Skip to main content
Log in

Microstructure evolutions of the W–TiC composite conducted by dual-effects from thermal shock and He-ion irradiation

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Considering that tungsten (W) materials served as the plasma-facing material in the fusion reactor would be exposed to edge-localized modes (ELMs)-like thermal shock loading accompanied with He-ion irradiation, the W–TiC composite produced with a wet-chemical method was conducted by the dual effects from the laser beam thermal shock first and He-ion irradiation later in this work. The microstructure changes of the W–TiC composite before and after two tests were characterized by scanning electron microscopy or transmission electron microscopy. After the laser beam thermal shock test, there was an obvious interface on the exposed surface of the W–TiC composite. Several main cracks and melting areas could be found nearby the interface and center, respectively. Furthermore, a mixture of tungsten oxide and TiC was easy to aggregate and form into circle areas surrounding the melting area. The thermal shock tested that W–TiC composite was then subjected to the He-ion irradiation. The typical features of fuzz structures could be detected on the surface of the W–TiC composite apart from the center of the melting area. Notably, several nano-sized He bubbles deeply distributed at grain boundaries in the melting area, owing to the grain boundary functioning as the free path for He diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Stork D, Agostini P, Boutard JL, Buckthorpe D, Diegele E, Dudarev SL, English C, Federici G, Gilbert MR, Gonzalez S, Ibarra A, Linsmeier C, Puma AL, Marbach G, Packer LW, Raj B, Rieth M, Tran MQ, Ward DJ, Zinkle SJ. Materials R&D for a timely DEMO: key findings and recommendations of the EU roadmap materials assessment group. Fusion Eng Des. 2014;89(7–8):1586.

    Article  CAS  Google Scholar 

  2. Stork D, Agostini P, Boutard JL, Buckthorpe D, Diegele E, Dudarev SL, English C, Federici G, Gilbert MR, Gonzalez S, Ibarra A, Linsmeier C, Puma AL, Marbach G, Morris PF, Packer LW, Raj B, Rieth M, Tran MQ, Ward DJ, Zinkle SL. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: the EU assessment. J Nucl Mater. 2014;455(1–3):277.

    Article  CAS  Google Scholar 

  3. Yi X, Jenkins ML, Kirk MA, Zhou Z, Roberts SG. In-situ TEM studies of 150 keV W+ ion irradiated W and W-alloys: damage production and microstructural evolution. Acta Mater. 2016;112:105.

    Article  CAS  Google Scholar 

  4. Rieth M, Dudarev SL, Gonzalez de Vicente SM, Aktaa J, Ahlgren T, Antusch S, Armstrong DEJ, Balden M, Baluc N, Barthe M-F, Basuki WW, Battabyal M, Becquart CS, Blagoeva D, Boldyryeva H, Brinkmann J, Celino M, Ciupinski L, Correia JB, De Backer A, Domain C, Gaganidze E, García-Rosales C, Gibson J, Gilbert MR, Giusepponi S, Gludovatz B, Greuner H, Heinola K, Höschen T, Hoffmann A, Holstein N, Koch F, Krauss W, Li H, Lindig S, Linke J, Linsmeier C, López-Ruiz P, Maier H, Matejicek J, Mishra TP, Mishra M, Muñoz A, Muzyk M, Nordlund K, Nguyen-Manh D, Opschoor J, Ordás N, Palacios T, Pintsuk G, Pippan R, Reiser J, Riesch J, Roberts SG, Romaner L. Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J Nucl Mater. 2013;432(1–3):482.

    Article  CAS  Google Scholar 

  5. Ferroni F, Yi X, Arakawa K, Fitzgerald SP, Edmondson PD, Roberts SG. High temperature annealing of ion irradiated tungsten. Acta Mater. 2015;90:380.

    Article  CAS  Google Scholar 

  6. Giannattasio A, Yao Z, Tarleton E, Roberts SG. Brittle–ductile transitions in polycrystalline tungsten. Philos Mag. 2010;90(30):3947.

    Article  CAS  Google Scholar 

  7. Rieth M, Hoffmann A. Influence of microstructure and notch fabrication on impact bending properties of tungsten materials. Int J Refract Met Hard Mater. 2010;28(6):679.

    Article  CAS  Google Scholar 

  8. Fukuda M, Hasegawa A, Tanno T, Nogami S, Kurishita H. Property change of advanced tungsten alloys due to neutron irradiation. J Nucl Mater. 2013;442(1–3):S273.

    Article  CAS  Google Scholar 

  9. Xie ZM, Liu R, Miao S, Yang SD, Zhang T, Fang QF, Wang XP, Liu CS, Lian YY, Liu X, Luo GN. High thermal shock resistance of the hot rolled and swaged bulk W–ZrC alloys. J Nucl Mater. 2016;469:209.

    Article  CAS  Google Scholar 

  10. Zhao M, Zhou Z, Zhong M, Tan J, Lian Y, Liu X. Thermal shock behavior of fine grained W-Y2O3 materials fabricated via two different manufacturing technologies. J Nucl Mater. 2016;470:236.

    Article  CAS  Google Scholar 

  11. Xu L, Yan Q, Xia M, Zhu LX. Preparation of La2O3 doped ultra-fine W powders by hydrothermal-hydrogen reduction process. Int J Refract Met Hard Mater. 2013;36(1):238.

    Article  CAS  Google Scholar 

  12. Hirai T, Pintsuk G, Linke J, Batilliot M. Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures. J Nucl Mater. 2009;390–391:751.

    Article  Google Scholar 

  13. Hirai T, Ezato K, Majerus P. ITER relevant high heat flux testing on plasma facing surfaces. Mater Trans. 2005;46(3):412.

    Article  CAS  Google Scholar 

  14. Suslova A, El-Atwani O, Sagapuram D, Harilal SS, Hassanein A. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples. Sci Rep. 2014;5(4):8950.

    Google Scholar 

  15. Majumdar R, Gilligan JG, Winfrey AL, Bourham MA. Supersonic flow patterns from electrothermal plasma source for simulated ablation and aerosol expansion following a fusion disruption. J Fusion Energy. 2014;33(1):25.

    Article  CAS  Google Scholar 

  16. Echols JR, Winfrey AL. Ablation of fusion materials exposed to high heat flux in an electrothermal plasma discharge as a simulation for hard disruption. J Fusion Energy. 2014;33(1):60.

    Article  CAS  Google Scholar 

  17. Hofmann F, Nguyen-Manh D, Gilbert MR, Beck CE, Eliason JK, Maznev AA, Liu W, Armstrong DEJ, Nelson KA, Dudarev SL. Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling. Acta Mater. 2015;89:352.

    Article  CAS  Google Scholar 

  18. Das S, Armstrong DEJ, Zayachuk Y, Liu W, Xu R, Hofmann F. The effect of helium implantation on the deformation behaviour of tungsten: X-ray micro-diffraction and nanoindentation. Scr Mater. 2018;146:335.

    Article  CAS  Google Scholar 

  19. Sinclair G, Tripathi JK, Diwakar PK, Wirtz M, Linke J, Hassanein A. Structural evolution of tungsten surface exposed to sequential low-energy helium ion irradiation and transient heat loading. Nucl Mater Energy. 2017;12:405.

    Article  Google Scholar 

  20. Luo LM, Tan XY, Chen HY, Luo GN, Zhu XY, Cheng JG, Wu YC. Preparation and characteristics of W–1 wt% TiC alloy via a novel chemical method and spark plasma sintering. Powder Technol. 2015;273:8.

    Article  CAS  Google Scholar 

  21. Budaev VP, Martynenko YV, Karpov AV, Belova NE, Zhitlukhin AM, Klimov NS, Podkovyrov VL, Barsuk VA, Putrik AB, Yaroshevskaya AD, Giniyatulin RN, Safronov VM, Khimchenko LN. Tungsten recrystallization and cracking under ITER-relevant heat loads. J Nucl Mater. 2015;463:237.

    Article  CAS  Google Scholar 

  22. Lang S, Yan Q, Sun N, Zhang X, Ge C. Microstructures, mechanical properties and thermal conductivities of W–0.5 wt% TiC alloys prepared via ball milling and wet chemical method. JOM. 2017;69(10):1992.

    Article  CAS  Google Scholar 

  23. Baldwin MJ, Doerner RP. Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades. J Nucl Mater. 2010;404(3):165.

    Article  CAS  Google Scholar 

  24. El-Atwani O, Efe M, Heim B, Allain JP. Surface damage in ultrafine and multimodal grained tungsten materials induced by low energy helium irradiation. J Nucl Mater. 2013;434(1–3):170.

    Article  CAS  Google Scholar 

  25. Kajita S, Yoshida N, Yoshihara R, Ohno N, Yamagiwa M. TEM observation of the growth process of helium nanobubbles on tungsten: nanostructure formation mechanism. J Nucl Mater. 2011;418(1–3):152.

    Article  CAS  Google Scholar 

  26. Krasheninnikov SI, Smirnov RD. On “bubbly” structures in plasma facing components. J Nucl Mater. 2013;438:S861.

    Article  CAS  Google Scholar 

  27. Liu L, Liu D, Hong Y, Fan H, Ni W, Yang Q, Bi Z, Benstetter G, Li S. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions. J Nucl Mater. 2016;471:1.

    Article  CAS  Google Scholar 

  28. Al-Ajlony A, Tripathi JK, Hassanein A. Low energy helium ion irradiation induced nanostructure formation on tungsten surface. J Nucl Mater. 2017;488:1.

    Article  CAS  Google Scholar 

  29. Valles G, Panizo-Laiz M, González C, Martin-Bragado I, Gonzalez-Arrabal R, Gordillo N, Iglesias R, Guerrero CL, Perlado JM, Rivera A. Influence of grain boundaries on the radiation-induced defects and hydrogen in nanostructured and coarse-grained tungsten. Acta Mater. 2017;122:277.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51574101), the Fundamental Research Funds for the Central Universities (Grant Nos. PA2018GDQT0010, PA2019GDZC0096, JZ2019HGTA0040), the Foundation of Laboratory of Nonferrous Metal Material and Processing Engineering of Anhui Province (15CZS08031), the Natural Science Foundation of Anhui Province (Grant Nos. 201904b11020034, 1908085ME115), the Foundation of Laboratory of Nonferrous Metal Material and Processing Engineering of Anhui Province, the Open Foundation of Key Laboratory of Advanced Functional Materials, Devices of Anhui Province and Double First Class enhancing independent innovation and social service capabilities of Hefei University of Technology (Grant No. 45000-411104/011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lai-Ma Luo or Yu-Cheng Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, YF., Tan, XY., Luo, LM. et al. Microstructure evolutions of the W–TiC composite conducted by dual-effects from thermal shock and He-ion irradiation. Tungsten 1, 213–219 (2019). https://doi.org/10.1007/s42864-019-00023-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-019-00023-8

Keywords

Navigation