Skip to main content
Log in

Nonlocal Flocking Dynamics: Learning the Fractional Order of PDEs from Particle Simulations

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

Flocking refers to collective behavior of a large number of interacting entities, where the interactions between discrete individuals produce collective motion on the large scale. We employ an agent-based model to describe the microscopic dynamics of each individual in a flock, and use a fractional partial differential equation (fPDE) to model the evolution of macroscopic quantities of interest. The macroscopic models with phenomenological interaction functions are derived by applying the continuum hypothesis to the microscopic model. Instead of specifying the fPDEs with an ad hoc fractional order for nonlocal flocking dynamics, we learn the effective nonlocal influence function in fPDEs directly from particle trajectories generated by the agent-based simulations. We demonstrate how the learning framework is used to connect the discrete agent-based model to the continuum fPDEs in one- and two-dimensional nonlocal flocking dynamics. In particular, a Cucker–Smale particle model is employed to describe the microscale dynamics of each individual, while Euler equations with nonlocal interaction terms are used to compute the evolution of macroscale quantities. The trajectories generated by the particle simulations mimic the field data of tracking logs that can be obtained experimentally. They can be used to learn the fractional order of the influence function using a Gaussian process regression model implemented with the Bayesian optimization. We show in one- and two-dimensional benchmarks that the numerical solution of the learned Euler equations solved by the finite volume scheme can yield correct density distributions consistent with the collective behavior of the agent-based system solved by the particle method. The proposed method offers new insights into how to scale the discrete agent-based models to the continuum-based PDE models, and could serve as a paradigm on extracting effective governing equations for nonlocal flocking dynamics directly from particle trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antoniou, P., Pitsillides, A., Blackwell, T., Engelbrecht, A., Michael, L.: Congestion control in wireless sensor networks based on bird flocking behavior. Comput. Netw. 57(5), 1167–1191 (2013)

    Article  Google Scholar 

  2. Babaee, H., Perdikaris, P., Chryssostomidis, C., Karniadakis, G.E.: Multi-fidelity modelling of mixed convection based on experimental correlations and numerical simulations. J. Fluid Mech. 809, 895–917 (2016)

    Article  MathSciNet  Google Scholar 

  3. Ballerini, M., Calbibbo, N., Candeleir, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. USA 105(4), 1232–1237 (2008)

    Article  Google Scholar 

  4. Beekman, M., Sumpter, D.J., Ratnieks, F.L.: Phase transition between disordered and ordered foraging in pharaoh’s ants. Proc. Natl. Acad. Sci. USA 98(17), 9703–9706 (2001)

    Article  Google Scholar 

  5. Bernardi, S., Colombi, A., Scianna, M.: A discrete particle model reproducing collective dynamics of a bee swarm. Comput. Biol. Med. 93, 158–174 (2018)

    Article  Google Scholar 

  6. Bouchut, F., Jin, S., Li, X.: Numerical approximations of pressureless and isothermal gas dynamics. SIAM J. Numer. Anal. 41(1), 135–158 (2003)

    Article  MathSciNet  Google Scholar 

  7. Chen, D.X., Vicsek, T., Liu, X.L., Zhou, T., Zhang, H.T.: Switching hierarchical leadership mechanism in homing flight of pigeon flocks. Europhys. Lett. 114, 60008 (2016)

    Article  Google Scholar 

  8. Cristiani, E., Piccoli, B., Tosin, A.: Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints. In: Naldi, G., Pareschi, L., Toscani, G. (eds.) Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences, pp. 337–364. Springer, New York (2010)

    Chapter  Google Scholar 

  9. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  10. Eftimie, R., de Vries, G., Lewis, M.A.: Complex spatial group patterns result from different animal communication mechanisms. Proc. Natl. Acad. Sci. USA 104(17), 6974–6979 (2007)

    Article  MathSciNet  Google Scholar 

  11. Figalli, Alessio, Kang, Moon-Jin: A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment. Anal. PDE 12(3), 843–866 (2019)

    Article  MathSciNet  Google Scholar 

  12. Giardina, I.: Collective behavior in animal groups: theoretical models and empirical studies. HFSP J. 2(4), 205–219 (2008)

    Article  Google Scholar 

  13. Giuggioli, L., Potts, J.R., Rubenstein, D.I., Levin, S.A.: Stigmergy, collective actions, and animal social spacing. Proc. Natl. Acad. Sci. USA 110(42), 16904–16909 (2013)

    Article  Google Scholar 

  14. Jaffry, S.W., Treur, J.: Agent-based and population-based modeling of trust dynamics. In: Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence, vol. IX, pp. 124–151. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  15. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  MathSciNet  Google Scholar 

  16. Levine, H., Rappel, W.J., Cohen, I.: Self-organization in systems of self-propelled particles. Phys. Rev. E 63, 017101 (2001)

    Article  Google Scholar 

  17. Li, Z., Bian, X., Li, X., Deng, M., Tang, Y.-H., Caswell, B., Karniadakis, G.E.: Dissipative particle dynamics: foundation, evolution, implementation, and applications. In: Bodnár, T., Galdi, G.P., Nečasová, Š. (eds.) Particles in Flows, pp. 255–326. Birkhäuser, Cham (2017)

    Chapter  Google Scholar 

  18. Lukeman, R., Li, Y.X., Edelstein-Keshet, L.: Inferring individual rules from collective behavior. Proc. Natl. Acad. Sci. USA 107(28), 12576–12580 (2010)

    Article  Google Scholar 

  19. Mahmoodi, K., West, B.J., Grigolini, P.: Self-organizing complex networks: individual versus global rules. Front. Physiol. 8, 478 (2017)

    Article  Google Scholar 

  20. Nagai, K.H.: Collective motion of rod-shaped self-propelled particles through collision. Biophys. Physicobiol. 15, 51–57 (2018)

    Article  Google Scholar 

  21. Nagy, M., Ákos, Z., Biro, D., Vicsek, T.: Hierarchical group dynamics in pigeon flocks. Nature 464, 890–893 (2010)

    Article  Google Scholar 

  22. Niwa, H.-S.: Self-organizing dynamic model of fish schooling. J. Theor. Biol. 171(2), 123–136 (1994)

    Article  Google Scholar 

  23. Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Adv. Biophys. 22, 1–94 (1986)

    Article  Google Scholar 

  24. Pang, G., Perdikaris, P., Cai, W., Karniadakis, G.E.: Discovering variable fractional orders of advection-dispersion equations from field data using multi-fidelity bayesian optimization. J. Comput. Phys. 348, 694–714 (2017)

    Article  MathSciNet  Google Scholar 

  25. Pu, H.T., Lian, J., Fan, M.Q.: Automatic recognition of flock behavior of chickens with convolutional neural network and kinect sensor. Int. J. Pattern Recognit. Artif. Intell. 32(7), 1850023 (2018)

    Article  Google Scholar 

  26. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) Advanced Lectures on Machine Learning, pp. 63–71. Springer, Berlin, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine learning (GPML) toolbox. J. Mach. Learn. Res. 11, 3011–3015 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Shvydkoy, R., Tadmor, E.: Eulerian dynamics with a commutator forcing. Trans. Math. Appl. 1, 1–26 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Shvydkoy, R., Tadmor, E.: Eulerian dynamics with a commutator forcing ii: flocking. Discr. Contin. Dyn. Syst. A 37(11), 5503–5520 (2017)

    Article  MathSciNet  Google Scholar 

  30. Tadmor, E., Tan, C.: Critical thresholds in flocking hydrodynamics with non-local alignment. Philos. Trans. A Math. Phys. Eng. Sci. 372(20), 20130401 (2014)

    Article  MathSciNet  Google Scholar 

  31. Theraulaz, G., Bonabeau, E.: Modelling the collective building of complex architectures in social insects with lattice swarms. J. Theor. Biol. 177(4), 381–400 (1995)

    Article  Google Scholar 

  32. Tunstrom, K., Katz, Y., Ioannou, C.C., Huepe, C., Lutz, M.J., Couzin, I.D.: Collective states, multistability and transitional behavior in schooling fish. PLoS Comput. Biol. 9(2), e1002915 (2013)

    Article  MathSciNet  Google Scholar 

  33. Wang, H., Du, N.: Fast solution methods for space-fractional diffusion equations. J. Comput. Appl. Math. 255, 376–383 (2014)

    Article  MathSciNet  Google Scholar 

  34. Wang, H., Tian, H.: A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model. Comput. Methods Appl. Mech. Eng. 273, 19–36 (2014)

    Article  MathSciNet  Google Scholar 

  35. Wang, D., Tan, D., Liu, L.: Particle swarm optimization algorithm: an overview. Soft Comput. 22(2), 387–408 (2018)

    Article  Google Scholar 

  36. Yang, Y., Wei, D., Shu, C.-W.: Discontinuous Galerkin method for Krause’s consensus models and pressureless Euler equations. J. Comput. Phys. 252, 109–127 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the OSD/ARO/MURI on “Fractional PDEs for Conservation Laws and Beyond: Theory, Numerics and Applications (W911NF-15-1-0562)” and the DOE PhILMs Project (DE-SC0019453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Z., Li, Z. & Karniadakis, G.E. Nonlocal Flocking Dynamics: Learning the Fractional Order of PDEs from Particle Simulations. Commun. Appl. Math. Comput. 1, 597–619 (2019). https://doi.org/10.1007/s42967-019-00031-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-00031-y

Keywords

Mathematics Subject Classifcation

Navigation