Skip to main content
Log in

Thermal conductivity reduction of multilayer graphene with fine grain sizes

  • Letter
  • Published:
JMST Advances Aims and scope Submit manuscript

Abstract

The thermal conductivities of monolayer graphene with 4.1 μm grain size and multilayer graphene with 0.3 μm grain sizes are measured by optothermal Raman technique. The number of layers and average grain sizes of graphene are controlled by copper thickness and synthesis conditions in chemical vapor deposition system. In addition, the graphene samples are suspended on a thorough 8-μm hole substrate via PMMA transfer method to avoid substrate effects. As a result, the thermal conductivity graphene is significantly reduced from 3000 to 660 W/m K at 320 K with increasing graphene layers and decreasing grain sizes due to the enhanced phonon scattering. The multilayer graphene with fine grain sizes that has the suppressed thermal conductivity can be useful for application in various field, such as thermoelectric material and thermal rectification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

A :

Area

α :

An integral function of r0 and R

d :

Average grain size

n :

The number of grains

Q :

Absorbed heat

R :

Hole-suspended graphene of radius

r 0 :

Laser beam radius

T :

Temperature

T a :

Ambient temperature

T m :

Measured graphene temperature

t :

Thickness of graphene

k :

Thermal conductivity

References

  1. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  2. K.I. Bolotin et al., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  Google Scholar 

  3. R.R. Nair et al., Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  Google Scholar 

  4. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  Google Scholar 

  5. A.A. Balandin et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  Google Scholar 

  6. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011)

    Article  Google Scholar 

  7. D. Nika, E. Pokatilov, A. Askerov, A. Balandin, Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009)

    Article  Google Scholar 

  8. S. Ghosh et al., Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555 (2010)

    Article  Google Scholar 

  9. W. Lee et al., In-plane thermal conductivity of polycrystalline chemical vapor deposition graphene with controlled grain sizes. Nano Lett. 17, 2361–2366 (2017)

    Article  Google Scholar 

  10. Y. Xu, Z. Li, W. Duan, Thermal and thermoelectric properties of graphene. Small 10, 2182–2199 (2014)

    Article  Google Scholar 

  11. W. Zhao et al., Defect-engineered heat transport in graphene: a route to high efficient thermal rectification. Sci. Rep. 5, 11962 (2015)

    Article  Google Scholar 

  12. X. Li et al., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009)

    Article  Google Scholar 

  13. A.M. Lewis, B. Derby, I.A. Kinloch, Influence of gas phase equilibria on the chemical vapor deposition of graphene. ACS Nano 7, 3104–3117 (2013)

    Article  Google Scholar 

  14. X. Li et al., Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 10, 4328–4334 (2010)

    Article  Google Scholar 

  15. G. Eres et al., Cooperative island growth of large-area single-crystal graphene on copper using chemical vapor deposition. ACS Nano 8, 5657–5669 (2014)

    Article  Google Scholar 

  16. K. Celebi, M.T. Cole, K.B. Teo, H.G. Park, Observations of early stage graphene growth on copper. Electrochem. Solid State Lett. 15, K1–K4 (2011)

    Article  Google Scholar 

  17. I. Vlassiouk et al., Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5, 6069–6076 (2011)

    Article  Google Scholar 

  18. W. Liu, H. Li, C. Xu, Y. Khatami, K. Banerjee, Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49, 4122–4130 (2011)

    Article  Google Scholar 

  19. S. Chen et al., Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 5, 321–328 (2010)

    Article  Google Scholar 

  20. S. Chen et al., Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotechnology 23, 365701 (2012)

    Article  Google Scholar 

  21. W. Cai et al., Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10, 1645–1651 (2010)

    Article  Google Scholar 

  22. S. Chen et al., Thermal conductivity of isotopically modified graphene. Nat. Mater. 11, 203 (2012)

    Article  Google Scholar 

  23. A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  Google Scholar 

  24. A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235 (2013)

    Article  Google Scholar 

  25. S. Berciaud, S. Ryu, L.E. Brus, T.F. Heinz, Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 9, 346–352 (2008)

    Article  Google Scholar 

  26. A.C. Ferrari et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  Google Scholar 

  27. I. Calizo, F. Miao, W. Bao, C. Lau, A. Balandin, Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices. Appl. Phys. Lett. 91, 071913 (2007)

    Article  Google Scholar 

  28. D. Singh, J.Y. Murthy, T.S. Fisher, Mechanism of thermal conductivity reduction in few-layer graphene. J. Appl. Phys. 110, 044317 (2011)

    Article  Google Scholar 

  29. D.G. Cahill et al., Nanoscale thermal transport II 2003–2012. Appl. Phys. Rev. 1, 011305 (2014)

    Article  Google Scholar 

  30. M. Kaviany, Heat Transfer Physics (Cambridge University Press, Cambridge, 2014)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research was primarily supported by the Nano-Material Technology Development Program (R2011-003-2009) and Basic Science Research Program (2017R1A2B3005706), and Global Frontier R&D Program on Center for Multiscale Energy System (Grant No. 2012-054172) through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning, and was also partially supported by the Magnavox Professorship fund from the University of Tennessee (R0-1137-3164) and Institute of Engineering Research at Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hwan Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, W., Kihm, K.D. & Ko, S.H. Thermal conductivity reduction of multilayer graphene with fine grain sizes. JMST Adv. 1, 191–195 (2019). https://doi.org/10.1007/s42791-019-0008-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42791-019-0008-y

Keywords

Navigation