Skip to main content
Log in

Comparison of Neuromotor and Progressive Resistance Exercise Training to Improve Mobility and Fitness in Community-Dwelling Older Women

  • Original article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Purpose

Neuromotor exercise, which stimulates motor fitness components (balance, agility, coordination), has been less investigated than other forms of exercise such as resistance or aerobic training to counteract the age-related impairment in mobility. The aim of the study was to verify whether neuromotor exercise was as effective as resistance training in improving mobility and related fitness components in healthy older women.

Methods

Thirty-five women (mean age 69.6 ± 3.2 years) were assigned to a neuromotor (NMT) or a progressive resistance training (PRT) group, both exercising 1 h, twice weekly for 12 weeks. The NMT group exercised static and dynamic balance, agility, speed, reaction time and coordination, while the PRT performed prevalently machine based, strengthening exercises. All participants were tested before and after the intervention for walking speed under different conditions, chair rise time, cardiorespiratory fitness, muscular strength and power. A 2 × 2 MANOVA and subsequent ANOVAs were performed to ascertain the effects of the two trainings.

Results

Similar improvements were observed for mobility (P = 0.000, \(\eta_{p}^{2}=0.73\)) and for fitness (P = 0.000, \(\eta_{p}^{2}=0.96\)) in both groups.

Conclusions

The present results suggest that in healthy older women improvements in mobility may be obtained through both strength and neuromotor exercise. The present results contribute to further our knowledge on the effects of neuromotor exercise for older people and add relevant information on exercise interventions targeting mobility in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahmaidi S, Masse-Biron J, Adam B, Choquet D, Freville M, Libert JP, et al. Effects of interval training at the ventilatory threshold on clinical and cardiorespiratory responses in elderly humans. Eur J Appl Physiol. 1998;78(2):170–6.

    Article  CAS  Google Scholar 

  2. Bean JF, Vora A, Frontera WR. Benefits of exercise for community-dwelling older adults. Arch Phys Med Rehabil. 2004;85(Suppl 3):S31–42.

    Article  PubMed  Google Scholar 

  3. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1985;60(6):2020–7.

    Article  Google Scholar 

  4. Bergland A, Jørgensen L, Emaus N, Strand BH. Mobility as a predictor of all-cause mortality in older men and women: 11.8 year follow-up in the Tromsø study. BMC Health Serv Res. 2017;17(1):22. https://doi.org/10.1186/s12913-016-1950-0.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bouchard C, Shephard RJ. Physical activity, fitness and health: the model and the key concept. In: Bouchard C, Shephard RJ, Stephens T, editors. Phtsical activity, fitness and health; International proceedings and consensus statement. Champaign Il: Human Kinetics; 1994.

    Google Scholar 

  6. Brach JS, Van Swearingen JM. Interventions to improve walking in older adults. Curr Transl Geriatr Exp Gerontol Rep. 2013;2(4). https://doi.org/10.1007/s13670-013-0059-0.

  7. Brown CJ, Flood KL. Mobility limitation in the older patient: a clinical review. JAMA. 2013;310:1168–77.

    Article  CAS  PubMed  Google Scholar 

  8. Caiozzo VJ, Davis JA, Ellis JF, Azus JL, Vandagriff R, Prietto CA, et al. A comparison of gas exchange indices used to detect the anaerobic threshold. J Appl Physiol Respir Environ Exerc Physiol. 1982;53(5):1184–9.

    CAS  PubMed  Google Scholar 

  9. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions of health-related research. Public Health Rep. 1985;100:126–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Clark DJ, Manini TM, Fielding RA, Patten C. Neuromuscular determinants of maximum walking speed in well-functioning older adults. Exp Gerontol. 2013;48(3):358–63. https://doi.org/10.1016/j.exger.2013.01.010.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ditroilo M, Forte R, McKeown D, Boreham CAG, De Vito G. Intra- and inter-session reliability of vertical jump performance in healthy middle-aged and older men and women. J Sports Sci. 2011;29(15):1675–82. https://doi.org/10.1080/02640414.2011.614270.

    Article  PubMed  Google Scholar 

  12. EUROSTAT. Functional and activity limitations statistics. 2017. http://ec.europa.eu/eurostat/statistics-explained/index.php/Functional_and_activity_limitations_statistics. Accessed Sept 2018.

  13. Erdfelder E, Faul F, Buchner A. GPOWER: a general power analysis program. Behav Res Methods Instrum Comput. 1996;28:1–11.

    Article  Google Scholar 

  14. Ferrucci L, Bandinelli S, Benvenuti E, Di Iorio A, Macchi C, Harris TB, et al. Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J Am Geriatr Soc. 2000;48(12):1618–25.

    Article  CAS  PubMed  Google Scholar 

  15. Fiatarone-Singh M. The exercise prescription. In: Fiatarone-Singh MA, editor. Exercise, nutrition and the older woman. London: CRC Press; 2000. p. 37–104.

    Chapter  Google Scholar 

  16. Fitts PM, Posner MI. Human performance. Belmont, CA: Brooks/Cole; 1967.

    Google Scholar 

  17. Forte R, Boreham CAG, Costa Leite J, De Vito G, Brennan L, Gibney ER, et al. Enhancing cognitive functioning in the elderly: multicomponent vs. resistance training. Clin Interv Aging. 2013;8:19–27. https://doi.org/10.2147/CIA.S36514.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Forte R, Boreham CA, De Vito G, Ditroilo M, Pesce C. Measures of static postural control moderate the association of strength and power with functional dynamic balance. Aging Clin Exp Res. 2014;26(6):645–53. https://doi.org/10.1007/s40520-014-0216-0.

    Article  PubMed  Google Scholar 

  19. Forte R, Pesce C, Costa Leite J, De Vito G, Gibney ER, Tomporowski PD, et al. Executive function moderates the role of muscular fitness in determining functional mobility in older adults. Aging Clin Exp Res. 2013;25(3):291–8. https://doi.org/10.1007/s40520-013-0044-7.

    Article  PubMed  Google Scholar 

  20. Frontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross-sectional study of muscle strength and mass in 45- to 78-year-old men and women. J Appl Physiol. 1991;71(2):644–50.

    Article  CAS  PubMed  Google Scholar 

  21. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59. https://doi.org/10.1249/MSS.0b013e318213fefb.

    Article  PubMed  Google Scholar 

  22. Gomes M, Figueiredo D, Teixeira L, Poveda V, Paúl C, Santos-Silva A, et al. Physical inactivity among older adults across Europe based on the SHARE database. Age Ageing. 2017;46(1):71–7. https://doi.org/10.1093/ageing/afw165.

    Article  PubMed  Google Scholar 

  23. Greig CA, Young A, Skelton DA, Pippet E, Butler FM, Mahmud SM. Exercise studies with elderly volunteers. Age Ageing. 1994;23(3):185–9.

    Article  CAS  PubMed  Google Scholar 

  24. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. New Engl J Med. 1995;332(9):556–61.

    Article  CAS  PubMed  Google Scholar 

  25. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–94.

    Article  CAS  PubMed  Google Scholar 

  26. Hallai PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, Lancet Physical Activity Series Working Group. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–57. https://doi.org/10.1016/S0140-6736(12)60646-1.

    Article  Google Scholar 

  27. Hands B, Parker H, Larkin D, Cantell M, Rose E. Male and female differences in health benefits derived from physical activity: implications for exercise prescription. J Women’s Health Issues Care. 2016;5:4. https://doi.org/10.4172/2325-9795.1000238.

    Article  Google Scholar 

  28. Kemp GJ, Birrell F, Clegg PD, Cuthbertson DJ, De Vito G, van Dieën JH, et al. Developing a toolkit for the assessment and monitoring of musculoskeletal ageing. Age Ageing. 2018;47(suppl_4):iv1–19. https://doi.org/10.1093/ageing/afy143.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kwok TC, Lam KC, Wong PS, Chau WW, Yuen KS, Ting KT, et al. Effectiveness of coordination exercise in improving cognitive function in older adults: a prospective study. Clin Interv Aging. 2011;6:261–7. https://doi.org/10.2147/CIA.S19883.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee KY, Hui-Chan CW, Tsang WW. The effects of practicing sitting Tai Chi on balance control and eye–hand coordination in the older adults: a randomized controlled trial. Disabil Rehabil. 2015;37(9):790–4. https://doi.org/10.3109/09638288.2014.942003.

    Article  PubMed  Google Scholar 

  31. Lord SR, Castell S, Corcoran J, Dayhew J, Matters B, Shan A, et al. The effect of group exercise on physical functioning and falls in frail older people living in retirement villages: a randomized, controlled trial. J Am Geriatr Soc. 2003;51(12):1685–92.

    Article  PubMed  Google Scholar 

  32. McCarthy EK, Horvat MA, Holtsberg PA, Wisenbaker JM. Repeated chair stands as a measure of lower limb strength in sexagenarian women. J Gerontol Med Sci. 2004;59(11):1207–12.

    Article  Google Scholar 

  33. Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. J Aging Phys Act. 2015;23(2):314–22. https://doi.org/10.1123/japa.2013-0236.

    Article  PubMed  Google Scholar 

  34. Moreira NB, Gonçalves G, da Silva T, Zanardini FEH, Bento PCB. Multisensory exercise programme improves cognition and functionality in institutionalized older adults: a randomized control trial. Physiother Res Int. 2018;23(2):e1708. https://doi.org/10.1002/pri.1708.

    Article  PubMed  Google Scholar 

  35. Niemann C, Godde B, Voelcker-Rehage C. Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Front Aging Neurosci. 2014;6:170. https://doi.org/10.3389/fnagi.2014.00170.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010;34(5):721–33. https://doi.org/10.1016/j.neubiorev.2009.10.005.

    Article  CAS  PubMed  Google Scholar 

  37. Serra-Prat M, Sist X, Domenich R, Jurado L, Saiz A, Roces A, et al. Effectiveness of an intervention to prevent frailty in pre-frail community-dwelling older people consulting in primary care: a randomised controlled trial. Age Ageing. 2017;46(3):401–7. https://doi.org/10.1093/ageing/afw242.

    Article  CAS  PubMed  Google Scholar 

  38. Shephard R. Maximal oxygen intake and independence in old age. Br J Sports Med. 2008;43(5):342–6. https://doi.org/10.1136/bjsm.2007.044800.

    Article  PubMed  Google Scholar 

  39. Sheppard JM, Young WB. Agility literature review: classifications, training and testing. J Sports Sci. 2006;24(9):919–32.

    Article  CAS  PubMed  Google Scholar 

  40. Shumway-Cook A, Patla AE, Stewart A, Ferrucci L, Ciol MA, Guralnik JM. Environmental demands associated with community mobility in older adults with and without mobility disabilities. Phys Ther. 2002;82(7):670–81.

    PubMed  Google Scholar 

  41. Shumway-Cook A, Woollacott MH. Motor Learning and recovery of function. In: Motor control: translating research into clinical practice. 3rd ed. Philadelphia: Lippincot Williams & Wilkins; 2007. p. 83–99.

    Google Scholar 

  42. Van Swearingen JM, Studenski SA. Aging, motor skill, and the energy cost of walking: implications for the prevention and treatment of mobility decline in older persons. J Gerontol A Biol Sci Med Sci. 2014;69(11):1429–36. https://doi.org/10.1093/gerona/glu153.

    Article  Google Scholar 

  43. Thomas SG, Cunningham DA, Thompson J, Rechnitzer PA. Exercise training and “ventilation threshold” in elderly. J Appl Physiol (1985). 1985;59(5):1472–6.

    Article  CAS  Google Scholar 

  44. Trombetti A, Hars M, Herrmann FR, Kressig RW, Ferrari S, Rizzoli R. Effect of music-based multitask training on gait, balance, and fall risk in elderly people: a randomized controlled trial. Arch Intern Med. 2011;171(6):525–33. https://doi.org/10.1001/archinternmed.2010.446.

    Article  PubMed  Google Scholar 

  45. Varma VR, Hausdorff JM, Studenski SA, Rosano C, Camicioli R, Alexander NB, et al. Aging, the central nervous system, and mobility in older adults: interventions. J Gerontol A Biol Sci Med Sci. 2016;71(11):1451–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. De Vito G, Bernardi M, Forte R, Pulejo C, Figura F. Effects of a low-intensity conditioning programme on VO2max and maximal instantaneous peak power in elderly women. Eur J Appl Physiol Occup Physiol. 1999;80(3):227–32.

    Article  PubMed  Google Scholar 

  47. Voelcker-Rehage C, Godde B, Staudinger UM. Physical and motor fitness are both related to cognition in old age. Eur J Neurosci. 2010;31(1):167–76. https://doi.org/10.1111/j.1460-9568.2009.07014.x.

    Article  PubMed  Google Scholar 

  48. Voelcker-Rehage C, Niemann C. Structural and functional brain changes related to different types of physical activity across the life span. Neurosci Biobehav Rev. 2013;37(9 Pt B):2268–95. https://doi.org/10.1016/j.neubiorev.2013.01.028.

    Article  PubMed  Google Scholar 

  49. de Vos NJ, Singh NA, Ross DA, Stavrinos TM, Orr R, Fiatarone Singh MA. Optimal load for increasing muscle power during explosive resistance training in older adults. J Gerontol A Biol Sci Med Sci. 2005;60:638–47.

    Article  PubMed  Google Scholar 

  50. Webber SC, Porter MM, Menec VH. Mobility in older adults: a comprehensive framework. Gerontologist. 2010;50:443–50.

    Article  PubMed  Google Scholar 

  51. Wong AM, Lin YC, Chou SW, Tang FT, Wong PY. Coordination exercise and postural stability in elderly people: effect of Tai Chi Chuan. Arch Phys Med Rehabil. 2001;82(5):608–12.

    Article  CAS  PubMed  Google Scholar 

  52. World Health Organization. International classification of functioning disability and health ICF. Geneva: World Health Organization; 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Forte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forte, R., De Vito, G. Comparison of Neuromotor and Progressive Resistance Exercise Training to Improve Mobility and Fitness in Community-Dwelling Older Women. J. of SCI. IN SPORT AND EXERCISE 1, 124–131 (2019). https://doi.org/10.1007/s42978-019-0017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-0017-4

Keywords

Navigation