Skip to main content
Log in

Flexible and Reusable Non-woven Fabric Photodetector Based on Polypyrrole/Crystal Violate Lactone for NIR Light Detection and Writing

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Rapid NIR light detection and/or writing has drawn much attention, but their practical applications have been limited by obtaining such NIR photodetectors. To address this problem, we have developed a simple and versatile strategy to prepare a non-woven fabric photodetector. The blue non-woven fabric photodetector has been prepared by coating photo-thermochromic ink (including crystal violet lactone (CVL) as the thermo-sensitive dye, polypyrrole (PPy) nanospheres as the photothermal component and hydroxyethyl cellulose (HEC) as the polymer matrix) on white non-woven fabric. When the blue fabric photodetector is irradiated by NIR (808-nm as model, 0.75 W cm−2) laser, the discoloration occurs in 35 s, and higher laser intensity confers more rapid discoloration. This discoloration results from the photothermal effect of PPy which confers the elevation of temperature (> 50 °C) and then converts CVL to its leuco form (colorless). When the laser is turned off, the temperature drops to below the transition temperature (< 43 °C), and then CVL reverts to its initial blue color. Moreover, different figures and images can be easily printed on the fabric photodetector by 808 nm laser, and then they can be erased automatically under ambient conditions, with excellent cycling stability. Therefore, this fabric photodetector may act as a new platform for rapid NIR light detection and writing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent EH. Ultrasensitive solution-cast quantum dot photodetectors. Nature.2006;442:180.

    CAS  Google Scholar 

  2. Tanzid M, Ahmadivand A, Zhang R, Cerjan B, Sobhani A, Yazdi S, Nordlander P, Halas NJ. Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection. ACS Photonics. 2018;5:3472.

    CAS  Google Scholar 

  3. Maity P, Singh SV, Biring S, Pal BN, Ghosh AK. Selective near-infrared (NIR) photodetectors fabricated with colloidal CdS: Co quantum dots. J Mater Chem C. 2019;7:7725.

    CAS  Google Scholar 

  4. Li J, Niu L, Zheng Z, Yan F. Photosensitive Graphene Transistors. Adv Mater. 2014;26:5239.

    CAS  Google Scholar 

  5. Vinayakumar V, Shaji S, Avellaneda D, Aguilar-Martínez JA, Krishnan B. Copper antimony sulfide thin films for visible to near infrared photodetector applications. RSC Adv. 2018;8:31055.

    CAS  Google Scholar 

  6. Ren D, Azizur-Rahman KM, Rong Z, Juang B-C, Somasundaram S, Shahili M, Farrell AC, Williams BS, Huffaker DL. Room-temperature midwavelength infrared InAsSb nanowire photodetector arrays with Al2O3 passivation. Nano Lett. 2019;19:2793.

    CAS  Google Scholar 

  7. Sun J, Peng M, Zhang Y, Zhang L, Peng R, Miao C, Liu D, Han M, Feng R, Ma Y, Dai Y, He L, Shan C, Pan A, Hu W, Yang Z. Ultrahigh hole mobility of Sn-catalyzed GaSb nanowires for high speed infrared photodetectors. Nano Lett. 2019;19:5920.

    CAS  Google Scholar 

  8. Sulaman M, Song Y, Yang S, Hao Q, Zhao Y, Li M, Saleem MI, Chandraseakar PV, Jiang Y, Tang Y, Zou B. High-performance solution-processed colloidal quantum dots-based tandem broadband photodetectors with dielectric interlayer. Nanotechnology. 2019;30:465203.

    CAS  Google Scholar 

  9. Miao J, Hu W, Guo N, Lu Z, Zou X, Liao L, Shi S, Chen P, Fan Z, Ho JC, Li T, Chen X, Lu W. Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano. 2014;8:3628.

    CAS  Google Scholar 

  10. Li J, Wang Z, Wen Y, Chu J, Yin L, Cheng R, Lei L, He P, Jiang C, Feng L, He J. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv Funct Mater. 2018;28:1706437.

    Google Scholar 

  11. Zeng L, Wang M, Hu H, Nie B, Yu Y, Wu C, Wang L, Hu J, Xie C, Liang F, Luo L. Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl Mater Interfaces. 2013;5:9362.

    CAS  Google Scholar 

  12. Pinto TV, Costa P, Sousa CM, Sousa CAD, Pereira C, Silva C, Pereira MFR, Coelho PJ, Freire C. Screen-printed photochromic textiles through new inks based on SiO2@naphthopyran nanoparticles. ACS Appl Mater Interfaces. 2016;8:28935.

    CAS  Google Scholar 

  13. Zhang W, Ji X, Yin Y, Wang C. Temperature induced color changing cotton fabricated via grafting epoxy modified thermochromic capsules. Cellulose. 2019;26:5745.

    CAS  Google Scholar 

  14. Zhang Y, Hu Z, Xiang H, Zhai G, Zhu M. Fabrication of visual textile temperature indicators based on reversible thermochromic fibers. Dyes Pigments. 2019;162:705.

    CAS  Google Scholar 

  15. Wang W, Xie N, He L, Yin Y. Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper. Nat Commun. 2014;5:5459.

    CAS  Google Scholar 

  16. Wang W, Ye M, He L, Yin Y. Nanocrystalline TiO2-catalyzed photoreversible color switching. Nano Lett. 2014;14:1681.

    CAS  Google Scholar 

  17. Han D, Jiang B, Feng J, Yin Y, Wang W. Photocatalytic self-doped SnO2−x nanocrystals drive visible-light-responsive color switching. Angew Chem Int Ed. 2017;56:7792.

    CAS  Google Scholar 

  18. Klajn R, Wesson PJ, Bishop KJM, Grzybowski BA. Writing self-erasing images using metastable nanoparticle “inks”. Angew Chem Int Edit. 2009;48:7035.

    CAS  Google Scholar 

  19. Yamazaki S, Ishida H, Shimizu D, Adachi K. Photochromic properties of tungsten oxide/methylcellulose composite film containing dispersing agents. ACS Appl Mater Interfaces. 2015;7:26326.

    CAS  Google Scholar 

  20. Zhou Y, Huang A, Ji S, Zhou H, Jin P, Li R. Scalable preparation of photochromic composite foils with excellent reversibility for light printing. Chem Asian J. 2018;13:457.

    CAS  Google Scholar 

  21. Macharia DK, Ahmed S, Zhu B, Liu Z, Wang Z, Mwasiagi JI, Chen Z, Zhu M. UV/NIR-light-triggered rapid and reversible color switching for rewritable smart fabrics. ACS Appl Mater Interfaces. 2019;11:13370.

    CAS  Google Scholar 

  22. Panák O, Držková M, Kaplanová M, Novak U, Klanjšek Gunde M. The relation between colour and structural changes in thermochromic systems comprising crystal violet lactone, bisphenol A, and tetradecanol. Dyes Pigments. 2017;136:382.

    Google Scholar 

  23. MacLaren DC, White MA. Dye–developer interactions in the crystal violet lactone–lauryl gallate binary system: implications for thermochromism. J Mater Chem. 2003;13:1695.

    CAS  Google Scholar 

  24. MacLaren DC, White MA. Competition between dye–developer and solvent–developer interactions in a reversible thermochromic system. J Mater Chem. 2003;13:1701.

    CAS  Google Scholar 

  25. Zhu CF, Wu AB. Studies on the synthesis and thermochromic properties of crystal violet lactone and its reversible thermochromic complexes. Thermochim Acta. 2005;425:7.

    CAS  Google Scholar 

  26. Hajzeri M, Bašnec K, Bele M, Gunde MK. Influence of developer on structural, optical and thermal properties of a benzofluoran-based thermochromic composite. Dyes Pigments. 2015;113:754.

    CAS  Google Scholar 

  27. Tian QW, Tang MH, Sun YG, Zou RJ, Chen ZG, Zhu MF, Yang SP, Wang JL, Wang JH, Hu JQ. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv Mater. 2011;23:3542.

    CAS  Google Scholar 

  28. Zhong R, Peng C, Chen L, Yu N, Liu Z, Zhu M, He C, Chen Z. Egg white-mediated green synthesis of CuS quantum dots as a biocompatible and efficient 980 nm laser-driven photothermal agent. RSC Adv. 2016;6:40480.

    CAS  Google Scholar 

  29. Chen ZG, Wang Q, Wang HL, Zhang LS, Song GS, Song LL, Hu JQ, Wang HZ, Liu JS, Zhu MF, Zhao DY. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv Mater. 2013;25:2095.

    CAS  Google Scholar 

  30. Chen X, Yu N, Zhang L, Liu Z, Wang Z, Chen Z. Synthesis of polypyrrole nanoparticles for constructing full-polymer UV/NIR-shielding film. RSC Adv. 2015;5:96888.

    CAS  Google Scholar 

  31. Zha Z, Yue X, Ren Q, Dai Z. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater. 2013;25:777.

    CAS  Google Scholar 

  32. Wang X, Li H, Liu X, Tian Y, Guo H, Jiang T, Luo Z, Jin K, Kuai X, Liu Y, Pang Z, Yang W, Shen S. Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion. Biomaterials. 2017;143:130.

    CAS  Google Scholar 

  33. Yang K, Xu H, Cheng L, Sun C, Wang J, Liu Z. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv Mater. 2012;24:5586.

    CAS  Google Scholar 

  34. Zhang X, Zhang J, Song W, Liu Z. Controllable synthesis of conducting polypyrrole nanostructures. J Phys Chem B. 2006;110:1158.

    CAS  Google Scholar 

  35. Omastová M, Trchová M, Kovářová J, Stejskal J. Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Met. 2003;138:447.

    Google Scholar 

  36. de Oliveira HP, Andrade CA, de Melo CP. Electrical impedance spectroscopy investigation of surfactant-magnetite-polypyrrole particles. J Colloid Interface Sci. 2008;319:441.

    Google Scholar 

  37. Yao T, Jia W, Tong X, Feng Y, Qi Y, Zhang X, Wu J. One-step preparation of nanobeads-based polypyrrole hydrogel by a reactive-template method and their applications in adsorption and catalysis. J Colloid Interface Sci. 2018;527:214.

    CAS  Google Scholar 

  38. Chen XL, Zhang L, Feng JJ, Wang W, Yuan PX, Han DM, Wang AJ. Facile solvothermal fabrication of polypyrrole sheets supported dendritic platinum-cobalt nanoclusters for highly efficient oxygen reduction and ethylene glycol oxidation. J Colloid Interface Sci. 2018;530:394.

    CAS  Google Scholar 

  39. Yan D, Liu X, Deng G, Yuan H, Wang Q, Zhang L, Lu J. Facile assembling of novel polypyrrole nanocomposites theranostic agent for magnetic resonance and computed tomography imaging guided efficient photothermal ablation of tumors. J Colloid Interface Sci. 2018;530:547.

    CAS  Google Scholar 

  40. Roper DK, Ahn W, Hoepfner M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J Phys Chem C. 2007;111:3636.

    CAS  Google Scholar 

  41. Yu N, Li J, Wang Z, Yang S, Liu Z, Wang Y, Zhu M, Wang D, Chen Z. Blue Te nanoneedles with strong NIR photothermal and laser-enhanced anticancer effects as “all-in-one” nanoagents for synergistic thermo-chemotherapy of tumors. Adv Healthc Mater. 2018;7:1800643.

    Google Scholar 

  42. Li B, Ouyang G, Yao L. Study on the method used to display self-fading lines and erasable lines. J Forensic Sci. 2018;63:1545.

    Google Scholar 

  43. Malherbe I, Sanderson RD, Smit E. Reversibly thermochromic micro-fibres by coaxial electrospinning. Polymer. 2010;51:5037.

    CAS  Google Scholar 

  44. Chen L, Weng M, Huang F, Zhang W. Long-lasting and easy-to-use rewritable paper fabricated by printing technology. ACS Appl Mater Inter. 2018;10:40149.

    CAS  Google Scholar 

  45. Burkinshaw SM, Griffiths J, Towns AD. Reversibly thermochromic systems based on pH-sensitive functional dyes. J Mater Chem. 1998;8:2677.

    CAS  Google Scholar 

  46. Wang S, Hwang I-J, Gwon S-Y, Kim S-H. Ionochromism of crystal violet lactone triggered by metal cations. Fiber Polym. 2010;11:1198.

    CAS  Google Scholar 

  47. Hu M, Peil S, Xing Y, Döhler D, Caire da Silva L, Binder WH, Kappl M, Bannwarth MB. Monitoring crack appearance and healing in coatings with damage self-reporting nanocapsules. Mater Horiz. 2018;5:51.

    CAS  Google Scholar 

  48. Kulčar R, Friškovec M, Hauptman N, Vesel A, Gunde MK. Colorimetric properties of reversible thermochromic printing inks. Dyes Pigments. 2010;86:271.

    Google Scholar 

  49. Schäfer CG, Lederle C, Zentel K, Stühn B, Gallei M. Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials. Macromol Rapid Commun. 1852;2014:35.

    Google Scholar 

  50. Zhao L, Wang H, Luo J, Cai C, Song GL, Tang GY. Fabrication of silk fibroin film with properties of thermal insulation and temperature monitoring. J Polym Sci Part B-Polym Phys. 2016;54:1846.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51773036 and 51972056), Shanghai Shuguang Program (18SG29), Natural Science Foundation of Shanghai (18ZR1401700), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-03-E00055), the Fundamental Research Funds for the Central Universities, and DHU Distinguished Young Professor Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Macharia, D.K., Ahmed, S. et al. Flexible and Reusable Non-woven Fabric Photodetector Based on Polypyrrole/Crystal Violate Lactone for NIR Light Detection and Writing. Adv. Fiber Mater. 2, 150–160 (2020). https://doi.org/10.1007/s42765-019-00022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-00022-x

Keywords

Navigation