Skip to main content
Log in

Damage assessment of smart composite structures via machine learning: a review

  • Review
  • Published:
JMST Advances Aims and scope Submit manuscript

Abstract

Composite materials are heterogeneous in nature and suffer from complex non-linear modes of failure, such as delamination, matrix crack, fiber-breakage, and voids, among others. The early detection of damage in composite structures, such as airplanes, is imperative to avoid catastrophic failure and tragic consequences. This paper reports on the use of machine learning techniques for the damage assessment (i.e., detection, quantification, and localization) of smart composite structures. The success of the machine learning paradigm for damage assessment depends on the representational capability of the discriminative features for the problems of interest. However, from a practical standpoint, it is not possible to define a global or superset of discriminative features that could discriminate between damaged and undamaged states of the structures, and simultaneously make a distinction between various modes of failures. In addition, one machine learning algorithm may show optimum performance for the discriminative features of a particular problem but fails for others. This article focuses on a review of discriminative features and the corresponding machine learning algorithms (both supervised and unsupervised), for various types of damage in smart composite structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Elmarakbi, Advanced composite materials for automotive applications: Structural integrity and crashworthiness (Wiley, Chichester, 2013)

    Book  Google Scholar 

  2. D. Gay, Composite materials: design and applications (CRC Press, Boca Raton, 2014)

    Book  Google Scholar 

  3. R. Smith, Composite defects and their detection. Mater. Sci. Eng. 3, 103–143 (2009)

    Google Scholar 

  4. G.H. Park, C.R. Farrar, A.C. Rutherford et al., Piezo-sensor self-diagnostics using electrical impedance measurements (Los Alamos, Los Alamos National Laboratory, 2004)

    Google Scholar 

  5. J.W. Sohn, H.S. Kim, Active recovery of vibration characteristics for delaminated composite structure using piezoelectric actuator. Int. J. Precis. Eng. Manuf. 16(3), 597–602 (2015)

    Article  Google Scholar 

  6. A. Khan, H.S. Kim, Active vibration control of a piezo-bonded laminated composite in the presence of sensor partial debonding and structural delaminations. Sensors 19(3), 540 (2019)

    Article  Google Scholar 

  7. A. Khan, H.S. Kim, Assessment of sensor debonding failure in system identification of smart composite laminates. NDT E Int. 93, 24–33 (2018)

    Article  Google Scholar 

  8. A. Khan, H.S. Kim, B.D. Youn, Modeling and assessment of partially debonded piezoelectric sensor in smart composite laminates. Int. J. Mech. Sci. 131, 26–36 (2017)

    Article  Google Scholar 

  9. A. Raghavan, Guided-wave structural health monitoring, 2007

  10. Z. Su, L. Ye, Y. Lu, Guided Lamb waves for identification of damage in composite structures: a review. J. Sound Vib. 295(3–5), 753–780 (2006)

    Article  Google Scholar 

  11. M.D. Rogge, C.A. Leckey, Characterization of impact damage in composite laminates using guided wavefield imaging and local wavenumber domain analysis. Ultrasonics 53(7), 1217–1226 (2013)

    Article  Google Scholar 

  12. H. Sohn, D. Dutta, J. Yang et al., Delamination detection in composites through guided wave field image processing. Compos. Sci. Technol. 71(9), 1250–1256 (2011)

    Article  Google Scholar 

  13. A. Yaghoobi, M.G. Chorzepa, Meshless modeling framework for fiber reinforced concrete structures. Comput. Struct. 161, 43–54 (2015)

    Article  Google Scholar 

  14. D. Montalvao, N.M.M. Maia, A.M.R. Ribeiro, A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib. Dig. 38(4), 295–324 (2006)

    Article  Google Scholar 

  15. H.S. Kim, A. Ghoshal, J. Kim et al., Transient analysis of delaminated smart composite structures by incorporating the Fermi–Dirac distribution function. Smart Mater. Struct. 15(2), 221 (2006)

    Article  Google Scholar 

  16. H.S. Kim, A. Ghoshal, A. Chattopadhyay et al., Development of embedded sensor models in composite laminates for structural health monitoring. J. Reinf. Plast. Compos. 23(11), 1207–1240 (2004)

    Article  Google Scholar 

  17. A. Khan, D.-K. Ko, S.C. Lim et al., Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network. Compos. B Eng. 161, 586–594 (2019)

    Article  Google Scholar 

  18. A. Khan, H.S. Kim, Assessment of delaminated smart composite laminates via system identification and supervised learning. Compos. Struct. 206, 354–362 (2018)

    Article  Google Scholar 

  19. A. Khan, H.S. Lee, H.S. Kim, Analysis of sensor-debonding failure in active vibration control of smart composite plate. J. Intell. Mater. Syst. Struct. 28(18), 2603–2616 (2017)

    Article  Google Scholar 

  20. W. Staszewski, C. Boller, G.R. Tomlinson, Health monitoring of aerospace structures: smart sensor technologies and signal processing (Wiley, New York, 2004)

    Google Scholar 

  21. W. Fan, P. Qiao, Vibration-based damage identification methods: a review and comparative study. Struct. Health Monit. 10(1), 83–111 (2011)

    Article  Google Scholar 

  22. S.W. Doebling, C.R. Farrar, M.B. Prime et al., Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review (Los Alamos, Los Alamos National Lab, 1996)

    Book  Google Scholar 

  23. E.P. Carden, P. Fanning, Vibration based condition monitoring: a review. Struct. Health Monit. 3(4), 355–377 (2004)

    Article  Google Scholar 

  24. B. Grisso, D. M. Peairs, D. J. Inman, Impedance-based health monitoring of composites. in 22nd, Conference on structural dynamics, pp. 26–29 (Dearborn, MI, 2004)

  25. B. Huang, H.S. Kim, Frequency response analysis of a delaminated smart composite plate. J. Intell. Mater. Syst. Struct. 26(9), 1091–1102 (2015)

    Article  Google Scholar 

  26. B. Huang, B.-H. Koh, H.S. Kim, PCA-based damage classification of delaminated smart composite structures using improved layerwise theory. Comput. Struct. 141, 26–35 (2014)

    Article  Google Scholar 

  27. C.J. Keulen, M. Yildiz, A. Suleman, Damage detection of composite plates by Lamb wave ultrasonic tomography with a sparse hexagonal network using damage progression trends. Shock Vib (2014). https://doi.org/10.1155/2014/949671

    Article  Google Scholar 

  28. S.M. Prasad, K. Balasubramaniam, C. Krishnamurthy, Structural health monitoring of composite structures using Lamb wave tomography. Smart Mater. Struct. 13(5), N73 (2004)

    Article  Google Scholar 

  29. D. Aggelis, N.-M. Barkoula, T. Matikas et al., Acoustic structural health monitoring of composite materials: damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics. Compos. Sci. Technol. 72(10), 1127–1133 (2012)

    Article  Google Scholar 

  30. K. Alnefaie, Finite element modeling of composite plates with internal delamination. Compos. Struct. 90(1), 21–27 (2009)

    Article  Google Scholar 

  31. C. Kyriazoglou, B. Le Page, F. Guild, Vibration damping for crack detection in composite laminates. Compos. A Appl. Sci. Manuf. 35(7–8), 945–953 (2004)

    Article  Google Scholar 

  32. P. Qiao, K. Lu, W. Lestari et al., Curvature mode shape-based damage detection in composite laminated plates. Compos. Struct. 80(3), 409–428 (2007)

    Article  Google Scholar 

  33. C.S. Hamey, W. Lestari, P. Qiao et al., Experimental damage identification of carbon/epoxy composite beams using curvature mode shapes. Struct. Health Monit. 3(4), 333–353 (2004)

    Article  Google Scholar 

  34. B. Huang, H.S. Kim, Transient analysis of biocomposite laminates with delamination. J. Nanosci. Nanotechnol. 14(10), 7432–7438 (2014)

    Article  Google Scholar 

  35. H.S. Kim, A. Chattopadhyay, A. Ghoshal, Characterization of delamination effect on composite laminates using a new generalized layerwise approach. Comput. Struct. 81(15), 1555–1566 (2003)

    Article  Google Scholar 

  36. M. Sause, A. Gribov, A. Unwin et al., Pattern recognition approach to identify natural clusters of acoustic emission signals. Pattern Recogn. Lett. 33(1), 17–23 (2012)

    Article  Google Scholar 

  37. T. Ely, E. Hill, Longitudinal splitting and fiber breakage characterization in graphite epoxy using acoustic emission data. NDT E Int. 2(30), 109 (1997)

    Google Scholar 

  38. M. Suzuki, H. Nakanishi, M. Iwamoto et al., Application of static fracture mechanisms to fatigue fracture behavior of class A-SMC composite. in Japan-US conference on composite materials, 4 th, Washington, DC (1989), pp. 297–306

  39. R. Gutkin, C. Green, S. Vangrattanachai et al., On acoustic emission for failure investigation in CFRP: pattern recognition and peak frequency analyses. Mech. Syst. Signal Process. 25(4), 1393–1407 (2011)

    Article  Google Scholar 

  40. J.J. Valletta, C. Torney, M. Kings et al., Applications of machine learning in animal behaviour studies. Anim. Behav. 124, 203–220 (2017)

    Article  Google Scholar 

  41. D. Kateris, D. Moshou, X.-E. Pantazi et al., A machine learning approach for the condition monitoring of rotating machinery. J. Mech. Sci. Technol. 28(1), 61–71 (2014)

    Article  Google Scholar 

  42. S. Park, J.-J. Lee, C.-B. Yun et al., Abuilt-in active sensing system-based structural health monitoring technique using statistical pattern recognition. J. Mech. Sci. Technol. 21(6), 896–902 (2007)

    Article  Google Scholar 

  43. H. Wang, C. Ma, and L. Zhou, A brief review of machine learning and its application. in 2009 international conference on information engineering and computer science (2009), pp. 1–4

  44. V. Cherkassky, F. Mulier, Learning from data: concepts, theory, and methods, Adaptive and Learning Systems for Signal Processing, Communications and Control Series (Wiley, New York, 1998)

    MATH  Google Scholar 

  45. K. Worden, C.R. Farrar, G. Manson et al., The fundamental axioms of structural health monitoring. Proc. Eng. R. Soc. A Math. Phys. Eng. 463, 1639–1664 (2007)

    Article  Google Scholar 

  46. J. Ghaboussi, J. Garrett Jr., X. Wu, Knowledge-based modeling of material behavior with neural networks. J. Eng. Mech. 117(1), 132–153 (1991)

    Article  Google Scholar 

  47. H. Su, K.T. Chong, Neural network based expert system for induction motor faults detection. J. Mech. Sci. Technol. 20(7), 929 (2006)

    Article  Google Scholar 

  48. Y.-R. Hwang, K.-K. Jen, Y.-T. Shen, Application of cepstrum and neural network to bearing fault detection. J. Mech. Sci. Technol. 23(10), 2730 (2009)

    Article  Google Scholar 

  49. H. Li, Y. Zhang, H. Zheng, Gear fault detection and diagnosis under speed-up condition based on order cepstrum and radial basis function neural network. J. Mech. Sci. Technol. 23(10), 2780–2789 (2009)

    Article  Google Scholar 

  50. K.T. Chong, A.G. Parlos, Comparison of traditional and neural network approaches to stochastic nonlinear system identification. KSME Int. J. 11(3), 267–278 (1997)

    Article  Google Scholar 

  51. S.-Y. Kim, B.-Y. Moon, D.-E. Kim, Optimum design of ship design system using neural network method in initial design of hull plate. KSME Int. J. 18(11), 1923–1931 (2004)

    Article  Google Scholar 

  52. A.S. Islam, K.C. Craig, Damage detection in composite structures using piezoelectric materials (and neural net). Smart Mater. Struct. 3(3), 318 (1994)

    Article  Google Scholar 

  53. A.C. Okafor, K. Chandrashekhara, Y. Jiang, Delamination prediction in composite beams with built-in piezoelectric devices using modal analysis and neural network. Smart Mater. Struct. 5(3), 338 (1996)

    Article  Google Scholar 

  54. D.-U. Sung, J.-H. Oh, C.-G. Kim et al., Impact monitoring of smart composite laminates using neural network and wavelet analysis. J. Intell. Mater. Syst. Struct. 11(3), 180–190 (2000)

    Article  Google Scholar 

  55. D. Sammons, W. P. Winfree, E. Burke et al., Segmenting delaminations in carbon fiber reinforced polymer composite CT using convolutional neural networks. in AIP conference proceedings, vol. 1706 (AIP Publishing, Melville, 2016) p. 110014

  56. H. Bar, M. Bhat, C. Murthy, Identification of failure modes in GFRP using PVDF sensors: ANN approach. Compos. Struct. 65(2), 231–237 (2004)

    Article  Google Scholar 

  57. C. Bhat, M. Bhat, C. Murthy, Acoustic emission characterization of failure modes in composites with ANN. Compos. Struct. 61(3), 213–220 (2003)

    Article  Google Scholar 

  58. D. Chetwynd, F. Mustapha, K. Worden et al., Damage localisation in a stiffened composite panel. Strain 44(4), 298–307 (2008)

    Article  Google Scholar 

  59. C. Cortes, V. Vapnik, Support-vector Networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  60. L. Wang, Support vector machines: theory and applications (Springer Science & Business Media, Berlin, 2005)

    Book  MATH  Google Scholar 

  61. H.-Z. Huang, H.-K. Wang, Y.-F. Li et al., Support vector machine based estimation of remaining useful life: current research status and future trends. J. Mech. Sci. Technol. 29(1), 151–163 (2015)

    Article  Google Scholar 

  62. G.-M. Lim, D.-M. Bae, J.-H. Kim, Fault diagnosis of rotating machine by thermography method on support vector machine. J. Mech. Sci. Technol. 28(8), 2947–2952 (2014)

    Article  Google Scholar 

  63. Z. Xing, J. Qu, Y. Chai et al., Gear fault diagnosis under variable conditions with intrinsic time-scale decomposition-singular value decomposition and support vector machine. J. Mech. Sci. Technol. 31(2), 545–553 (2017)

    Article  Google Scholar 

  64. K.-R. Kim, Y.-S. Lee, Acoustic emission source localization in plate-like structures using least-squares support vector machines with delta t feature. J. Mech. Sci. Technol. 28(8), 3013–3020 (2014)

    Article  Google Scholar 

  65. Y. Kim, J. Jang, W. Kim et al., Multiple defect diagnostics of gas turbine engine using SVM and RCGA-based ANN algorithms. J. Mech. Sci. Technol. 26(5), 1623–1632 (2012)

    Article  Google Scholar 

  66. D.-H. Seo, T.-S. Roh, D.-W. Choi, Defect diagnostics of gas turbine engine using hybrid SVM-ANN with module system in off-design condition. J. Mech. Sci. Technol. 23(3), 677–685 (2009)

    Article  Google Scholar 

  67. S. Das, A. Chattopadhyay, A.N. Srivastava, Classifying induced damage in composite plates using one-class support vector machines. Aiaa J. 48(4), 705–718 (2010)

    Article  Google Scholar 

  68. P.M. Pawar, S.N. Jung, Support vector machine based online composite helicopter rotor blade damage detection system. J. Intell. Mater. Syst. Struct. 19(10), 1217–1228 (2008)

    Article  Google Scholar 

  69. M. Farooq, H. Zheng, A. Nagabhushana et al., Damage detection and identification in smart structures using SVM and ANN. in Smart Sensor Phenomena, Technology, Networks, and Systems Integration 2012, vol. 8346 (International Society for Optics and Photonics, Bellingham, 2012), p. 83461O

  70. G. Dib, O. Karpenko, E. Koricho et al., Ensembles of novelty detection classifiers for structural health monitoring using guided waves. Smart Mater. Struct. 27(1), 015003 (2017)

    Article  Google Scholar 

  71. F. Cong, J. Chen, G. Dong, Spectral kurtosis based on AR model for fault diagnosis and condition monitoring of rolling bearing. J. Mech. Sci. Technol. 26(2), 301–306 (2012)

    Article  Google Scholar 

  72. L.D. Avendaño-Valencia, S.D. Fassois, Natural vibration response based damage detection for an operating wind turbine via random coefficient linear parameter varying AR modelling. J Phys 628, 012073 (2015)

    Google Scholar 

  73. Z. Wang, K. Ong, Structural damage detection using autoregressive-model-incorporating multivariate exponentially weighted moving average control chart. Eng. Struct. 31(5), 1265–1275 (2009)

    Article  Google Scholar 

  74. E.P. Carden, J.M. Brownjohn, ARMA modelled time-series classification for structural health monitoring of civil infrastructure. Mech. Syst. Sig. Process. 22(2), 295–314 (2008)

    Article  Google Scholar 

  75. K.K. Nair, A.S. Kiremidjian, K.H. Law, Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure. J. Sound Vib. 291(1–2), 349–368 (2006)

    Article  Google Scholar 

  76. D. Nardi, L. Lampani, M. Pasquali et al., Detection of low-velocity impact-induced delaminations in composite laminates using Auto-Regressive models. Compos. Struct. 151, 108–113 (2016)

    Article  Google Scholar 

  77. K. Vamvoudakis-Stefanou, J. Sakellariou, S. Fassois, Random vibration response-only damage detection for a set of composite beams. in Proceedings of the ISMA international conference on noise and vibration engineering (2014), pp. 3839–3853

  78. G. Manson, K. Worden, K. Holford et al., Visualisation and dimension reduction of acoustic emission data for damage detection. J. Intell. Mater. Syst. Struct. 12(8), 529–536 (2001)

    Article  Google Scholar 

  79. L.E. Mujica, J. Vehí, M. Ruiz et al., Multivariate statistics process control for dimensionality reduction in structural assessment. Mech. Syst. Signal Process. 22(1), 155–171 (2008)

    Article  Google Scholar 

  80. G. Kerschen, P. De Boe, J.-C. Golinval et al., Sensor validation using principal component analysis. Smart Mater. Struct. 14(1), 36 (2004)

    Article  Google Scholar 

  81. G. Manson, “Identifying damage sensitive, environment insensitive features for damage detection. in Proceedings of the third international conference on identification in engineering systems (2002), pp. 187–197

  82. A.-M. Yan, G. Kerschen, P. De Boe et al., Structural damage diagnosis under varying environmental conditions—part I: a linear analysis. Mech. Syst. Signal Process. 19(4), 847–864 (2005)

    Article  Google Scholar 

  83. A.R. Oskouei, H. Heidary, M. Ahmadi et al., Unsupervised acoustic emission data clustering for the analysis of damage mechanisms in glass/polyester composites. Mater. Des. 37, 416–422 (2012)

    Article  Google Scholar 

  84. J.O. Berger, Statistical decision theory and Bayesian analysis (Springer Science & Business Media, New York, 2013)

    Google Scholar 

  85. J.M. Bernardo, A.F. Smith, Bayesian theory. 1994 (Wiley, Valencia (España), 1994)

    Book  Google Scholar 

  86. J. Yu, M. Bai, G. Wang et al., Fault diagnosis of planetary gearbox with incomplete information using assignment reduction and flexible naive Bayesian classifier. J. Mech. Sci. Technol. 32(1), 37–47 (2018)

    Article  Google Scholar 

  87. T. Peng, A. Saxena, K. Goebel et al., A novel Bayesian imaging method for probabilistic delamination detection of composite materials. Smart Mater. Struct. 22(12), 125019 (2013)

    Article  Google Scholar 

  88. M. Nguyen, X. Wang, Z. Su et al., Damage identification for composite structures with a Bayesian network. in Proceedings of the 2004 intelligent sensors, sensor networks and information processing conference, 2004 (2004), pp. 307–311

  89. E. Rabiei, E. L. Droguett, M. Modarres, Damage monitoring and prognostics in composites via dynamic Bayesian networks. in 2017 Annual reliability and maintainability symposium (RAMS) (2017), pp. 1–7

  90. O. Addin, S. Sapuan, E. Mahdi et al., A Naïve-Bayes classifier for damage detection in engineering materials. Mater. Des. 28(8), 2379–2386 (2007)

    Article  Google Scholar 

  91. J. Nichols, W. Link, K. Murphy et al., A Bayesian approach to identifying structural nonlinearity using free-decay response: application to damage detection in composites. J. Sound Vib. 329(15), 2995–3007 (2010)

    Article  Google Scholar 

  92. N. Godin, S. Huguet, R. Gaertner et al., Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers. NDT E Int. 37(4), 253–264 (2004)

    Article  Google Scholar 

  93. F. Pashmforoush, R. Khamedi, M. Fotouhi et al., Damage classification of sandwich composites using acoustic emission technique and k-means genetic algorithm. J. Nondestr. Eval. 33(4), 481–492 (2014)

    Article  Google Scholar 

  94. T.G. Dietterich, Ensemble methods in machine learning (Springer, Berlin, 2000), pp. 1–15

    Google Scholar 

  95. C. Zhang, Y. Ma, Ensemble machine learning: methods and applications (Springer, Berlin, 2012)

    Book  MATH  Google Scholar 

  96. P. Gaudenzi, D. Nardi, I. Chiapetta et al., Impact damage detection in composite laminate plates using an integrated piezoelectric sensor and actuator couple combined with wavelet based features extraction approach. in Proceedings of the 7th ECCOMAS thematic conference on smart structures and materials, Azores, Portugal (2015)

  97. J.P. McCrory, S.K. Al-Jumaili, D. Crivelli et al., Damage classification in carbon fibre composites using acoustic emission: a comparison of three techniques. Compos. B Eng. 68, 424–430 (2015)

    Article  Google Scholar 

  98. S. Kessler, P. Rani, Pattern recognition for damage characterization in composite materials. in 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference (2007), p. 2411

  99. R. De Oliveira, A. Marques, Health monitoring of FRP using acoustic emission and artificial neural networks. Comput. Struct. 86(3–5), 367–373 (2008)

    Article  Google Scholar 

  100. L. Li, S.V. Lomov, X. Yan et al., Cluster analysis of acoustic emission signals for 2D and 3D woven glass/epoxy composites. Compos. Struct. 116, 286–299 (2014)

    Article  Google Scholar 

  101. N. Godin, S. Huguet, R. Gaertner, Integration of the Kohonen’s self-organising map and k-means algorithm for the segmentation of the AE data collected during tensile tests on cross-ply composites. NDT E Int. 38(4), 299–309 (2005)

    Article  Google Scholar 

  102. F. Pashmforoush, M. Fotouhi, M. Ahmadi, Acoustic emission-based damage classification of glass/polyester composites using harmony search k-means algorithm. J. Reinf. Plast. Compos. 31(10), 671–680 (2012)

    Article  Google Scholar 

  103. S.K. Al-Jumaili, K.M. Holford, M.J. Eaton et al., Classification of acoustic emission data from buckling test of carbon fibre panel using unsupervised clustering techniques. Struct. Health Monit. 14(3), 241–251 (2015)

    Article  Google Scholar 

  104. D.-A. Tibaduiza, M.-A. Torres-Arredondo, L. Mujica et al., A study of two unsupervised data driven statistical methodologies for detecting and classifying damages in structural health monitoring. Mech. Syst. Signal Process. 41(1–2), 467–484 (2013)

    Article  Google Scholar 

  105. J. Vitola, F. Pozo, D.A. Tibaduiza et al., Distributed piezoelectric sensor system for damage identification in structures subjected to temperature changes. Sensors 17(6), 1252 (2017)

    Article  Google Scholar 

  106. A.A. Jiménez, C.Q.G. Muñoz, F.P.G. Márquez, Machine learning for wind turbine blades maintenance management. Energies 11(1), 1–16 (2017)

    Article  Google Scholar 

  107. J. Tang, G. Yan, Monitoring and detection of structural damage under complex environment using guided waves. in Singapore international NDT conference and exhibition (2013)

  108. H. Sohn, G. Park, J.R. Wait et al., Wavelet-based active sensing for delamination detection in composite structures. Smart Mater. Struct. 13(1), 153 (2003)

    Article  Google Scholar 

  109. M. Sultan, K. Worden, S. Pierce et al., On impact damage detection and quantification for CFRP laminates using structural response data only. Mech. Syst. Signal Process. 25(8), 3135–3152 (2011)

    Article  Google Scholar 

  110. M. Fotouhi, H. Heidary, M. Ahmadi et al., Characterization of composite materials damage under quasi-static three-point bending test using wavelet and fuzzy C-means clustering. J. Compos. Mater. 46(15), 1795–1808 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Council of Science & Technology (NST) grant by the Korea Government (MSIT) (CAP-17-04-KRISS) and was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2017R1D1A1B03028368), funded by the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Kim, N., Shin, J.K. et al. Damage assessment of smart composite structures via machine learning: a review. JMST Adv. 1, 107–124 (2019). https://doi.org/10.1007/s42791-019-0012-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42791-019-0012-2

Keywords

Navigation