Skip to main content

Advertisement

Log in

Recent research progress on mixed valence state tungsten based materials

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Synthesis and characterization of tungsten based mixed valence state nanoparticles and their novel applications are reviewed. The mixed valence state tungsten based homogeneous nanomaterials such as bronze structure MxWO3 (M = Na+, K+, Rb+, Cs+, NH4+, etc.) and tungsten sub-oxide W18O49 possess excellent infrared (IR) light shielding property, implying their great potential applications on heat ray shielding and indoor energy saving effect in summer season. Also, some novel properties such as electric conductivity, bio thermal therapy function and electrochromic properties of mixed valence state tungsten based materials are introduced. The design of components, formation of composites and structure control of thin films are expected to realize the property enhancement and candidates for practice application as window materials. The multifunctionality of the mixed valence state based composites also implies great potential on novel applications of various building materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from Ref. [7] with permission from the American Institute of Physics

Fig. 2

Reproduced from Refs. [9,10,11,12] with permission from American Chemical Society (ACS), The Royal Society of Chemistry (RSC) and Wiley

Fig. 3

Reproduced from Refs. [21,22,23] with permission from RSC & Wiley

Fig. 4

Reproduced from Refs. [23, 24, 26,27,28, 32] with permission from RSC & ACS

Fig. 5
Fig. 6

Reproduced from Ref. [23] with permission from RSC

Fig. 7

Reproduced from Ref. [9] with permission from ACS

Fig. 8

Reproduced from Ref. [36] with permission from RSC

Fig. 9

Reproduced from Ref. [54] with permission from Elsevier

Fig. 10

Reproduced from Refs. [55, 57] with permission from Elsevier and RSC

Fig. 11

Similar content being viewed by others

Change history

References

  1. Macisaac D, Kanner G, Anderson G. Basic physics of the incandescent lamp (lightbulb). Phys Teach. 1999;37(9):520.

    Article  Google Scholar 

  2. Gaur RPS. Modern hydrometallurgical production methods for tungsten. JOM. 2006;58(9):45.

    Article  CAS  Google Scholar 

  3. Liu BX, Shi AH, Su Q, Chen GJ, Li W, Zhang LN, Yang B. Recovery of tungsten carbides to prepare the ultrafine WC-Co composite powder by two-step reduction process. Powder Technol. 2017;306:113.

    Article  CAS  Google Scholar 

  4. Barnaby CF, Borg MT. Emerging technologies and military doctrine: a political assessment. London: St. Martin’s Press Inc; 1986.

    Book  Google Scholar 

  5. Bregel T, Krauss-Vogt W, Michal R, Saeger KE. On the application of W/Cu materials in the fields of power engineering and plasma technology. IEEE Trans Compo Hybrids Manuf Technol. 1991;14(1):8.

    Article  Google Scholar 

  6. Simon A. Group 1 and 2 suboxides and subnitrides metals with atomic size holes and tunnels. Coord Chem Rev. 1997;163:253.

    Article  CAS  Google Scholar 

  7. Migasa DB, Shaposhnikov VL, Borisenko VE. Tungsten oxides. II. The metallic nature of Magnéli phases. J Appl Phys. 2010;108(9):093714.

    Article  CAS  Google Scholar 

  8. Wells AF. Structural inorganic chemistry. 5th ed. New York: Oxford University Press; 1984.

    Google Scholar 

  9. Guo CS, Yin S, Yan M, Kobayashi M, Kakihana M, Sato T. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorg Chem. 2012;51(8):4763.

    Article  CAS  Google Scholar 

  10. Guo CS, Yin S, Dong Q, Sato T. The near infrared absorption properties of W18O49. RSC Adv. 2012;2(12):5041.

    Article  CAS  Google Scholar 

  11. Zhu YQ, Hu WB, Hsu WK, Terrones M, Grobert N, Hare JP, Kroto HW, Walton DRM, Terrones H. Tungsten oxide tree-like structures. Chem Phys Lett. 1999;309(5–6):327.

    Article  CAS  Google Scholar 

  12. Li Y, Bando Y, Golberg D. Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv Mater. 2003;15(15):1294.

    Article  CAS  Google Scholar 

  13. Yin S, Riapanitra A, Asakura Y. Nanomaterials for infrared shielding smart coatings. Funct Mater Lett. 2018;11(5):1830004.

    Article  CAS  Google Scholar 

  14. Wang SJ, Chen CH, Ko RM, Kuo YC, Wong CH, Wu CH. Preparation of tungsten oxide nanowires from sputter-deposited WCx films using an annealing/oxidation process. Appl Phys Lett. 2005;86(26):263103.

    Article  CAS  Google Scholar 

  15. Lee K, Seo WS, Park JT. Synthesis and optical properties of colloidal tungsten oxide nanorods. J Am Chem Soc. 2003;125(12):3408.

    Article  CAS  Google Scholar 

  16. Liu BX, Wang JS, Wu JS, Li HY, Li ZF, Zhou ML, Zuo TY. Controlled fabrication of hierarchical WO3 hydrates with excellent adsorption performance. J Mater Chem A. 2014;2(6):1947

    Article  CAS  Google Scholar 

  17. Rotaru A, Miller AJ, Arnold DC, Morrison FD. Towards novel multiferroic and magnetoelectric materials: dipole stability in tetragonal tungsten bronzes. Philos Trans R Soc A. 2014;372(2009):20120451.

    Article  CAS  Google Scholar 

  18. Takeda H, Adachi K. Near infrared absorption of tungsten oxide nanoparticle dispersions. J Am Ceram Soc. 2007;90(12):4059.

    CAS  Google Scholar 

  19. Adachi K, Miratsu M, Asahi T. Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters. J Mater Res. 2010;25(3):510.

    Article  CAS  Google Scholar 

  20. Guo CS, Yin S, Zhang PL, Yan M, Adachi K, Chonan T, Sato T. Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process. J Mater Chem. 2010;20(38):8227.

    Article  CAS  Google Scholar 

  21. Kaper H, Djerdj I, Gross S, Amenitsch H, Antoniettia M, Smarsly BM. Ionic liquid- and surfactant-controlled crystallization of WO3 films. Phys Chem Chem Phys. 2015;17(27):18138.

    Article  CAS  Google Scholar 

  22. Guo CS, Yin S, Sato T. Effects of crystallization atmospheres on the near-infrared adsorption and electroconductive propeties of tungsten bronze type MxWO3 (M = Na, K). J Am Ceram Soc. 2012;95(5):1634.

    Article  CAS  Google Scholar 

  23. Guo CS, Yin S, Yan M, Sato T. Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process. J Mater Chem. 2011;21(13):5099.

    Article  CAS  Google Scholar 

  24. Huang XJ, Bao J, Han Y, Cui CW, Wang JX, Zeng XF, Chen JF. Controllable synthesis and evolution mechanism of tungsten bronze nanocrystals with excellent optical performance for energy-saving glass. J Mater Chem A. 2018;6(29):7783.

    Article  CAS  Google Scholar 

  25. Lassner E, Schubert WD. Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. New York: Kluwer Academic Publisher; 1999.

    Book  Google Scholar 

  26. Guo CS, Yin S, Sato T. Synthesis of one-dimensional hexagonal sodium tungsten oxide and its near-infrared shielding property. Nanosci Nanotechnol Lett. 2011;3(3):413.

    Article  CAS  Google Scholar 

  27. Sheng T, Chavvakula PP, Cao BB, Yue NL, Zhang Y, Zhang HT. Growth of ultra-long sodium tungsten oxide and tungsten oxide nanowires: effects of impurity and residue deposition. J Cryst Growth. 2014;395:61.

    Article  CAS  Google Scholar 

  28. Guo CS, Yin S, Dong Q, Sato T. Simple route to (NH4)xWO3 nanorods for near infrared absorption. Nanoscale. 2012;4:3394.

    Article  CAS  Google Scholar 

  29. Guo CS, Yin S, Dong Q, Kimura T, Tanaka M, Hang LT, Wu XY, Sato T. Solvothermal fabrication of rubidium tungsten bronze for the absorption of near infrared light. J Nanosci Nanotechnol. 2013;13(5):3236.

    Article  CAS  Google Scholar 

  30. Andreev AA, Mak AA, Solovyev NA. An introduction to hot laser plasma physics. New York: Nova Science Publishers; 2000.

    Google Scholar 

  31. Stover JC. Optical scattering: measurement analysis. 3rd ed. Washington: SPIE Optical Engineering Press; 1995.

    Book  Google Scholar 

  32. Liu JX, Ando Y, Dong XL, Shi F, Yin S, Adachi K, Chonan T, Tanaka A, Sato T. Microstructure and electrical-optical properties of cesium tungsten oxides synthesized by solvothermal reaction followed by ammonia annealing. J Solid State Chem. 2010;183(10):2456.

    Article  CAS  Google Scholar 

  33. White RP. Infrared deicing system for aircraft. US Patent 6092765;2000.

  34. Tanaka F, Verboven P, Scheerlinck N, Morita K, Iwasaki K, Nicola B. Investigation of far infrared radiation heating as an alternative technique for surface decontamination of strawberry. J Food Eng. 2007;79(2):445.

    Article  Google Scholar 

  35. Tang HB, Su YC, Hu T, Liu SD, Mu SJ, Xiao LH. Synergetic effect of LaB6 and ITO nanoparticles on optical properties and thermal stability of poly(vinylbutyral) nanocomposite films. Appl Phys A. 2014;117(4):2127.

    Article  CAS  Google Scholar 

  36. Guo CS, Yin S, Yu HJ, Liu S, Dong Q, Goto T, Zhang Z, Li Y, Sato T. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infrared absorption. Nanoscale. 2013;5(14):6469.

    Article  CAS  Google Scholar 

  37. Yin S. Creation of advanced optical responsive functionality of ceramics by green processes. J Ceram Soc Jpn. 2015;123(1441):823.

    Article  CAS  Google Scholar 

  38. Ragnarsdóttir KV. Rare metals getting rarer. Nat Geosci. 2008;1(11):720.

    Google Scholar 

  39. Sasaki T, Endo Y, Nakaya M, Kanie K, Nagatomi A, Tanoue K, Nakamura R, Muramatsu A. One-step solvothermal synthesis of cubic-shaped ITO nanoparticles precisely controlled in size and shape and their electrical resistivity. J Mater Chem. 2010;20(37):8153.

    Article  CAS  Google Scholar 

  40. Habash RWY, Bansal R, Krewski D, Alhafid HT. Thermal therapy, part 1: an introduction to thermal therapy. Crit Rev Biomed Eng. 2006;34(6):459.

    Article  Google Scholar 

  41. Habash RWY, Bansal R, Krewski D, Alhafid HT. Thermal therapy, part 2: hyperthermia techniques. Crit Rev Biomed Eng. 2006;34(6):491.

    Article  Google Scholar 

  42. Hu KW, Liu TM, Chung KY, Huang KS, Hsieh CT, Sun CK, Yeh CS. Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures. J Am Chem Soc. 2009;131(40):14186.

    Article  CAS  Google Scholar 

  43. Jang B, Park JY, Tung CH, Kim IH, Choi Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano. 2011;5(2):1086.

    Article  CAS  Google Scholar 

  44. Huang HC, Rege K, Heys JJ. Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods. ACS Nano. 2010;4(5):2892.

    Article  CAS  Google Scholar 

  45. Zhang ZJ, Wang LM, Wang J, Jiang XM, Li XH, Hu ZJ, Ji YH, Wu XC, Chen CY. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater. 2012;24(11):1418.

    Article  CAS  Google Scholar 

  46. Gao L, Fei JB, Zhao J, Li H, Cui Y, Li JB. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano. 2012;6(9):8030.

    Article  CAS  Google Scholar 

  47. Xia YN, Li WY, Cobley CM, Chen JY, Xia XH, Zhang Q, Yang MX, Cho EC, Brown PK. Gold nanocages: from synthesis to theranostic applications. Acc Chem Res. 2011;44(10):914.

    Article  CAS  Google Scholar 

  48. Liu GX, Wang SN, Nie YT, Sun XH, Zhang YH, Tang Y. Electrostatic-induced synthesis of tungsten bronze nanostructures with excellent photo-to-thermal conversion behavior. J Mater Chem A. 2013;1(35):1020.

    Article  CAS  Google Scholar 

  49. Chen CJ, Chen DH. Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles. Nanoscale Res Lett. 2013;8:57.

    Article  CAS  Google Scholar 

  50. Tian G, Zhang X, Zheng XP, Yin WY, Ruan LF, Liu XD, Zhou LJ, Yan L, Li SJ, Gu ZJ, Zhao YL. Multifunctional RbxWO3 nanorods for simultaneous combined chemo-photothermal therapy and photoacoustic/CT imaging. Small. 2014;10(20):4060.

    Google Scholar 

  51. Zhang YX, Li B, Cao YJ, Qin JB, Peng ZY, Xiao ZY, Huang XJ, Zou RJ, Hu JQ. Na0.3WO3 nanorods: a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells. Dalton Trans. 2015;44(6):2771.

    Article  CAS  Google Scholar 

  52. Guo CS, Yu HJ, Feng B, Gao WD, Yan M, Zhang ZW, Li YP, Liu SQ. Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel. Biomaterials. 2015;52:407.

    Article  CAS  Google Scholar 

  53. Cai LG, Wu XM, Gao Q, Fan YM. Effect of morphology on the near infrared shielding property and thermal performance of K0.3WO3 blue pigments for smart window applications. Dyes Pigment. 2018;156:33.

    Article  CAS  Google Scholar 

  54. Zheng BH, Han Z, Wu G, Liu YF, Liu CT, Ma FW. Synthesis of near infrared-activatable KxWO3 nanorods for photothermal therapy. Mater Lett. 2018;212:194.

    Article  CAS  Google Scholar 

  55. Sbar NL, Podbelski L, Yang HM, Pease B. Electrochromic dynamic windows for office buildings. Int J Sustain Built Environ. 2012;1(1):125.

    Article  Google Scholar 

  56. Runnerstrom EL, Llordés A, Lounis SD, Milliron DJ. Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem Commun. 2014;50(73):10555.

    Article  CAS  Google Scholar 

  57. Xue B, Peng J, Xin ZF, Kong YM, Li L, Li B. High-contrast electrochromic multilayer films of molybdenum-doped hexagonal tungsten bronze (Mo0.05-HTB). J Mater Chem. 2005;15(45):4793.

    Article  CAS  Google Scholar 

  58. Rattanakam R, Supothina S. Hydrothermal synthesis and electrochromic properties of potassium tungsten oxide nanorods. J Nanosci Nanotech. 2011;11(10):8974.

    Article  CAS  Google Scholar 

  59. Moshofsky B, Mokari T. Electrochromic active layers from ultrathin nanowires of tungsten oxide. J Mater Chem C. 2014;2(18):3556.

    Article  CAS  Google Scholar 

  60. Cai GF, Wang JX, Lee PS. Next-generation multifunctional electrochromic devices. Acc Chem Res. 2016;49(8):1469.

    Article  CAS  Google Scholar 

  61. Wu X, Yin S, Dong Q, Liu B, Sato T. Photocatalytic performance and near infrared absorption property of tungsten and tungsten–carbon doped titania. Mater Technol: Adv Funct Mater. 2014;29(A1):A20.

    Article  CAS  Google Scholar 

  62. Wu XY, Yin S, Xue DF, Komarneni S, Sato T. CsxWO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation. Nanoscale. 2015;7(40):17048.

    Article  CAS  Google Scholar 

  63. Wu XY, Wang JT, Zhang GK, Katsumata K, Yanagisawa, Sato T, Yin S. Series of MxWO3/ZnO (M = K, Rb, NH4) nanocomposites: combination of energy saving and environmental decontamination functions. Appl Catal B. 2017;201:128.

  64. Liu TY, Liu B, Wang J, Yang LF, Ma XL, Li H, Zhang YH, Yin S, Sato T, Sekino T, Wang YH. Smart window coating based on F-TiO2-KxWO3 nanocomposites with heat shielding, ultraviolet isolating, hydrophilic and photocatalytic performance. Sci Rep. 2016;6:27373.

    Article  CAS  Google Scholar 

  65. Yang LF, Liu B, Liu TY, Ma XL, Li H, Yin S, Sato T, Wang YH. A P25/(NH4)xWO3 hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Sci Rep. 2017;7:45715.

    Article  CAS  Google Scholar 

  66. Shi AY, Li HY, Yin S, Zhang JC, Wang YH. H2 evolution over g-C3N4/CsxWO3 under NIR light. Appl Catal B. 2018;228:75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly supported by Japan Society for the Promotion of Science KAKENHI (Grant Number JP16H06439, Grant-in-Aid for Scientific Research on Innovative Areas), the Dynamic Alliance for Open Innovations Bridging Human, Environment and Materials, the Cooperative Research Program of Network Joint Research Center for Materials and Devices and the Hosokawa Powder Technology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Asakura, Y. Recent research progress on mixed valence state tungsten based materials. Tungsten 1, 5–18 (2019). https://doi.org/10.1007/s42864-019-00001-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-019-00001-0

Keywords

Navigation