Skip to main content
Log in

Mitophagy Regulation in Skeletal Muscle: Effect of Endurance Exercise and Age

  • Review Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Mitochondria are essential energy-providing organelles that are required in the maintenance of healthy skeletal muscle. As such, the removal of damaged mitochondria, through mitophagy, is necessary to maintain mitochondrial quality. In aging muscle, mitochondrial content and function are often found to be reduced compared to young individuals. This occurs despite the fact that measures of mitophagy are elevated, suggesting that mitophagy is insufficiently high to remove all of the dysfunctional organelles in aging muscle. Recent evidence has shown that acute exercise promotes mitophagic signaling, leading to organelle degradation. This exercise-induced signaling is attenuated in aging muscle, suggesting that aging muscle loses its capacity for mitochondrial turnover in response to exercise. This contributes to the reduction in muscle health in elderly individuals. Chronic exercise training improves mitochondrial content and function, even in aging muscle, leading to reduced mitophagy signaling. Thus, exercise training should be prescribed for both young and elderly populations to promote the maintenance of a healthy mitochondrial pool, through the stimulation of both organelle biogenesis and mitophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AMP:

Adenosine monophosphate

AMPK:

AMP-activated protein kinase

LC3:

Microtubule-associated proteins 1A/1B light chain 3A

LAMP 1/2:

Lysosomal-associated membrane proteins 1 and 2

MIT/TFE:

Microthalmia-transcription factor E

mTORC1:

Mammalian/mechanistic target of rapamycin complex 1

NUGEMP:

Nuclear gene-encoded mitochondrial protein

PGC-1α:

Peroxisome proliferator activator receptor (PPAR) coactivator 1 alpha

PINK1:

PTEN-induced putative kinase 1

p38MAPK:

p38 mitogen-activated protein kinase

TFEB:

Transcription factor EB

ULK1:

Serine/threonine protein kinase

References

  1. Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS, Yan Z. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem. 2005;280(20):19587–93. https://doi.org/10.1074/jbc.M408862200.

    Article  CAS  PubMed  Google Scholar 

  2. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 2002;16(14):1879–86. https://doi.org/10.1096/fj.02-0367com.

    Article  CAS  PubMed  Google Scholar 

  3. Brandt N, Gunnarsson TP, Bangsbo J, Pilegaard H. Exercise and exercise training-induced increase in autophagy markers in human skeletal muscle. Physiol Rep. 2018;6(7):1–12. https://doi.org/10.14814/phy2.13651.

    Article  CAS  Google Scholar 

  4. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. AJP Cell Physiol. 2004;287(4):C817–33. https://doi.org/10.1152/ajpcell.00139.2004.

    Article  CAS  Google Scholar 

  5. Cantó C, Gerhart-hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliot PJ, Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2013;458(7241):1056–60. https://doi.org/10.1038/nature07813.

    Article  CAS  Google Scholar 

  6. Carter HN, Chen CCW, Hood DA. Mitochondria, muscle health, and exercise with advancing age. Physiology. 2015;30(3):208–23. https://doi.org/10.1152/physiol.00039.2014.

    Article  CAS  PubMed  Google Scholar 

  7. Carter HN, Kim Y, Erlich AT, Zarrin-Khat D, Hood DA. Autophagy and mitophagy flux in young and aged skeletal muscle following chronic contractile activity. J Physiol. 2018;596(16):3567–84. https://doi.org/10.1113/JP275998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chapin HC, Okada M, Merz AJ, Miller DL. Tissue-specific autophagy responses to aging and stress in C. elegans. Aging (Albany NY). 2015;7(6):419–34. https://doi.org/10.18632/aging.100765.

    Article  CAS  Google Scholar 

  9. Chen CCW, Erlich AT, Crilly MJ, Hood DA. Parkin is required for exercise-induced mitophagy in muscle: impact of aging. Am J Physiol Metab ajpendo. 2018;315(3):E404-E415. https://doi.org/10.1152/ajpendo.00391.2017.

    Article  CAS  Google Scholar 

  10. Chen CCW, Erlich AT, Hood DA. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle. Skelet Muscle. 2018;8(1):1–14. https://doi.org/10.1186/s13395-018-0157-y.

    Article  CAS  Google Scholar 

  11. Drake JC, Wilson RJ, Yan Z. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. FASEB J. 2016;30(1):13–22. https://doi.org/10.1096/fj.15-276337.

    Article  CAS  PubMed  Google Scholar 

  12. Erlich AT, Brownlee DM, Beyfuss K, Hood DA. Exercise induces TFEB expression and activity in skeletal muscle in a PGC-1α-dependent manner. Am J Physiol Physiol. 2018;314(1):C62–72. https://doi.org/10.1152/ajpcell.00162.2017.

    Article  CAS  Google Scholar 

  13. Eskelinen EL. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med. 2006;27(5–6):495–502. https://doi.org/10.1016/j.mam.2006.08.005.

    Article  CAS  PubMed  Google Scholar 

  14. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119–31. https://doi.org/10.1038/ncb2012.

    Article  CAS  PubMed  Google Scholar 

  15. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun QM Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. 2012;481(7382):511–5. https://doi.org/10.1038/nature10758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hepple RT. Mitochondrial involvement and impact in aging skeletal muscle. Front Aging Neurosci. 2014;6:1–13. https://doi.org/10.3389/fnagi.2014.00211.

    Article  CAS  Google Scholar 

  17. Hood DA. Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol. 2001;90(3):1137–57.

    Article  CAS  PubMed  Google Scholar 

  18. Hood DA. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab. 2009;34(3):465–72. https://doi.org/10.1139/H09-045.

    Article  CAS  PubMed  Google Scholar 

  19. Hood DA, Memme JM, Oliveira AN, Triolo M. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu Rev Physiol. 2019;81:19–41. https://doi.org/10.1146/annurev-physiol-020518-114310.

    Article  CAS  PubMed  Google Scholar 

  20. Hood DA, Uguccioni G, D’Souza D. Regulation of PPARγ coactivator-1 function and expression in muscle: effect of exercise. PPAR Res. 2010. https://doi.org/10.1155/2010/937123.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Iqbal S, Hood DA. The role of mitochondrial fusion and fission in skeletal muscle function and ysfunction. Front Biosci. 2015;20:57–172.

    Google Scholar 

  22. Iqbal S, Ostojic O, Singh K, Joseph A-M, Hood DA. Expression of mitochondrial fission and fusion regulatory proteins in skeletal muscle during chronic use and disuse. Muscle Nerve. 2013;48(6):963–70. https://doi.org/10.1002/mus.23838.

    Article  CAS  PubMed  Google Scholar 

  23. Jamart C, Naslain D, Gilson H, Francaux M. Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state. AJP Endocrinol Metab. 2013;305(8):E964–74. https://doi.org/10.1152/ajpendo.00270.2013.

    Article  CAS  Google Scholar 

  24. Ju JS, Jeon SI, Park JY, Lee JY, Lee SC, Cho KJ, Jeong JM. Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition. J Physiol Sci. 2016;66(5):417–30. https://doi.org/10.1007/s12576-016-0440-9.

    Article  CAS  PubMed  Google Scholar 

  25. Kang S-H, Lee H-A, Kim M, Lee E, Sohn UD, Kim I. Forkhead box O3 plays a role in skeletal muscle atrophy through expression of E3 ubiquitin ligases MuRF-1 and atrogin-1 in Cushing’s syndrome. Am J Physiol Endocrinol Metabol. 2017;312(6):E495–507. https://doi.org/10.1152/ajpendo.00389.2016.

    Article  Google Scholar 

  26. Kim Y, Hood DA. Regulation of the autophagy system during chronic contractile activity-induced muscle adaptations. Physiol Rep. 2017;5(14):1–11. https://doi.org/10.14814/phy2.13307.

    Article  CAS  Google Scholar 

  27. Kim Y, Triolo M, Hood DA. Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxid Med Cell Longev. 2017. https://doi.org/10.1155/2017/3165396.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim Y, Triolo M, Erlich AT, Hood DA. Regulation of autophagic and mitophagic flux during chronic contractile activity-induced muscle adaptations. Pflugers Arch Eur J Physiol. 2018;471(3):431–40. https://doi.org/10.1007/s00424-018-2225-x.

    Article  CAS  Google Scholar 

  29. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Arozena AA, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222. https://doi.org/10.1080/15548627.2015.1100356.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, Ryall KA, Fischer CC, Zhand M, Saucerman JJ, Goodyear LJ, Kundu M, Yan Z. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun. 2017;8(1):548. https://doi.org/10.1038/s41467-017-00520-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122(Pt 20):3589–94. https://doi.org/10.1242/jcs.051011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leduc-Gaudet J-P, Reynaud O, Hussain SN, Gouspillou G. Parkin overexpression protects from aging-related loss of muscle mass and strength. J Physiol. 2019;597(7):1975–91. https://doi.org/10.1113/JP277157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee Y, Lee H-Y, Hanna RA, Gustafsson AB. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2011;301(5):H1924–31. https://doi.org/10.1152/ajpheart.00368.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lira VA, Okutsu M, Zhang M, Greene NP, Laker RC, Breen DS, Hoehn KL, Yan Z. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J. 2013;27(10):4184–93. https://doi.org/10.1096/fj.13-228486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mansueto G, Armani A, Viscomi C, D’Orsi L, De Cegli R, Polishchuk EV, Lamperti C, Di Meo I, Romanello V, Marchet S, Saha PK, Zong H, Blaauw B, Solagna F, Teeze C, Grumati P, Bonaldo P, Pessin JE, Zeviani M, Sandri M, Ballabio A. transcription factor EB controls metabolic flexibility during exercise. Cell Metab. 2017;25(1):182–96. https://doi.org/10.1016/j.cmet.2016.11.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marcil M, Bourduas K, Ascah A, Burelle Y. Exercise training induces respiratory substrate-specific decrease in Ca2+-induced permeability transition pore opening in heart mitochondria. AJP Hear Circ Physiol. 2006;290(4):H1549–57. https://doi.org/10.1152/ajpheart.00913.2005.

    Article  CAS  Google Scholar 

  37. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010;189(2):211–21. https://doi.org/10.1083/jcb.200910140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Medina DL, Ballabio A. Lysosomal calcium regulates autophagy. Autophagy. 2015;11(6):970–1. https://doi.org/10.1080/15548627.2015.1047130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Medina DL, Paola S Di, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, Settembre C, Wang W, Gao Q, Xu H, Sandri M, Rizzuto R, De Matteis MA, Ballabio A. Lysosomal calcium signaling regulates autophagy via calcineurin and TFEB. Nat Cell Biol. 2015;17(3):288–99. https://doi.org/10.1038/ncb3114.Lysosomal.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Napolitano G, Ballabio A. TFEB at a glance. J Cell Sci. 2016;129(13):2475–81. https://doi.org/10.1242/jcs.146365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. O’Leary MF, Vainshtein A, Iqbal S, Ostojic O, Hood DA. Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle. Am J Physiol Cell Physiol. 2013;304(5):C422–30.

    Article  PubMed  Google Scholar 

  42. Palmieri M, Impey S, Kang H, Di Ronza A, Pelz C, Sardiello M, Ballabio A. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet. 2011;20(19):3852–66. https://doi.org/10.1093/hmg/ddr306.

    Article  CAS  PubMed  Google Scholar 

  43. Pilegaard H, Saltin B, Neufer DP. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol. 2003;546(3):851–8. https://doi.org/10.1113/jphysiol.2002.034850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pogozelski AR, Geng T, Li P, Yin X, Lira VA, Zhang M, Chi JT, Yan Z. P38 mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PLoS One. 2009;4(11):e7934. https://doi.org/10.1371/journal.pone.0007934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roczniak-ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, Walther TC, Feguson SM. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 2012;5(228):ra42. https://doi.org/10.1126/scisignal.2002790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Romanello V, Sandri M. Mitochondrial quality control and muscle mass maintenance. Front Physiol. 2016;6:1–21. https://doi.org/10.3389/fphys.2015.00422.

    Article  Google Scholar 

  47. Russell AP, Foletta VC, Snow RJ, Wadley GD. Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochim Biophys Acta Gen Subj. 2014;1840(4):1276–84. https://doi.org/10.1016/j.bbagen.2013.11.016.

    Article  CAS  Google Scholar 

  48. Safdar A, Little JP, Stokl AJ, Hettinga BP, Akhtar M, Tarnopolsky MA. Exercise increases mitochondrial PGC-1α content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem. 2011;286(12):10605–17. https://doi.org/10.1074/jbc.M110.211466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sandri M. Autophagy in skeletal muscle. FEBS Lett. 2010;584(7):1411–6. https://doi.org/10.1016/j.febslet.2010.01.056.

    Article  CAS  PubMed  Google Scholar 

  50. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiffino S, Lecker SH, Goldberg AL. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2013;117(3):399–412.

    Article  Google Scholar 

  51. Settembre C, Ballabio A. TFEB regulates autophagy: an integrated coordination of cellular degradation and recycling processes. Autophagy. 2011;7(11):1379–81. https://doi.org/10.4161/auto.7.11.17166.

    Article  CAS  PubMed  Google Scholar 

  52. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, Facchinetti V, Sabatini DM, Ballabio A. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31(5):1095–108. https://doi.org/10.1038/emboj.2012.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch TJ, Wollenberg AC, Di Bernardo D, Chan L, Irazoqui JE, Ballabio A. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol. 2013;15(6):647–58. https://doi.org/10.1038/ncb2718.TFEB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tai H, Wang Z, Gong H, Han X, Zhou J, Wang X, Wei X, Ding Y, Huang N, Qin J, Zhang J, Wang S, Gao F, Chrzanowska-Lightowlers ZM, Xiang R, Xiao H. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy. 2017;13(1):99–113.

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol. 2010;191(7):1367–80. https://doi.org/10.1083/jcb.201007013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 2004;36(12):2503–18. https://doi.org/10.1016/j.biocel.2004.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Triolo M, Hood DA. Mitochondrial breakdown in skeletal muscle and the emerging role of the lysosomes. Arch Biochem Biophys. 2019;661:66–73. https://doi.org/10.1016/j.abb.2018.11.004.

    Article  CAS  PubMed  Google Scholar 

  58. Vainshtein A, Hood DA. The regulation of autophagy during exercise in skeletal muscle. J Appl Physiol. 2016;120(6):664–73. https://doi.org/10.1152/japplphysiol.00550.2015.

    Article  CAS  PubMed  Google Scholar 

  59. Vainshtein A, Tryon LD, Pauly M, Hood DA. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle. Am J Physiol Cell Physiol. 2015;308(9):C710–9. https://doi.org/10.1152/ajpcell.00380.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RP, MacCoss MJ, Pallanck LJ. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc Natl Acad Sci. 2013;110(16):6400–5. https://doi.org/10.1073/pnas.1221132110.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wei H, Liu L, Chen Q. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochim Biophys Acta Mol Cell Res. 2015;1853(10):2784–90. https://doi.org/10.1016/j.bbamcr.2015.03.013.

    Article  CAS  Google Scholar 

  62. Yang M, Liu E, Tang L, Lei Y, Sun X, Hu J, Dong H, Yang SM, Gao M. Tang B. Emerging roles and regulation of MiT/TFE transcriptional factors. Cell Commun Signal. 2018;16(31):1–11. https://doi.org/10.1186/s12964-018-0242-1.

    Article  CAS  Google Scholar 

  63. Yoo S, No M, Heo J, Park D, Kang J, Kim SH, Kwak H. Role of exercise in age-related sarcopenia. J Exerc Rehabil. 2018;14(1):551–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yoshii SR, Mizushima N. Monitoring and measuring autophagy. Int J Mol Sci. 2017;18(9):1–13. https://doi.org/10.3390/ijms18091865.

    Article  CAS  Google Scholar 

  65. Zhou J, Tan SH, Nicolas V, Bauvy C, Yang ND, Zhang J, Xue Y, Codogno P, Shen HM. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Res. 2013;23(4):508–23. https://doi.org/10.1038/cr.2013.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the Vacuolar H+-ATPase. Science. 2011;334(6056):678–83. https://doi.org/10.1126/science.1207056.mTORC1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Hood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erlich, A.T., Hood, D.A. Mitophagy Regulation in Skeletal Muscle: Effect of Endurance Exercise and Age. J. of SCI. IN SPORT AND EXERCISE 1, 228–236 (2019). https://doi.org/10.1007/s42978-019-00041-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-00041-5

Keywords

Navigation