
alignment, and proposed Centered Kernel Alignment (CKA),
which mean-shifts the kernel features before calculating kernel
alignment.

CKA was originally introduced in [11] with the aim of pro-
viding a similarity metric for kernel learning. Recently, [23]
suggested that CKA can be applied on two sets of activation
vectors to measure the similarity of learned internal features
in different layers of a neural network. In the present work, we
use CKA with linear kernels. This is in keeping with previous
work on measuring layer similarity described in “Activation
Vectors” (e.g., [37]), which seeks linear transformations that
align the subspaces spanned by the activation vectors.

Linear-kernel CKA between centered X and Y can be com-
puted as in Eq. (2), where X and Y are the two sets of data
representations being compared [23]

In the present context, X and Y can be activation vectors cor-
responding to two layers, as described at the beginning of

(2)CKA(X,Y) = ||YTX||2∕(||XTX|| ⋅ ||YTY||).

“Activation Vectors”, or they could be class labels or logits,
as in “Feature Development Quantification”.

Methodology

This section describes the human sleep data used in this
paper (“Dataset”); general features of the deep network
architectures that we considered (“Model Architecture”);
nested cross-validation for training, performance evaluation,
and model selection (“Model Training, Selection, and Eval-
uation”); and the methods employed for visualization and
quantification of internal feature development in the trained
network (“Understanding Internal Feature Development”).
Figure 1 summarizes the steps involved in key components
of the work.

Dataset

We used data of 20 patients from the SleepEDF (expanded)
database [21] in the Physionet repository [16]. For each
patient but one, data comprise two nights of signals in EEG
Fpz-Cz, EEG Pz-Oz, and EOG (horizontal) channels, sam-
pled at 100 Hz, with hypnograms that provide the sleep stage
for each 30-s epoch; the database includes only one night
of data for the remaining patient. As described in [28], the
physiological signals were recorded using cassette record-
ers with frequency response range from 0.5 to 100 Hz, and
then were digitized at a sampling frequency of 100-Hz. Each
hypnogram was scored by one of six human experts. The
resulting distribution of sleep stage labels in the data is as
shown in Table 1. We note that S1 is the least frequently
occurring stage.

Fig. 1 Flow diagram of preprocessing; model training, evaluation, selection; and analysis of internal representations

SN Computer Science (2021) 2:318 Page 5 of 19 318

SN Computer Science

As described in “Related Work”, for most of the work
reported in this paper, we retain a limited amount of Wake
data before and after sleep, removing Wake epochs prior
to 30 min before the first observed non-Wake sleep epoch
and those over 30 min after the end of sleep. In selected
experiments discussed in “Performance on Wake”, we con-
sider varying durations of this non-sleep data, to understand
how the amount of such data affects model performance.
To eliminate signal artifacts due to movement, we remove
movement epochs entirely; there are only 62 such epochs in
total, of which 60 occur during the sleep period.

When a human expert classifies or scores a given data
epoch, information from neighboring epochs is also consid-
ered [4]. Hence, data in the present work were preprocessed
into 5-epoch, or 150-s, samples; models were trained to clas-
sify the middle epoch as one of the five sleep stages, S1, S2,
S3, Wake, and REM.

Model Architecture

The model architectures considered in this paper use 1-D
convolutional layers stacked in stages separated by pooling
layers, as shown in Fig. 2.

Each convolutional layer computes an affine transforma-
tion on the activation vector of the preceding layer; each
such layer is followed by a regularization layer and an acti-
vation layer. Regularization layers are either batch normali-
zation or dropout layers. Activation layers are ReLU linear
rectifiers. At the deep end of the model, we add a dense layer
with softmax activation to output a probability distribution
over the five sleep stages. We use a single fully connected
layer, because experiments in our prior work [33, 40, 41]
suggest that a multi-layer fully connected structure does not
enhance performance significantly.

We considered several alternative model architectures
during model selection, described by the hyperparameters
shown in Table 2. Salient points concerning hyperparameter
options are described below. Details of the model selection
procedure are discussed in “Model Training, Selection, and
Evaluation”.

Comments on Hyperparameter Options

The number of filters (width) is assumed to double after
each stage, not exceeding 128 due to computational resource

constraints. Thus, the number of filters in each stage is deter-
mined by the number of filters in the first stage.

We consider several options for the number of convo-
lutional layers per stage: 6 layers in the first stage and 3
layers in other stages [33, 40, 41], a pattern that we denote

Table 1 Distribution of human expert-scored sleep stage labels in the
SleepEDF data

S1 S2 S3 Wake REM

6.63% 42.07% 13.48% 19.58% 18.24%

Fig. 2 Model architecture. The final model is constructed by select-
ing hyperparameter values by plurality among the outer folds of the
nested cross-validation procedure described in “Model Training,
Selection, and Evaluation”. Class values are Wake (W), sleep stages
S1, S2, S3, and REM (R)

Table 2 Hyperparameters and values considered in model selection
(inner folds of nested cross-validation)

C, P denote convolutional, pooling layers, respectively

Hyperparameters Values considered

No. of filters in first stage 8, 16
Padding for conv layers Yes, no
Stride of conv layers 1, 2, 4
Kernel sizes of conv layers 50, 100, 200, 400
Pooling sizes of pooling layers 2, 3, 5
Layer pattern in each stage 6C/P/3C/P, 3C/P, 1C/P
Batch norm or dropout BN, dropout
Dropout layer at final layer Yes, no
No. of conv layers [d − 3, d + 3] (see

“Model Architec-
ture”)

 SN Computer Science (2021) 2:318318 Page 6 of 19

SN Computer Science

6C/P/3C/P; 3 convolutional layers per stage (3C/P); 1 con-
volutional layer per stage (1C/P).

For the number of convolutional layers (depth), we first
calculate how the effective receptive field of the network
units varies as a function of depth [2, 24].

A unit’s effective receptive field is the portion of the input
window that affects that unit’s input, and thus its activa-
tion. From this information, the value, d, is extracted, such
that the receptive field of the last layer covers the entire
5-sleep-epoch input; then, we consider depths in the range
[d − 3, d + 3].

Model Training, Selection, and Evaluation

Below, we first describe the training setup for a given model,
and then the nested cross-validation procedure that performs
model selection and performance evaluation. Finally, we
describe the bootstrap sampling procedure that was used to
obtain confidence intervals for accuracy and other perfor-
mance metrics.

Training

For each model considered in the nested cross-validation
procedure described below in “Model Selection and Evalua-
tion”, we used stochastic gradient descent to minimize cross-
entropy loss at the softmax output, with mini-batches of size
180, adaptive learning rate with initial value of 0.01, training
time up to 300 epochs with early stopping threshold of 30
epochs. Models were built in Tensorflow [1] and Keras [9],
under NVIDIA CUDA, using NVIDIA K80/P100 GPUs.

Weights were initialized according to [18], which adapts
the “Xavier” approach of Glorot and Bengio [15] to the case
of ReLU activation functions. Weights entering layer l were
randomly sampled from a normal distribution with zero
mean and standard deviation

√
2

nl
 , where nl is the effective

fan-in, that is, the product of the number of input channels
and the number of weights per filter in layer l.

Model Selection and Evaluation

Nested 5 × 4 cross-validation was used to select hyperpa-
rameter values, to train models, and to estimate their out-
of-sample classification performance. An illustration of the
nested cross-validation procedure appears in Fig. 3, show-
ing the first (a) and second (b) of the five outer folds of the
procedure.

In each of the 5 outer cross-validation folds, 4 patients’
data were reserved for (outer) testing; the remaining 16
patients’ data were used for training and hyperparameter
selection. The inner level performed hyperparameter selec-
tion by dividing the 16 outer training patients’ data into an
inner training set of 10 patients’ data, an inner validation set
of 2 patients’ data, and an inner test set of 4 patients’ data.

For each fold of the inner loop, a greedy search of the
hyperparameter space was performed, sequentially optimiz-
ing test performance over one hyperparameter at a time, fix-
ing its value before adjusting the next hyperparameter; the
search order considered hyperparameters with the smallest
possible number of values first, to reduce the search space
as little as possible at each step.

Fig. 3 Nested cross-validation is used for hyperparameter selection
and for validation of performance on unseen data. We first randomly
divide data into five parts. (a) In the first outer fold, we keep one of
the five parts as a test set, and use the other four parts to find the best
hyperparameter values by 4-fold cross-validation in the inner folds;

a new model is trained with those hyperparameter values on the four
inner parts and evaluated on the test set. (b) In the second outer fold,
we keep another part (out of five) as a test set and repeat the process.
We do the same for the remaining three outer folds

SN Computer Science (2021) 2:318 Page 7 of 19 318

SN Computer Science

Once the four folds of the inner loop had been completed,
a model with the best-performing hyperparameter values
from among the four inner folds was then trained on the
16 outer training patients’ data, using 14 patients’ data for
training and 2 patients’ data for validation; this model’s per-
formance was then evaluated over the outer test set of 4
patients’ data reserved in the outer level. The entire process
was repeated for each of the five outer folds.

Final Model. After nested cross-validation was complete,
a single set of hyperparameter values was selected by plu-
rality among those of the five best-performing models from
the outer folds of the cross-validation procedure, and used
to train a final model over the full set of all 20 patients. This
final model is used throughout the experiments reported in
this paper. Cross-validated estimates of the performance
metrics for this final model were calculated by aggregating
the confusion matrices of the five models used in the outer
folds of the nested cross-validation procedure.

Boostrapped Performance Estimates

We used bootstrap sampling to compute confidence intervals
of radius one standard error for overall classification accu-
racy. For per-stage performance, precision, recall, and F1
score were used instead, as the substantial class imbalance in
the resulting per-stage binary classification tasks would yield
misleadingly high accuracy values. We generated bootstrap
samples by randomly selecting one of 20 patients, sampled
the selected patient’s data with replacement (without chang-
ing the total number of sleep epochs), and made class predic-
tions using the model from the outer training fold that the
patient was not in. The process was repeated 1000 times to
produce an aggregate confusion matrix over all bootstrap
samples.

Understanding Internal Feature Development

We aimed to understand the feature representation of the
sleep data that arises within our deep network (see “Model
Architecture”) as a result of training. Sleep stage specializa-
tion is an aspect of internal feature development that is of
particular interest; this term refers to the extent to which
individual processing units, or layers of units, respond dif-
ferently to input data epochs of different sleep stages.

We focused on approaches based on the objective quanti-
fication of the learned internal features via an analysis of the
activation vectors of the units and layers of the network (see
“Activation Vectors”). Visualization techniques were used
to provide insight into sleep stage specialization information
that is embedded in the activation vectors; thus, visualization
was not used as a competing standalone approach, but rather
as a means to extracting information that is rooted directly
in these quantitative measurements. Additional quantitative

analysis of the activation vectors was carried out using
Centered Kernel Alignment (CKA). We describe the com-
plementary visual and quantitative elements that enter into
describing internal feature development below.

Feature Development Visualization

We used t-distributed Stochastic Neighbor Embedding
(t-SNE) [48] to visualize the trained network’s internal
activation levels via a low-dimensional embedding that
preserves pairwise similarity under a Gaussian conditional
model. The t-SNE perplexity hyperparameter was set to 30.

Since it is possible, in principle, that the nonlinearity
inherent in t-SNE might distort the relationships among
instances of different classes, and, in particular, that it
might suggest greater or lesser class separation than actually
occurs in the space of predictive attributes, we also carried
out experiments in which we applied the linear technique of
principal components analysis (PCA) to the activation vec-
tors, which uses an orthogonal projection based on a trans-
formation that preserves lengths and angles.

Additionally, we tested both multidimensional scaling
(MDS) and UMAP [27] for visualization. Metric MDS was
used. UMAP hyperparameters were set as follows: n_neigh-
bors = 15, min_dist = 0.1. Sleep stage specialization of
internal units was studied at both the level of individual units
(filters), and of entire layers, using human sleep samples as
network inputs. At the unit level, we obtained a unit’s acti-
vation and directly applied t-SNE to embed the activation
into 2-dimensions. At the layer level, we first reduced the
dimensionality of the layer’s response by taking the maxi-
mum value of each unit’s activation along its time axis, and
then applied t-SNE to the resulting vector of time-aggre-
gated responses of all of the units in the layer. We explored
alternatives to the maximum for time-aggregation, using the
mean or median for pooling instead.

Feature Development Quantification

We applied Centered Kernel Alignment (CKA) [11] to
measure the quality of the network’s internal representations
of sleep data. We did this by computing the following two
measures: (1) Stage Specialization, a stage-specific measure
that gauges the association between the learned represen-
tations of internal units with each stage, is calculated by
applying CKA between an activation vector and logits of
each stage; and (2) Stage Differentiation, an all-stage meas-
ure that gauges internal units’ ability to distinguish among
the various classes, is computed by applying CKA between
an activation vector and one-hot encoded class labels. An
illustration is presented in Fig. 4.

We have found that the dimensionality of the convolu-
tional layer responses in shallow layers can be very large, so

 SN Computer Science (2021) 2:318318 Page 8 of 19

SN Computer Science

that direct application of CKA would exceed the available
computational resources. For example, the output of the first
layer of our network, as shown in Fig. 2, has shape (15,000,
16), which is 240,000 elements when vectorized. Therefore,
we performed dimensionality reduction on the activation
vectors before applying CKA by grouping selected elements
of the activation vectors along the time axis, taking their
maximum or mean values. This is equivalent to applying a
max pooling or averaging pooling layer to the activation vec-
tor with the stride equal to the kernel size. An appropriate
pooling size can be selected, so that applying CKA becomes
computationally feasible. In this work, for each activation
vector, we dynamically picked a pooling size, such that the
dimension-reduced vector is approximately a square matrix.

We tested whether using pooling before applying CKA
significantly changes the results of CKA, as follows. We
first selected two networks with identical architecture:
the final model and the best model selected in the second
outer fold of the nested cross-validation procedure (see
Table 3); we will subsequently refer to the latter model as
the outer2 model. The final model and the outer2 model
differ slightly due to differences in initial parameter val-
ues, and due to the use of slightly different data sets: the
final model was trained on the full data set, whereas the
training data set for the outer2 model did not include the
samples in the reserved outer2 fold. We applied CKA to
calculate the layer similarity of pairs of selected layers
whose activation vectors are small enough for CKA to be
computed without using pooling. We compared the CKA

layer similarity values without using pooling, with those
using max pooling prior to CKA, and with those using
average pooling prior to CKA.

To select between max pooling and average pooling, we
considered, as in [23, 37], the idea that for two networks
with the same architecture, the same layers in the two net-
works should be similar. A comparison was performed
using two models resulting from the model selection pro-
cedure, specifically, the best model from the outer2 fold
and the final model. The winning pooling approach was
then used in all subsequent CKA experiments.

Fig. 4 Quality of the network’s modeling of sleep is captured quan-
titatively as Stage Differentiation, a measure of classification ability
obtained by applying CKA between activation vectors and one-hot

encoded class labels; and as Stage Specialization, a stage-specific
measure of the ability to identify the given stage (S2 shown here),
obtained by applying CKA between activation vectors and class logits

Table 3 Best hyperparameter set for each outer fold. Each column
represents the best hyperparameter values for one outer fold of nested
cross-validation procedure

Hyperparam. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Initial filters 16 16 16 16 16
Padding Yes Yes Yes Yes No
Stride 1 1 1 1 1
Kernel size 100 100 100 100 100
Pooling size 5 3 5 3 3
Pattern 6C/P/3C/P 3C/P 3C/P 3C/P 3C/P
BN/dropout BN BN BN BN BN
Dropout final No No No 0.1 No
conv layers 13 13 10 13 13
Accuracy 83.44% 83.77% 85.32% 85.26% 85.04%

SN Computer Science (2021) 2:318 Page 9 of 19 318

SN Computer Science

Results

Model Selection

The best-performing set of hyperparameter values for each
outer fold of the nested cross-validation model selection
procedure (“Model Training, Selection, and Evaluation”)
is shown in Table 3. We found that the best hyperparam-
eters in different folds have many values in common. Pad-
ding provides better performance than no padding in all
folds but one; in fold 5, not using padding yields a small
margin in accuracy. Similarly, the 3C/P layer pattern wins
in all folds except fold 1, in which 6C/P/3C/P is slightly
better. No dropout after convolutional layers is best except
for fold 4, in which dropout of 0.1 has a slim advantage.
All folds select 13 convolutional layers as being best,
except for fold 3, which uses 10 layers. Only pooling size
differs more substantially among folds: in folds 2, 4, 5,
a pooling size of 3 is best, while a size of 5 is better in
folds 1, 3.

We constructed the final model by selecting hyperpa-
rameter values by plurality among the outer cross-vali-
dation folds. This yields a model with 13 convolutional
layers in the 3C/P pattern, with a filter size of 100 and a
stride of 1, regularization by batch normalization, and a

pooling size of 3. The final model was trained on the full
dataset, using 17 patients’ data for training and the other
3 patients’ data for validation prior to t-SNE visualization
of internal activations (“Internal Feature Development”).
The classification performance reported in “Model Perfor-
mance” is computed during model selection, as described
in “Model Training, Selection, and Evaluation”.

Model Performance

Table 4(a) shows the cumulative confusion matrix of the
five outer models on unseen patients. Overall accuracy is
84.57%. A bootstrap estimate of overall accuracy was also
computed, yielding the confidence interval 84.50 ± 0.13 %,
of radius one standard error around the bootstrapped mean
accuracy of 84.50%. The predictive accuracy of our model
comfortably exceeds published figures for human expert
inter-scorer agreement of 82.6% [38]. Overall performance
of our model also compares favorably with recent work over
the same data set, such as [29] (84.26% accuracy on single-
channel EEG data) and [36] (82.5% accuracy).

As mentioned in “Model Training, Selection, and Evalua-
tion”, per-stage accuracy values would be misleadingly high.
We therefore assessed per-stage performance using preci-
sion, recall, and F1 scores. Table 5 shows performance con-
fidence intervals for each class spanning one standard error

Table 4 Performance of models
trained on different numbers
of input channels: (a) two EEG
channels and one EOG channel,
(b) two EEG channels, and (c)
one EEG channel

Cumulative confusion matrices show precision, recall, and F1 scores. Each entry is the number of sleep
data epochs of the stage with that row label that the model classifies as the column label

S1 S2 S3 Wake R Recall F1 score

(a) Three channels (2 EEG + 1 EOG)
 S1 1287 647 17 501 352 45.90% 47.32%
 S2 595 15,609 679 253 663 87.70% 87.34%
 S3 3 652 5025 21 2 88.11% 87.78%
 Wake 495 199 15 7473 102 90.21% 89.17%
 R 255 837 10 229 6386 82.75% 83.90%
 Precision 48.84% 86.99% 87.45% 88.16% 85.09%

(b) Two EEG channels
 S1 1295 594 10 484 421 46.18% 45.49%
 S2 670 15,377 537 457 758 86.39% 87.24%
 S3 10 706 4897 79 11 85.87% 87.74%
 Wake 525 135 14 7377 233 89.05% 86.29%
 R 390 640 2 417 6268 81.22% 81.36%
 Precision 44.81% 88.11% 89.69% 83.70% 81.50%

(c) One EEG channel
 S1 1215 679 14 499 397 43.33% 44.61%
 S2 482 15,516 1103 148 550 87.17% 86.57%
 S3 10 656 4999 38 0 87.66% 83.10%
 Wake 522 148 81 7440 93 89.81% 90.09%
 R 414 1047 132 107 6017 77.97% 81.45%
 Precision 45.97% 85.98% 78.99% 90.38% 85.26%

 SN Computer Science (2021) 2:318318 Page 10 of 19

SN Computer Science

below and above the mean precision, recall, and F1 scores.
Mean values differ slightly between Table 4(a) and Table 5,
because bootstrapping was only used for the latter. Model
performance on sleep stages S2, S3, Wake, and REM is very
good. Performance is worst on the least frequent class, S1.

Dependence on the Number of Signal Channels

We trained two additional models: one that uses only the
two EEG channels (no EOG), and another that uses only
one EEG channel (Fpz-Cz, the best performing of the chan-
nels [33, 40, 41]). We did not redo hyperparameter selec-
tion, due to limited computational time. Overall accuracies
of these models are 83.23% and 83.17% , respectively, both of
which are still higher than human expert inter-scorer agree-
ment of 82.6% [38].

Tables 4 (b) and (c) show the cumulative confusion
matrices of the two models. Mean F1 values for the REM
stage drop slightly in the absence of EOG information, from
83.9% for the three-channel model to 81.4% or so for both
EEG-only models. This is not surprising, as eye movements
are a defining feature of REM. Mean F1 score on Wake is
likewise slightly lower for the two-channel model at 86.3%,
as compared with the three-channel model’s 89.2%. Notably,
the model based on a single EEG channel outperforms the
other two models on Wake, attaining a mean F1 value of
90.1% on that stage.

Performance on Wake

The performance on sleep stage Wake reported in this paper
greatly improves on our previous work [33, 40, 41] in preci-
sion, recall, and F1 score. The F1 score attained by the three-
channel model on sleep stage Wake has increased from 57%
to 89% (see Table 4(a)). One source of this improvement is
the greater number Wake epochs in the dataset. Whereas
our previous work included only mid-sleep awakenings in
the dataset, as in [46, 47], the present paper also includes
30 min of Wake epochs before and after sleep, as in [29, 45].
Huy Phan et al. [36] trained their models in both settings.

We wondered whether the improved performance on
Wake that results from including pre- and post-sleep data
is due to better generalization resulting from the greater
amount of Wake data available for training, or whether
perhaps the additional Wake epochs before and after sleep
are easier to classify than the mid-sleep Wake epochs. As
noted in “Dataset”, we removed all movement epochs;
hence, artifacts associated with such events are not respon-
sible for the observed performance improvement. Aiming
to understand this matter, we tested the models trained
with 30-min Wake data before and after sleep on the mid-
sleep data and found that F1 score on Wake is 65%, which
is only 1% higher than the models trained on the mid-
sleep epochs. This shows that including additional Wake
data before and after sleep does not improve generaliza-
tion nearly enough to account for the overall improvement
described in the preceding paragraph.

We retrained our models on the mid-sleep data only.
Due to computational limitations, we kept the original
hyperparameters. We tested the models on a sequence
of data sets, adding X minutes of Wake epochs before
and after sleep. See Fig. 5. At X = 0 (mid-sleep epochs
only), the F1 score on Wake is 64%. As X increases (more
pre- and post-sleep Wake epochs), Wake performance
improves, even though the additional data were not used in
training. This suggests that the additional Wake epochs are
different from Wake epochs during sleep, and are easier to
predict (consistent with [36]), accounting for much of the
performance improvement.

Table 5 Bootstrapped confidence intervals for performance of three-
channel (2 EEG + 1 EOG) model on each sleep stage, in format mean
± SE

Sleep stage Precision Recall F1 score

S1 49.64 ± 0.58% 45.49 ± 0.60% 44.11 ± 0.42%

S2 86.85 ± 0.22% 87.51 ± 0.24% 86.84 ± 0.16%

S3 86.75 ± 0.32% 88.23 ± 0.23% 86.90 ± 0.19%

Wake 88.48 ± 0.28% 90.18 ± 0.26% 88.70 ± 0.15%

R 85.22 ± 0.29% 83.72 ± 0.34% 83.69 ± 0.21%

Mean 79.39 ± 0.16% 79.03 ± 0.17% 78.05 ± 0.15%

Fig. 5 F1 performance on Wake stage by three-channel models
trained on mid-sleep data only. Means (blue) and mean ± SE inter-
vals (red) calculated from bootstrapped samples. Models make more
accurate predictions on Wake data before and after sleep, leading to
increased F1 as more pre- and post-sleep Wake data are included in
the test set. Overall level of Wake performance is lower here than in
Table 5 due to the use here of mid-sleep training data only

SN Computer Science (2021) 2:318 Page 11 of 19 318

SN Computer Science

Internal Feature Development

Feature Development Visualization

We used visualization to study the responses to human sleep
data of individual network filters and entire network layers.
As described in “Feature Development Visualization”, we
compared t-SNE visualization with PCA, MDS, and UMAP.

Visualization of whole-layer activations used pooling
over time for dimensionality reduction, as explained in “Fea-
ture Development Visualization”. We compared the results
obtained using the maximum, mean, and median as pooling
operators. Using the mean led to results that are qualitatively
similar to those obtained using the maximum; using the
median led to noticeably poorer results. We used the maxi-
mum as the pooling operator for the remaining experiments.

PCA and t-SNE produced qualitatively similar results in
terms of the degree of spatial separation that they suggest
between classes. As an example, Fig. 6 shows similar dif-
ferentiation among stages in the activation vectors associated
with an early layer of our network. This implies that the
inherent nonlinearity of t-SNE does not affect the result-
ing visual assessments of stage separation. MDS to some
extent, and both t-SNE and UMAP especially, were found
to provide better resolution than PCA for the more complex
activation patterns that tend to emerge in deeper network
layers. An example is shown in Fig. 7. Taking all of these
results into account, we selected t-SNE for use in the work
reported in this paper.

Figure 8 shows the t-SNE results for sample filters at
different depths within the network. Filters in early layers,

(a)–(c), respond similarly to data instances of different
stages, therefore providing poor differentiation among
stages. For middle layers, (d)–(f), we see some separation
among sleep stages in the t-SNE output. In deep layers,
(g)–(i), some filters are seen to separate instances of a par-
ticular stage from those of other stages.

We find that the t-SNE results are consistent with our
previous work [33], in which we examined sleep stage spe-
cialization of individual filters by stage-based activation
maximization for those filters [14, 26, 30, 39]: the t-SNE
visualization of a filter that activates maximally to a par-
ticular stage shows that the filter responds differently to the
instances of that stage than to instances of other stages, as
evidenced by spatial separation between the locations of the
instances in the t-SNE plot. For example, in Fig. 8, the filter
in (g) separates Wake instances (right) from other stages, the
filter in (h) separates S2 instances (left) from other stages,
and the filter in (i) separates S3 instances (top) from other
stages; in each case, the stage that has been singled out is the
one that most often maximizes the given filter’s activation.

Furthermore, t-SNE gives us additional information
about a filter’s capabilities than does activation amplitude
alone. For example, the t-SNE visualization in Fig. 9c shows
that the filter in question differentiates among several sleep
stages quite well, while activation maximization only identi-
fies one of these stages. We are not arguing that activation
visualization using t-SNE (or UMAP) is superior in absolute
terms to activation maximization [14, 26, 30] or other tech-
niques that aim to assign credit to particular aspects of the
input based on activation [3, 39, 44], but rather that it more
directly addresses the specific issue of stage differentiation.

Fig. 6 Sample visualizations of whole-layer activation vectors in
a shallow layer of the three-channel model using (a) t-SNE and (b)
PCA. Stage labels coded by color. Axes correspond to the embedding
coordinates, which are dependent on the visualization technique in

each case. Inputs to the models are random samples of 15% of data
from each of the 20 patients. The two techniques suggest similar
degrees of separation among stages in the given layer

 SN Computer Science (2021) 2:318318 Page 12 of 19

SN Computer Science

Activation maximization and related techniques are valuable
tools in identifying input signal characteristics most closely
associated with particular network units, and can provide
information that complements both activation visualization
and quantitative techniques such as CKA that constitute the
focus of this paper.

We also applied t-SNE to the responses of all units within
a given layer. Since the dimensionality of the responses of
the whole layer can be very large, we first reduced dimen-
sionality by taking the time-maximum of the response of
each unit in the layer, before applying t-SNE to visualize
the layer activations. Figure 10 shows the embedded activa-
tion plots for different layers. Fig. 10a Shows that the very
first layer can differentiate between stages (Wake, REM)

and stages (S2, S3). Fig. 10b Shows a mid-depth layer that
provides improved separation among sleep stages. Fig. 10c
Shows a deep layer that differentiates all stages well.

EOG‑Dependence of Wake and REM Performance

The t-SNE visualization of (Fig. 10a) suggests that very
early (shallow) layers of our model are able to differentiate
the pair of stages (Wake, REM) from the pair of stages (S2,
S3). It is possible, in principle, that the early layers rely on
eye movement information in the EOG channel to make this
differentiation, as eye movements are more likely to occur
in the Wake and REM stages. To investigate this possibility,
we apply t-SNE to the responses of internal units of the first

Fig. 7 Sample visualizations of whole-layer activation vectors in a
deep layer of the three-channel model using (a) t-SNE, (b) PCA, (c)
MDS, and (d) UMAP. Stage labels coded by color. Inputs to the mod-

els are random samples of 15% of data from each of the 20 patients.
t-SNE, UMAP, and MDS show a more noticeable separation among
stages than PCA does in the given layer

SN Computer Science (2021) 2:318 Page 13 of 19 318

SN Computer Science

layer for each of two networks trained, respectively, on two
EEG channels and one EEG channel only (no EOG channel),
as described in “Dependence on the Number of Signal Chan-
nels”. Figure 11b shows that the model trained on two EEG
channels only can still differentiate stages (Wake, REM)
from stages (S2, S3) in the very early layers; (c) shows that
the model trained on a single EEG channel can still dif-
ferentiate REM stage instances from those of other stages,
though Wake is no longer well separated from other stages,
in contrast with the model that uses both EEG channels. Our
results suggest that the EEG-only networks begin to develop
the ability to identify REM sleep very early, despite their not
having access to the EOG channel.

Feature Development Quantification

We first tested the relative change that occurred in the CKA
values as a result of either max-pooling or average-pooling
dimensionality reduction as described in “Feature Devel-
opment Quantification”. In all cases, the average pairwise
absolute difference between the CKA values obtained with-
out prior pooling of the data and those obtained after pooling
was less than 0.015, which is much smaller than the range of
variation of the CKA values overall, which varied from 0.76
to 0.96. The average percentage difference is less than 1.7%.

Next, we selected between max-pooling and aver-
age-pooling approaches by comparing the CKA values

Fig. 8 Embedded t-SNE unit responses for the three-channel model.
Inputs to the model are stratified samples of 15% of data from each of
the 20 patients. Left column shows unit responses in shallow layers,

middle column shows unit responses in middle layers, and right col-
umn shows unit responses in deep layers. The results demonstrate an
improvement in stage differentiation with increasing depth

 SN Computer Science (2021) 2:318318 Page 14 of 19

SN Computer Science

obtained after each of these pooling types. CKA was used
to compare layers at equal depths in the final model and
the best model from the outer2 fold of the nested cross-
validation model selection procedure described in “Model
Training, Selection, and Evaluation”.

Figure 12 shows the CKA similarity results of the two
networks, using either max pooling prior to CKA (left) or
average pooling prior to CKA (right). The results suggest
that using max pooling is preferable to using average pool-
ing, as the heat map on the left in Fig. 12, corresponding

Fig. 9 t-SNE embeddings of units in deep layers of the three-channel
model that activate strongly to a particular sleep stage (respectively,
REM, S3, REM), showing these units’ ability to also differentiate

among multiple stages. Model inputs are stratified samples of 15% of
data from each of the 20 patients

Fig. 10 Embedded layer responses in the three-channel model using t-SNE. The inputs to the final model are stratified samples of 15% of data
from each of the 20 patients. The results show the improvement in the network’s class differentiation ability with increasing depth

Fig. 11 t-SNE layer responses in models trained on (a) three channels
(2 EEGs + 1 EOG), (b) two EEG channels, and (c) one EEG (Fpz-
Cz) channel. Model inputs are stratified samples of 15% of data from

each of the 20 patients. The results show that separation of (Wake,
REM) from (S2,S3) in shallow layers relies mainly not on EOG, but
on both EEG channels

SN Computer Science (2021) 2:318 Page 15 of 19 318

SN Computer Science

to max pooling, shows higher similarity along the main
diagonal than does the heat map on the right, which corre-
sponds to average pooling. Based on this result, we selected
max pooling for dimensionality reduction prior to CKA
computation.

At the individual filter level, we used CKA between a
filter’s response to samples of human sleep signals and logits
of each sleep stage to measure the filter’s sleep stage special-
ization. Table 6 shows the resulting CKA quantification of
filters’ stage specialization in different layers of the network,
along with references to their corresponding t-SNE plots.
The results show a low level of stage specialization in early
network layers, and a higher level of specialization in deeper

layers. The results are consistent with the visual embedded
response using t-SNE. For example, Filter 38 in Layer 13
has a CKA specialization value of 0.6321 in sleep stage S2,
the highest among all of the stages, and the corresponding
t-SNE plot in Figure 8h similarly suggests a separation of
stage S2 instances (left) from the other stages.

At the whole-layer level, we measured various layers’ abil-
ity to identify individual stages via our stage specialization
measure, using max pooling over time to reduce dimensional-
ity of the layer activation vectors before applying CKA. Fig-
ure 13a shows that the ability of the final model to identify
individual stages improves with increasing depth; the “all
stages” line shows that the ability to differentiate among stages,

Fig. 12 Comparison of dimensionality reduction by max pooling
(left) and average pooling (right) prior to layerwise CKA similarity
measurement between slightly different initializations and training
data samples for the same network architecture. Inputs to the mod-

els are stratified samples of 15% of data from each of the 20 patients.
Max pooling shows stronger diagonal dominance, making it prefer-
able to average pooling

Table 6 CKA stage specialization values for filters shown in Figs. 8
and 9. Corresponding filter identity and t-SNE figure number indi-
cated at left end of each row. Increased occurrence of larger CKA
values in second and third three-row groups from top connotes an
increase in stage specialization with layer depth. Largest value in each

row matches a stage that is visually well separated from others in the
corresponding t-SNE plot. See text. Results show that CKA yields a
quantitative measure of stage specialization that validates t-SNE visu-
alization

Layer Filter Corresponding Stage Specialization

t-SNE plot S1 S2 S3 Wake REM

1 15 8(a) 0.0405 0.0184 0.2726 0.0268 0.1077
1 4 8(b) 0.0025 0.1799 0.0015 0.3416 0.0056
1 13 8(c) 0.0064 0.1645 0.0158 0.3156 0.0156
8 48 8(d) 0.0047 0.1969 0.0039 0.5879 0.0169
9 32 8(e) 0.0290 0.0223 0.5673 0.1847 0.0901
9 63 8(f) 0.0198 0.2084 0.0514 0.2470 0.0016
13 92 8(g) 0.0053 0.1068 0.0510 0.7133 0.0499
13 38 8(h) 0.0070 0.6321 0.0939 0.1519 0.1037
13 61 8(i) 0.0018 0.1270 0.5529 0.0009 0.0296
12 26 9(a) 0.0013 0.0245 0.1152 0.1293 0.6588
13 52 9(b) 0.0140 0.0472 0.7479 0.0513 0.0695
13 17 9(c) 0.0024 0.0303 0.0989 0.1122 0.6786

 SN Computer Science (2021) 2:318318 Page 16 of 19

SN Computer Science

and hence make a correct class prediction, also increases with
depth. We verified the results using other models with the
same architecture as the final model. The results are shown
in Fig. 13b–d. Despite slight variations in the detailed growth
patterns among the individual figures, all of the models show
the same trend in the increase in class specialization and class
differentiation with layer depth.

Discussion

The convolutional neural network architecture developed
in this paper attains an overall classification accuracy of
84.50% ± 0.13% , which is comparable to that of recent
published results over the same data set, such as [29]

Fig. 13 CKA quantifies the improvement in stage specialization
(individual stage labels in figures) and stage differentiation (“All
Stages”) with layer depth. Models trained on three-channel data. The
notation “Outeri - innerj” refers to the model resulting from the jth
inner fold of the ith outer fold of the nested cross-validation proce-

dure. Precise results differ slightly among networks with the same
architecture (different parameter initializations and training data sam-
ples), but show a very similar overall growth trend for every one of
the sleep stages

SN Computer Science (2021) 2:318 Page 17 of 19 318

SN Computer Science

(84.26% accuracy on single-channel EEG data) and [36]
(82.5% accuracy). Unsurprisingly, we see in Table 4(a)
that predictive performance is weakest on stage S1, which
is under-represented in the data (Table 1) and has low
inter-scorer reliability among human experts [35]. We
used oversampling of the S1 data instances in an attempt
to improve performance on this stage. The results show
only a minimal improvement in the F1 score of sleep stage
S1; furthermore, a deterioration in predictive performance
on other stages occurs, with a consequent decrease in the
classification accuracy of the model. Similar results using
oversampling were reported by [42], which used a differ-
ent dataset.

As observed in Table 4, the one-channel model (c)
slightly outperforms the other two models (a), (b) on Wake
data, as measured by F1 score, for example. We hypoth-
esize that this may be a matter of sample complexity: mod-
els that use a greater number of input channels have cor-
respondingly larger numbers of parameters, and therefore
(e.g., [13]) can be expected to require more data points to
attain a comparable level of generalization performance
relative to their asymptotic (large sample) performance
limit, as compared with the single-channel model. If this
hypothesis is correct, one expects that the three-channel
model will perform best on a larger data set. We have not
yet attempted experiments on a larger dataset to verify
this prediction.

Taken collectively, our work and that of other groups
(e.g., [29] and [36]) shows that the state of the art in auto-
mated sleep stage scoring now matches or exceeds human
expert performance; for comparison, mean human expert
inter-scorer agreement has been reported to be 82.6% [38].
We therefore focused our attention in this paper to studying
the internal representations learned by high-performing deep
learning models, which are known to be highly difficult to
interpret.

Our approach combines visualization of activation vec-
tors using t-SNE with quantification of stage differentia-
tion using CKA after pooling. We found this combination
to be effective. For example, it allows us to establish a
near-monotonic improvement in sleep stage specialization
with layer depth within our network, with partial stage dif-
ferentiation even in shallow layers. We found, further, that
CKA can be useful for validating the visual information
provided by t-SNE. For example, at first, the embedded
response of the filter in Fig. 8f gave us the impression that
the filter specializes in sleep stage Wake, but the CKA
value shows a low level of specialization. We revisited the
t-SNE plot, and found that we had visually misjudged the
filter’s degree of specialization, due to the order in which
instances of the various stages had been plotted: instances
of sleep stage Wake had been plotted last, overlaying them
on other instances in a way that suggested a higher degree

of separation of Wake from the other stages than was actu-
ally present in the two-dimensional projection.

Conclusions

We have developed a deep convolutional neural network
for sleep stage classification that attains an overall clas-
sification accuracy of 84.50 ± 0.13 % over three-channel
(two EEG and one EOG) polysomnographic data, which
is better than human expert inter-scorer agreement [38].
Single-channel performance is only slightly lower, and
is competitive with contemporary results over the same
dataset [29, 36].

Our prior work [33, 40, 41] used mid-sleep data only.
In the present work, we used 30 additional minutes of pre-
sleep and post-sleep Wake data to better align our evalu-
ation approach with related work. We found that Wake
epochs before and after sleep have only a minor impact on
mid-sleep generalization, but that they are easier to predict
than mid-sleep Wake epochs.

Our main focus was on the interpretation of the internal
representations that develop within our deep network dur-
ing training. We explored these representations through
a combination of visual and quantitative means. Low-
dimensional t-SNE plots of the activation vectors of dif-
ferent units and layers of the network provided insight into
the degree of stage differentiation that arises across the
network. The visual information was complemented by
applying CKA to different measurements on the activation
vectors, yielding quantitative measures of differentiation
among stages and of specialization in particular stages.

We proposed the use of pooling over time to make the
CKA computations feasible by reducing the dimensional-
ity of the activation vector data. Our approach enabled
us to establish a gradual increase in stage specialization
and stage differentiation ability with increasing layer depth
within the network, and to reveal that partial stage differ-
entiation occurs even in shallow layers.

Many methods developed for interpreting and under-
standing deep learning focus on activation maximiza-
tion [14, 26, 30] or on input credit assignment based on
maximum impact on activation [3, 39, 44]. Our results in
this paper suggest that the use of embedding techniques
such as t-SNE could be helpful in providing further insight
into the internal representations in deep networks. Our
results further suggest that the visual inspection of such
low-dimensional data embeddings can be validated and
enhanced by using Centered Kernel Alignment (CKA) to
provide objective quantitative descriptions of the develop-
ment of internal feature representations during learning.

 SN Computer Science (2021) 2:318318 Page 18 of 19

SN Computer Science

Future Work

Possible avenues for future work include investigating the
use of CKA with nonlinear kernels, the application of our
proposed techniques to alternative network types such as
recurrent neural networks, and the simultaneous and com-
plementary use of CKA-based quantification and activa-
tion maximization approaches. Our work in progress [32]
involves the latter direction.

Acknowledgements The authors thank the anonymous reviewers for
their helpful comments.

Availability of data and materials Publicly available.

Code availability Available upon email request.

Declarations

Conflict of interest Sarun Paisarnsrisomsuk declares that he has no
conflict of interest. Carolina Ruiz declares that she has no conflict of
interest. Sergio A. Alvarez declares that he has no conflict of interest.

 Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C,
Corrado GS, Davis A, Dean J, Devin M, et al. Tensorflow: large-
scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv: 1603. 04467 (2016).

 2. Araujo A, Norris W, Sim J. Computing receptive fields of con-
volutional neural networks. Distill. https:// doi. org/ 10. 23915/
disti ll. 00021. https:// disti ll. pub/ 2019/ compu ting- recep tive-
fields (2019).

 3. Bach S, Binder A, Montavon G, Klauschen F, Müller KR,
Samek W. On pixel-wise explanations for non-linear classi-
fier decisions by layer-wise relevance propagation. PLoS One.
2015;10(7):E0130140.

 4. Berry RB, Brooks R, Gamaldo CE, Harding SM, Marcus C,
Vaughn BV, et al. The AASM manual for the scoring of sleep
and associated events. Rules, Terminology and Technical Speci-
fications, Darien, Illinois, American Academy of Sleep Medi-
cine, vol. 176; 2012.

 5. Biswal S, Sun H, Goparaju B, Westover MB, Sun J, Bianchi
MT. Expert-level sleep scoring with deep neural networks. J
Am Med Inform Assoc. 2018;25(12):1643–50.

 6. Carskadon MA, Dement WC. Normal human sleep: an over-
view. In: Kryger MH, Roth T, Dement WC, editors. Principles
and practice of sleep medicine. 6th ed. Amsterdam: Elsevier;
2016. p. 15–24.

 7. Chambon S, Galtier MN, Arnal PJ, Wainrib G, Gramfort A. A
deep learning architecture for temporal sleep stage classifica-
tion using multivariate and multimodal time series. IEEE Trans
Neural Syst Rehabil Eng. 2018;26(4):758–69.

 8. Chen K, Zhang C, Ma J, Wang G, Zhang J. Sleep staging from
single-channel EEG with multi-scale feature and contextual
information. Sleep and breathing, p. 1–9 (2019).

 9. Chollet F, et al. Keras (2015)
 10. Colten HR, Altevog BM, editors. Sleep disorders and sleep

deprivation: an unmet public health problem, vol. 4. National
Academies Press, Washington (2006). https:// www. ncbi. nlm.
nih. gov/ books/ NBK19 958/.

 11. Cortes C, Mohri M, Rostamizadeh A. Algorithms for learn-
ing kernels based on centered alignment. J Mach Learn Res.
2012;13:795–828.

 12. Cristianini N, Kandola J, Elisseeff A, Shawe-Taylor J. On kernel
target alignment. In: Innovations in machine learning. Springer,
p. 205–56; 2006.

 13. Du SS, Wang Y, Zhai X, Balakrishnan S, Salakhutdinov R, Singh
A. How many samples are needed to estimate a convolutional neu-
ral network? In: Proceedings of the 32nd international conference
on neural information processing systems, NIPS’18, p. 371–81.
Curran Associates Inc., Red Hook; 2018.

 14. Erhan D, Bengio Y, Courville A, Vincent P. Visualizing higher-
layer features of a deep network. In: ICML 2009 workshop on
learning feature hierarchies.

 15. Glorot X, Bengio Y. Understanding the difficulty of training deep
feedforward neural networks. In: Teh YW, Titterington DM, edi-
tors. Proceedings of the thirteenth international conference on
artificial intelligence and statistics, AISTATS 2010, Chia Laguna
Resort, Sardinia, Italy, May 13–15, 2010, JMLR Proceedings,
vol. 9, p. 249–256. JMLR.org; 2010. http:// proce edings. mlr. press/
v9/ gloro t10a. html.

 16. Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark
R, Mietus J, Moody G, Peng C, Stanley H. Physiobank, physi-
otoolkit, and physionet. Circulation. 1997;101(23).

 17. Grandner MA. Sleep, health, and society. Sleep Med Clin.
2017;12(1):1–22. https:// doi. org/ 10. 1016/j. jsmc. 2016. 10. 012.

 18. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: sur-
passing human-level performance on imagenet classification. In:
Proc. IEEE Intl. Conf. on Computer Vision, p. 1026–1034; 2015.

 19. Humayun AI, Sushmit AS, Hasan T, Bhuiyan MIH. End-to-end
sleep staging with raw single channel EEG using deep residual
convnets. In: 2019 IEEE EMBS Intl. Conf. Biomedical and Health
Informatics (BHI), p. 1–5. IEEE; 2019.

 20. Jiang D, Lu Y, Yu M, Yuanyuan W. Robust sleep stage clas-
sification with single-channel EEG signals using multimodal
decomposition and hmm-based refinement. Expert Syst Appl.
2019;121:188–203.

 21. Kemp B, Zwinderman AH, Tuk B, Kamphuisen HAC, Oberye
JJL. Analysis of a sleep-dependent neuronal feedback loop: the
slow-wave microcontinuity of the EEG. IEEE Trans Biomed Eng.
2000;47(9):1185–94. https:// doi. org/ 10. 1109/ 10. 867928.

 22. Korkalainen H, Aakko J, Nikkonen S, Kainulainen S, Leino A,
Duce B, Afara IO, Myllymaa S, Toyras J, Leppänen T. Accurate
deep learning-based sleep staging in a clinical population with
suspected obstructive sleep apnea. IEEE J Biomed Health Inform;
2019.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1603.04467
https://doi.org/10.23915/distill.00021
https://doi.org/10.23915/distill.00021
https://distill.pub/2019/computing-receptive-fields
https://distill.pub/2019/computing-receptive-fields
https://www.ncbi.nlm.nih.gov/books/NBK19958/
https://www.ncbi.nlm.nih.gov/books/NBK19958/
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1016/j.jsmc.2016.10.012
https://doi.org/10.1109/10.867928

SN Computer Science (2021) 2:318 Page 19 of 19 318

SN Computer Science

 23. Kornblith S, Norouzi M, Lee H, Hinton G. Similarity of neural
network representations revisited. arXiv preprint arXiv: 1905.
00414 (2019).

 24. Le H, Borji A. What are the receptive, effective receptive, and
projective fields of neurons in convolutional neural networks?
CoRR. arXiv: 1705. 07049 (2017).

 25. Liao Y, Zhang M, Wang Z, Xie X. Design and FPGA implementa-
tion of an high efficient XGBoost based sleep staging algorithm
using single channel EEG. In: Intl. Conf. on Cognitive Systems
and Signal Processing, p. 294–303. Springer; 2018.

 26. Mahendran A, Vedaldi A. Understanding deep image represen-
tations by inverting them. In: Proceedings of IEEE conference
computer vision and pattern recognition, p. 5188–5196; 2015.

 27. McInnes L, Healy J, Saul N, Großberger L. UMAP: uniform
manifold approximation and projection. J Open Source Soft.
2018;3(29):861. https:// doi. org/ 10. 21105/ joss. 00861.

 28. Mourtazaev M, Kemp B, Zwinderman A, Kamphuisen H. Age and
gender affect different characteristics of slow waves in the sleep
eeg. Sleep. 1995;18(7):557–64.

 29. Mousavi S, Afghah F, Acharya UR. SleepEEGNet: automated
sleep stage scoring with sequence to sequence deep learning
approach. PLoS One. 2019;14(5):e0216456.

 30. Nguyen A, Clune J, Bengio Y, Dosovitskiy A, Yosinski J. Plug
and play generative networks: conditional iterative generation of
images in latent space. In: Proceedings of IEEE conference on
computer vision and pattern recognition, p. 4467–4477; 2017.

 31. Paisarnsrisomsuk S, Ruiz C, Alvarez S. Improved deep learning
classification of human sleep stages. In: 2020 IEEE 33rd interna-
tional symposium on computer-based medical systems (CBMS),
p. 338–343. https:// doi. org/ 10. 1109/ CBMS4 9503. 2020. 00070
(2020).

 32. Paisarnsrisomsuk S, Ruiz C, Alvarez S. Interpretable deep learn-
ing for predictive modeling of human sleep (2021) (in progress).

 33. Paisarnsrisomsuk S, Sokolovsky M, Guerrero F, Ruiz C, Alva-
rez SA. Deep sleep: convolutional neural networks for predictive
modeling of human sleep time-signals. ACM KDD2018 Deep
Learning Day; 2018.

 34. Patanaik A, Ong JL, Gooley JJ, Ancoli-Israel S, Chee MW. An
end-to-end framework for real-time automatic sleep stage clas-
sification. Sleep. 2018;41(5):zsy041.

 35. Penzel T, Zhang X, Fietze I. Inter-scorer reliability between sleep
centers can teach us what to improve in the scoring rules. J Clin
Sleep Med. 2013;9(1):89–91.

 36. Phan H, Andreotti F, Cooray N, Chén OY, De Vos M. Automatic
sleep stage classification using single-channel EEG: learning
sequential features with attention-based recurrent neural networks.
In: 2018 40th international conference of IEEE the Engineering
in Medicine and Biology Society (EMBC), p. 1452–1455. IEEE;
2018.

 37. Raghu M, Gilmer J, Yosinski J, Sohl-Dickstein J. Svcca: Singular
vector canonical correlation analysis for deep learning dynamics
and interpretability. In: Advances in neural information processing
systems, p. 6076–6085; 2017.

 38. Rosenberg RS, Van Hout S. The American Academy of Sleep
Medicine inter-scorer reliability program: sleep stage scoring. J
Clin Sleep Med. 2013;9(01):81–7.

 39. Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional
networks: visualising image classification models and saliency
maps. arXiv preprint arXiv: 1312. 6034 (2013).

 40. Sokolovsky M, Guerrero F, Paisarnsrisomsuk S, Ruiz C, Alvarez
S. Deep learning for automated feature discovery and classifica-
tion of sleep stages. IEEE/ACM Trans Comput Biol Bioinform;
2019. https:// doi. org/ 10. 1109/ TCBB. 2019. 29129 55.

 41. Sokolovsky M, Guerrero F, Paisarnsrisomsuk S, Ruiz C, Alva-
rez SA. Human expert-level automated sleep stage prediction
and feature discovery by deep convolutional neural networks. In:
Proceedings of 17th international workshop on data mining in
bioinformatics (BIOKDD), in conjunction with KDD2018; 2018.

 42. Sors A, Bonnet S, Mirek S, Vercueil L, Payen JF. A convolutional
neural network for sleep stage scoring from raw single-channel
EEG. Biomed Signal Process Control. 2018;42:107–14.

 43. Stephansen JB, Olesen AN, Olsen M, Ambati A, Leary EB, Moore
HE, Carrillo O, Lin L, Han F, Yan H, et al. Neural network analy-
sis of sleep stages enables efficient diagnosis of narcolepsy. Nat
Commun. 2018;9(1):1–15.

 44. Sung A. Ranking importance of input parameters of neural net-
works. Expert Syst Appl. 1998;15(3–4):405–11.

 45. Supratak A, Dong H, Wu C, Guo Y. DeepSleepNet: a model for
automatic sleep stage scoring based on raw single-channel EEG.
IEEE Trans Neural Syst Rehabil Eng. 2017;25(11):1998–2008.

 46. Tsinalis O, Matthews PM, Guo Y. Automatic sleep stage scoring
using time-frequency analysis and stacked sparse autoencoders.
Ann Biomed Eng. 2016;44(5):1587–97.

 47. Tsinalis O, Matthews PM, Guo Y, Zafeiriou S. Automatic sleep
stage scoring with single-channel EEG using convolutional neural
networks. arXiv preprint arXiv: 1610. 01683 (2016).

 48. Van der Maaten L, Hinton G. Visualizing data using t-SNE. J
Mach Learn Res. 2008;9.

 49. Wang L, Hu L, Gu J, Hu Z, Wu Y, He K, Hopcroft J. Towards
understanding learning representations: to what extent do different
neural networks learn the same representation. In: Advances in
neural information processing systems, p. 9584–9593; 2018.

 50. Younes M, Raneri J, Hanly P. Staging sleep in polysomnograms:
analysis of inter-scorer variability, p. 885–894; 2016. https:// doi.
org/ 10. 5664/ jcsm. 5894.

 51. Zeiler MD, Fergus R. Visualizing and understanding convolu-
tional networks. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T,
editors. Computer vision—ECCV 2014. Cham: Springer Inter-
national Publishing; 2014. p. 818–33.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1905.00414
http://arxiv.org/abs/1905.00414
http://arxiv.org/abs/1705.07049
https://doi.org/10.21105/joss.00861
https://doi.org/10.1109/CBMS49503.2020.00070
http://arxiv.org/abs/1312.6034
https://doi.org/10.1109/TCBB.2019.2912955
http://arxiv.org/abs/1610.01683
https://doi.org/10.5664/jcsm.5894
https://doi.org/10.5664/jcsm.5894

	Capturing the Development of Internal Representations in a High-Performing Deep Network for Sleep Stage Classification
	Abstract
	Introduction
	Related Work
	Contributions

	Background
	Human Sleep
	Activation Vectors
	Kernel Alignment

	Methodology
	Dataset
	Model Architecture
	Comments on Hyperparameter Options

	Model Training, Selection, and Evaluation
	Training
	Model Selection and Evaluation
	Boostrapped Performance Estimates

	Understanding Internal Feature Development
	Feature Development Visualization
	Feature Development Quantification

	Results
	Model Selection
	Model Performance
	Dependence on the Number of Signal Channels
	Performance on Wake
	Internal Feature Development
	Feature Development Visualization
	EOG-Dependence of Wake and REM Performance
	Feature Development Quantification

	Discussion
	Conclusions
	Future Work

	Acknowledgements
	References

