Skip to main content

Advertisement

Log in

Advanced Functional Fiber and Smart Textile

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The research and applications of fiber materials are directly related to the daily life of social populace and the development of relevant revolutionary manufacturing industry. However, the conventional fibers and fiber products can no longer meet the requirements of automation and intellectualization in modern society, as well as people’s consumption needs in pursuit of smart, avant-grade, fashion and distinctiveness. The advanced fiber-shaped electronics with most desired designability and integration features have been explored and developed intensively during the last few years. The advanced fiber-based products such as wearable electronics and smart clothing can be employed as the second skin to enhance information exchange between humans and the external environment. In this review, the significant progress on flexible fiber-shaped multifunctional devices, including fiber-based energy harvesting devices, energy storage devices, chromatic devices, and actuators are discussed. Particularly, the fabrication procedures and application characteristics of multifunctional fiber devices such as fiber-shaped solar cells, lithium-ion batteries, actuators and electrochromic fibers are introduced in detail. Finally, we provide our perspectives on the challenges and future development of functional fiber-shaped devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Chen M, Ma YJ, Song J, Lai CF, Hu B. Smart clothing: connecting human with clouds and big data for sustainable health monitoring. Mobile Netw Appl. 2016;21:825.

    Article  Google Scholar 

  2. Hwang C, Chung T-L, Sanders EA. Attitudes and purchase intentions for smart clothing. Cloth Text Res J. 2016;34:207.

    Article  Google Scholar 

  3. Loss C, Goncalves R, Lopes C, Pinho P, Salvado R. Smart coat with a fully-embedded textile antenna for IoT applications. Sensors (Basel). 2016;16:938.

    Article  Google Scholar 

  4. Chen M, Ma Y, Li Y, Wu D, Zhang Y, Youn C-H. Wearable 2.0: enabling human-cloud integration in next generation healthcare systems. IEEE Commun Mag. 2017;55:54.

    Article  Google Scholar 

  5. Honarvar MG, Latifi M. Overview of wearable electronics and smart textiles. J Text Inst. 2017;108:631.

    Article  Google Scholar 

  6. Choi DY, Kim MH, Oh YS, Jung S-H, Jung JH, Sung HJ, Lee HW, Lee HM. Highly stretchable, hysteresis-free ionic liquid -based strain sensor for precise human motion monitoring. ACS Appl Mater Interfaces. 2017;9:1770.

    Article  CAS  Google Scholar 

  7. Li L, Bai Y, Li L, Wang S, Zhang T. A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv Mater. 2017;29:1702517.

    Article  CAS  Google Scholar 

  8. Liu M, Pu X, Jiang C, Liu T, Huang X, Chen L, Du C, Sun J, Hu W, Wang ZL. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater. 2017;29:1703700.

    Article  CAS  Google Scholar 

  9. Yu A, Pu X, Wen R, Liu M, Zhou T, Zhang K, Zhang Y, Zhai J, Hu W, Wang ZL. Core-shell-yarn-based triboelectric nanogenerator textiles as power cloths. ACS Nano. 2017;11:12764.

    Article  CAS  Google Scholar 

  10. Chen B, Chen S, Dong B, Gao X, Xiao X, Zhou J, Hu J, Tang S, Yan K, Hu H, Sun K, Wen W, Zhao Z, Zou D. Electrical heating-assisted multiple coating method for fabrication of high-performance perovskite fiber solar cells by thickness control. Adv Mater Interfaces. 2017;4:1700833.

    Article  CAS  Google Scholar 

  11. Fu X, Sun H, Xie S, Zhang J, Pan Z, Liao M, Xu L, Li Z, Wang B, Sun X, Peng H. A fiber-shaped solar cell showing a record power conversion efficiency of 10%. J Mater Chem A. 2018;6:45.

    Article  CAS  Google Scholar 

  12. Varma SJ, Kumar KS, Seal S, Rajaraman S, Thomas J. Fiber-type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications. Adv Sci. 2018;5:1800340.

    Article  CAS  Google Scholar 

  13. Guo Y, Zhang X-S, Wang Y, Gong W, Zhang Q, Wang H, Brugger J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy. 2018;48:152.

    Article  CAS  Google Scholar 

  14. Gong W, Hou C, Zhou J, Guo Y, Zhang W, Li Y, Zhang Q, Wang H. Continuous and scalable manufacture of amphibious energy yarns and textiles. Nat Commun. 2019;10:868.

    Article  Google Scholar 

  15. Liu R, Liu Y, Chen J, Kang Q, Wang L, Zhou W, Huang Z, Lin X, Li Y, Li P, Feng X, Wu G, Ma Y, Huang W. Flexible wire-shaped lithium–sulfur batteries with fibrous cathodes assembled via capillary action. Nano Energy. 2017;33:325.

    Article  CAS  Google Scholar 

  16. Wang Z, Ruan Z, Liu Z, Wang Y, Tang Z, Li H, Zhu M, Hung TF, Liu J, Shi Z, Zhi C. A flexible rechargeable zinc-ion wire-shaped battery with shape memory function. J Mater Chem A. 2018;6:8549.

    Article  CAS  Google Scholar 

  17. Li J, Shao Y, Jiang P, Zhang Q, Hou C, Li Y, Wang H. 1T-molybdenum disulfide/reduced graphene oxide hybrid fibers as high strength fibrous electrodes for wearable energy storage. J Mater Chem A. 2019;7:3143.

    Article  CAS  Google Scholar 

  18. Zhang Y, Zhao Y, Ren J, Weng W, Peng H. Advances in wearable fiber-shaped lithium-ion batteries. Adv Mater. 2016;28:4524.

    Article  CAS  Google Scholar 

  19. Yu J, Lu W, Smith JP, Booksh KS, Meng L, Huang Y, Li Q, Byun J-H, Oh Y, Yan Y, Chou T-W. A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure. Adv Energy Mater. 2017;7:1600976.

    Article  CAS  Google Scholar 

  20. Li L, Frey M. Preparation and characterization of cellulose nitrate-acetate mixed ester fibers. Polymer. 2010;51:3774.

    Article  CAS  Google Scholar 

  21. Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ. 2007;15:25.

    Article  CAS  Google Scholar 

  22. John MJ, Anandjiwala RD. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos. 2008;29:187.

    Article  CAS  Google Scholar 

  23. Wang YL, Wan YZ, Dong XH, Cheng GX, Tao HM, Wen TY. Preparation and characterization of antibacterial viscose-based activated carbon fiber supporting silver. Carbon. 1998;36:1567.

    Article  CAS  Google Scholar 

  24. Colom X, Carrillo F. Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polymer J. 2002;38:2225.

    Article  CAS  Google Scholar 

  25. Huang ZH, Kang FY, Zheng YP, Yang JB, Liang KM. Adsorption of trace polar methy-ethyl-ketone and non-polar benzene vapors on viscose rayon-based activated carbon fibers. Carbon. 2002;40:1363.

    Article  CAS  Google Scholar 

  26. Hindeleh AM, Johnson DJ. Crystallinity and crystallite size measurement in polyamide and polyester fibers. Polymer. 1978;19:27.

    Article  CAS  Google Scholar 

  27. Mit-uppatham C, Nithitanakul M, Supaphol P. Ultratine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys. 2004;205:2327.

    Article  CAS  Google Scholar 

  28. Braun U, Schartel B, Fichera MA, Jaeger C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6. Polym Degrad Stab. 2007;92:1528.

    Article  CAS  Google Scholar 

  29. Azab MY, Hameed MFO, Obayya SSA. Multi-functional optical sensor based on plasmonic photonic liquid crystal fibers. Opt Quant Electron. 2017;49:49.

    Article  CAS  Google Scholar 

  30. Chang H, Luo J, Gulgunje PV, Kumar S. Structural and functional fibers. In: Clarke DR (ed) Annual review of materials research, Vol 47. Annual Review of Materials Research. 2017;331.

  31. Park S, Guo Y, Jia X, Choe HK, Grena B, Kang J, Park J, Lu C, Canales A, Chen R, Yim YS, Choi GB, Fink Y, Anikeeva P. One-step optogenetics with multifunctional flexible polymer fibers. Nat Neurosci. 2017;20:612.

    Article  CAS  Google Scholar 

  32. Li KR, Zhang QH, Wang HZ, Li YG. Red, green, blue (RGB) electrochromic fibers for the new smart color change fabrics. ACS Appl Mater Interfaces. 2014;6:13043.

    Article  CAS  Google Scholar 

  33. Lu X, Zhang Z, Sun X, Chen P, Zhang J, Guo H, Shao Z, Peng H. Flexible and stretchable chromatic fibers with high sensing reversibility. Chem Sci. 2016;7:5113.

    Article  CAS  Google Scholar 

  34. Eh AL-S, Tan AWM, Cheng X, Magdassi S, Lee PS. Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects. Energy Technol. 2018;6:33.

    Article  Google Scholar 

  35. Zhou Y, Fang J, Wang H, Zhou H, Yan G, Zhao Y, Dai L, Lin T. Multicolor electrochromic fibers with helix-patterned electrodes. Adv Electronic Mater. 2018;4:1800104.

    Article  CAS  Google Scholar 

  36. Cai L, Peng Y, Xu J, Zhou C, Zhou C, Wu P, Lin D, Fan S, Cui Y. Temperature regulation in colored infrared-transparent polyethylene textiles. Joule. 2019. https://doi.org/10.1016/j.joule.2019.03.015

    Article  Google Scholar 

  37. Foroughi J, Spinks GM, Wallace GG, Oh J, Kozlov ME, Fang SL, Mirfakhrai T, Madden JDW, Shin MK, Kim SJ, Baughman RH. Torsional carbon nanotube artificial muscles. Science. 2011;334:494.

    Article  CAS  Google Scholar 

  38. Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JD, Kim SH, Fang S, Jung de Andrade M, Goktepe F, Goktepe O, Mirvakili SM, Naficy S, Lepro X, Oh J, Kozlov ME, Kim SJ, Xu X, Swedlove BJ, Wallace GG, Baughman RH. Artificial muscles from fishing line and sewing thread. Science. 2014;343:868.

    Article  CAS  Google Scholar 

  39. Chen P, Xu Y, He S, Sun X, Pan S, Deng J, Chen D, Peng H. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat Nanotechnol. 2015;10:1077.

    Article  CAS  Google Scholar 

  40. Liu ZF, Fang S, Moura FA, Ding JN, Jiang N, Di J, Zhang M, Lepro X, Galvao DS, Haines CS, Yuan NY, Yin SG, Lee DW, Wang R, Wang HY, Lv W, Dong C, Zhang RC, Chen MJ, Yin Q, Chong YT, Zhang R, Wang X, Lima MD, Ovalle-Robles R, Qian D, Lu H, Baughman RH. Stretchy electronics. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science. 2015;349:400.

    Article  CAS  Google Scholar 

  41. Chen J, Leung FK, Stuart MCA, Kajitani T, Fukushima T, van der Giessen E, Feringa BL. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat Chem. 2018;10:132.

    Article  CAS  Google Scholar 

  42. Mirvakili SM, Hunter IW. Artificial muscles: mechanisms, applications, and challenges. Adv Mater. 2018;30:1704407.

    Article  CAS  Google Scholar 

  43. Fang B, Xiao Y, Xu Z, Chang D, Wang B, Gao W, Gao C. Handedness-controlled and solvent-driven actuators with twisted fibers. Mater Horiz. 2019. https://doi.org/10.1039/c8mh01647j

    Article  Google Scholar 

  44. Jeong J-H, Mun TJ, Kim H, Moon JH, Lee DW, Baughman RH, Kim SJ. Carbon nanotubes–elastomer actuator driven electrothermally by low-voltage. Nanoscale Adv. 2019;1:965.

    Article  CAS  Google Scholar 

  45. Jia T, Wang Y, Dou Y, Li Y, Jung de Andrade M, Wang R, Fang S, Li J, Yu Z, Qiao R, Liu Z, Cheng Y, Su Y, Minary-Jolandan M, Baughman RH, Qian D, Liu Z. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv Funct Mater. 2019:1808241.

  46. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater. 2014;26:5310.

    Article  CAS  Google Scholar 

  47. Weng W, Chen P, He S, Sun X, Peng H. Smart electronic textiles. Angew Chem Int Ed Engl. 2016;55:6140.

    Article  CAS  Google Scholar 

  48. Pu X, Hu W, Wang ZL. Toward wearable self-charging power systems: the integration of energy-harvesting and storage devices. Small. 2018;14:1702817.

    Article  CAS  Google Scholar 

  49. Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photonics. 2012;6:153.

    Article  CAS  Google Scholar 

  50. Peng M, Zou D. Flexible fiber/wire-shaped solar cells in progress: properties, materials, and designs. J Mater Chem A. 2015;3:20435.

    Article  CAS  Google Scholar 

  51. Li R, Xiang X, Tong X, Zou J, Li Q. Wearable double-twisted fibrous perovskite solar cell. Adv Mater. 2015;27:3831.

    Article  CAS  Google Scholar 

  52. Chen T, Qiu L, Cai Z, Gong F, Yang Z, Wang Z, Peng H. Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. Nano Lett. 2012;12:2568.

    Article  CAS  Google Scholar 

  53. Zhang Z, Yang Z, Wu Z, Guan G, Pan S, Zhang Y, Li H, Deng J, Sun B, Peng H. Weaving efficient polymer solar cell wires into flexible power textiles. Adv Energy Mater. 2014;4:1301750.

    Article  CAS  Google Scholar 

  54. Pu X, Song W, Liu M, Sun C, Du C, Jiang C, Huang X, Zou D, Hu W, Wang ZL. Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells. Adv Energy Mater. 2016;6:1601048.

    Article  CAS  Google Scholar 

  55. Gong W, Hou C, Guo Y, Zhou J, Mu J, Li Y, Zhang Q, Wang H. A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers. Nano Energy. 2017;39:673.

    Article  CAS  Google Scholar 

  56. Wu B, Guo Y, Hou C, Zhang Q, Li Y, Wang H. High-performance flexible thermoelectric devices based on all-inorganic hybrid films for harvesting low-grade heat. Adv Funct Mater. 2019.

  57. Hou C, Wang H, Zhang Q, Li Y, Zhu M. Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv Mater. 2014;26:5018.

    Article  CAS  Google Scholar 

  58. Guo Y, Dun C, Xu J, Mu J, Li P, Gu L, Hou C, Hewitt CA, Zhang Q, Li Y, Carroll DL, Wang H. Ultrathin, washable, and large-area graphene papers for personal thermal management. Small. 2017;13:1702645.

    Article  CAS  Google Scholar 

  59. Guo Y, Dun C, Xu J, Li P, Huang W, Mu J, Hou C, Hewitt CA, Zhang Q, Li Y, Carroll DL, Wang H. Wearable thermoelectric devices based on Au-decorated two-dimensional MoS2. ACS Appl Mater Interfaces. 2018;10:33316.

    Article  CAS  Google Scholar 

  60. Zeng W, Tao X-M, Chen S, Shang S, Chan HLW, Choy SH. Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ Sci. 2013;6:1631–2638.

    Article  CAS  Google Scholar 

  61. Zhang T, Li K, Zhang J, Chen M, Wang Z, Ma S, Zhang N, Wei L. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy. 2017;41:35.

    Article  CAS  Google Scholar 

  62. Ryan JD, Mengistie DA, Gabrielsson R, Lund A, Muller C. Machine-washable PEDOT:pSS dyed silk yarns for electronic textiles. ACS Appl Mater Interfaces. 2017;9:9045.

    Article  CAS  Google Scholar 

  63. Lee JA, Aliev AE, Bykova JS, de Andrade MJ, Kim D, Sim HJ, Lepro X, Zakhidov AA, Lee JB, Spinks GM, Roth S, Kim SJ, Baughman RH. Woven-yarn thermoelectric textiles. Adv Mater. 2016;28:5038.

    Article  CAS  Google Scholar 

  64. Dong B, Hu J, Xiao X, Tang S, Gao X, Peng Z, Zou D. High-efficiency fiber-shaped perovskite solar cell by vapor-assisted deposition with a record efficiency of 10.79%. Adv Mater Technol. 2019.

  65. Gong W, Hou C, Zhou J, Guo Y, Zhang W, Li Y, Zhang Q, Wang H. Continuous and scalable manufacture of amphibious energy yarns and textiles. Nat Commun. 2019;10:868.

    Article  Google Scholar 

  66. Dong K, Deng J, Ding W, Wang AC, Wang P, Cheng C, Wang Y-C, Jin L, Gu B, Sun B, Wang ZL. Versatile core-sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv Energy Mater. 2018;8:1801114.

    Article  CAS  Google Scholar 

  67. Yu X, Pan J, Zhang J, Sun H, He S, Qiu L, Lou H, Sun X, Peng H. A coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformation. J Mater Chem A. 2017;5:6032.

    Article  CAS  Google Scholar 

  68. Cheng Y, Lu X, Hoe Chan K, Wang R, Cao Z, Sun J, Wei Ho G. A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monitoring. Nano Energy. 2017;41:511.

    Article  CAS  Google Scholar 

  69. Dong K, Deng J, Zi Y, Wang YC, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B, Wang ZL. 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv Mater. 2017;29:1702648.

    Article  CAS  Google Scholar 

  70. Wu C, Gu S, Zhang Q, Bai Y, Li M, Yuan Y, Wang H, Liu X, Yuan Y, Zhu N, Wu F, Li H, Gu L, Lu J. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat Commun. 2019;10:73.

    Article  CAS  Google Scholar 

  71. Li H, Tang Z, Liu Z, Zhi C. Evaluating flexibility and wearability of flexible energy storage devices. Joule. 2019;3:613.

    Article  Google Scholar 

  72. Shi QW, Zhong YR, Wu M, Wang HZ, Wang HL. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc Natl Acad Sci USA. 2018;115:5676.

    Article  CAS  Google Scholar 

  73. Yang Y, Zhong Y, Shi Q, Wang Z, Sun K, Wang H. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions. Angewandte Chemie Int Ed. 2018;130:15775–8.

    Article  Google Scholar 

  74. Li L, Basu S, Wang Y, Chen Z, Hundekar P, Wang B, Shi J, Shi Y, Narayanan S, Koratkar N. Self-heating-induced healing of lithium dendrites. Science. 2018;359:1513.

    Article  CAS  Google Scholar 

  75. Liu B, Zhang J-G, Xu W. Advancing lithium metal batteries. Joule. 2018;2:833–45.

    Article  CAS  Google Scholar 

  76. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117:10403.

    Article  CAS  Google Scholar 

  77. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev. 2014;114:11503.

    Article  CAS  Google Scholar 

  78. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359.

    Article  CAS  Google Scholar 

  79. Li M, Zu M, Yu J, Cheng H, Li Q, Li B. Controllable synthesis of core-sheath structured aligned carbon nanotube/titanium dioxide hybrid fibers by atomic layer deposition. Carbon. 2017;123:151.

    Article  CAS  Google Scholar 

  80. Lin H, Weng W, Ren J, Qiu L, Zhang Z, Chen P, Chen X, Deng J, Wang Y, Peng H. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv Mater. 2014;26:1217.

    Article  CAS  Google Scholar 

  81. Fang X, Weng W, Ren J, Peng H. A cable-shaped lithium sulfur battery. Adv Mater. 2016;28:491.

    Article  CAS  Google Scholar 

  82. Wang X, Pan Z, Yang J, Lyu Z, Zhong Y, Zhou G, Qiu Y, Zhang Y, Wang J, Li W. Stretchable fiber-shaped lithium metal anode. Energy Storage Mater. 2019.

  83. Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017;2:16103.

    Article  CAS  Google Scholar 

  84. Sun J, Li Y, Zhang Q, Hou C, Shi Q, Wang H. A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires. Chem Eng J. 2019;375.

  85. Rao J, Liu N, Zhang Z, Su J, Li L, Xiong L, Gao Y. All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability. Nano Energy. 2018;51:425.

    Article  CAS  Google Scholar 

  86. Wang Y, Chen C, Xie H, Gao T, Yao Y, Pastel G, Han X, Li Y, Zhao J, Fu KK, Hu L. 3D-printed all-fiber li-ion battery toward wearable energy storage. Adv Funct Mater. 2017;27:1703140.

    Article  CAS  Google Scholar 

  87. Yadav A, De B, Singh SK, Sinha P, Kar KK. Facile development strategy of a single carbon-fiber-based all-solid-state flexible lithium-ion battery for wearable electronics. ACS Appl Mater Interfaces. 2019;11:7974.

    Article  CAS  Google Scholar 

  88. Li L, Lou Z, Chen D, Jiang K, Han W, Shen G. Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small. 2018;14:1702829.

    Article  CAS  Google Scholar 

  89. Shao Y, El-Kady MF, Wang LJ, Zhang Q, Li Y, Wang H, Mousavi MF, Kaner RB. Graphene-based materials for flexible supercapacitors. Chem Soc Rev. 2015;44:3639.

    Article  CAS  Google Scholar 

  90. Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB. Design and mechanisms of asymmetric supercapacitors. Chem Rev. 2018;118:9233.

    Article  CAS  Google Scholar 

  91. Li M, Zu M, Yu J, Cheng H, Li Q. Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small. 2017;13:1602994.

    Article  CAS  Google Scholar 

  92. El-Kady MF, Shao Y, Kaner RB. Graphene for batteries, supercapacitors and beyond. Nat Rev Mater. 2016;1:16033.

    Article  CAS  Google Scholar 

  93. Huang G, Hou C, Shao Y, Zhu B, Jia B, Wang H, Zhang Q, Li Y. High-performance all-solid-state yarn supercapacitors based on porous graphene ribbons. Nano Energy. 2015;12:26.

    Article  CAS  Google Scholar 

  94. Chen G, Chen T, Hou K, Ma W, Tebyetekerwa M, Cheng Y, Weng W, Zhu M. Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon. 2018;127:218.

    Article  CAS  Google Scholar 

  95. Liao M, Sun H, Zhang J, Wu J, Xie S, Fu X, Sun X, Wang B, Peng H. Multicolor, fluorescent supercapacitor fiber. Small. 2018;14:e1702052.

    Article  CAS  Google Scholar 

  96. Li P, Jin Z, Peng L, Zhao F, Xiao D, Jin Y, Yu G. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv Mater. 2018;30:e1800124.

    Article  CAS  Google Scholar 

  97. Gui Q, Wu L, Li Y, Liu J. Scalable wire-type asymmetric pseudocapacitor achieving high volumetric energy/power densities and ultralong cycling stability of 100,000 times. Adv Sci. 2019.

  98. Wang X, Jiang K, Shen G. Flexible fiber energy storage and integrated devices: recent progress and perspectives. Mater Today. 2015;18:265.

    Article  CAS  Google Scholar 

  99. Yu D, Qian Q, Wei L, Jiang W, Goh K, Wei J, Zhang J, Chen Y. Emergence of fiber supercapacitors. Chem Soc Rev. 2015;44:647.

    Article  CAS  Google Scholar 

  100. Fu KK, Cheng J, Li T, Hu L. Flexible batteries: from mechanics to devices. ACS Energy Lett. 2016;1:1065.

    Article  CAS  Google Scholar 

  101. Huang Q, Wang D, Zheng Z. Textile-based electrochemical energy storage devices. Adv Energy Mater. 2016;6:1600783.

    Article  CAS  Google Scholar 

  102. Meng F, Li Q, Zheng L. Flexible fiber-shaped supercapacitors: design, fabrication, and multi-functionalities. Energy Storage Mater. 2017;8:85.

    Article  Google Scholar 

  103. Tebyetekerwa M, Marriam I, Xu Z, Yang S, Zhang H, Zabihi F, Jose R, Peng S, Zhu M, Ramakrishna S. Critical insight: challenges and requirements of fibre electrodes for wearable electrochemical energy storage. Energy Environ Sci. 2019.

  104. Ren J, Li L, Chen C, Chen X, Cai Z, Qiu L, Wang Y, Zhu X, Peng H. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv Mater. 2013;25:1155.

    Article  CAS  Google Scholar 

  105. Sun C-F, Zhu H, Baker Iii EB, Okada M, Wan J, Ghemes A, Inoue Y, Hu L, Wang Y. Weavable high-capacity electrodes. Nano Energy. 2013;2:987.

    Article  CAS  Google Scholar 

  106. Weng W, Sun Q, Zhang Y, Lin H, Ren J, Lu X, Wang M, Peng H. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett. 2014;14:3432.

    Article  CAS  Google Scholar 

  107. Zhang Y, Bai W, Ren J, Weng W, Lin H, Zhang Z, Peng H. Super-stretchy lithium-ion battery based on carbon nanotube fiber. J Mater Chem A. 2014;2:11054–9.

    Article  CAS  Google Scholar 

  108. Lee JA, Shin MK, Kim SH, Cho HU, Spinks GM, Wallace GG, Lima MD, Lepro X, Kozlov ME, Baughman RH, Kim SJ. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun. 1970;2013:4.

    Google Scholar 

  109. Wang Q, Wang X, Xu J, Ouyang X, Hou X, Chen D, Wang R, Shen G. Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy. 2014;8:44.

    Article  CAS  Google Scholar 

  110. Choi C, Kim KM, Kim KJ, Lepro X, Spinks GM, Baughman RH, Kim SJ. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat Commun. 2016;7:13811.

    Article  CAS  Google Scholar 

  111. Veerasubramani GK, Krishnamoorthy K, Pazhamalai P, Kim SJ. Enhanced electrochemical performances of graphene based solid-state flexible cable type supercapacitor using redox mediated polymer gel electrolyte. Carbon. 2016;105:638.

    Article  CAS  Google Scholar 

  112. Wang Q, Wu Y, Li T, Zhang D, Miao M, Zhang A. High performance two-ply carbon nanocomposite yarn supercapacitors enhanced with a platinum filament and in situ polymerized polyaniline nanowires. J Mater Chem A. 2016;4:3828.

    Article  CAS  Google Scholar 

  113. Kolle M, Lethbridge A, Kreysing M, Baumberg JJ, Aizenberg J, Vukusic P. Bio-inspired band-gap tunable elastic optical multilayer fibers. Adv Mater. 2013;25:2239.

    Article  CAS  Google Scholar 

  114. Li R, Li K, Wang G, Li L, Zhang Q, Yan J, Chen Y, Zhang Q, Hou C, Li Y, Wang H. Ion-transport design for high-performance Na+-based electrochromics. ACS Nano. 2018;12:3759.

    Article  CAS  Google Scholar 

  115. Liang H, Li R, Li C, Hou C, Li Y, Zhang Q, Wang H. Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high-performance electrochromism. Mater Horiz. 2019;6:571.

    Article  CAS  Google Scholar 

  116. Takamatsu S, Matsumoto K, Shimoyama I, editors. Stretchable yarn of display elements. 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems; 2009: IEEE.

  117. Sonmez G, Sonmez HB, Shen CKF, Wudl F. Red, green, and blue colors in polymeric electrochromics. Adv Mater. 2004:16:1905.

    Article  CAS  Google Scholar 

  118. Ke Y, Yin Y, Zhang Q, Tan Y, Hu P, Wang S, Tang Y, Zhou Y, Wen X, Wu S, White TJ, Yin J, Peng J, Xiong Q, Zhao D, Long Y. Adaptive thermochromic windows from active plasmonic elastomers. Joule. 2019;3:858.

    Article  CAS  Google Scholar 

  119. Zhang Y, Hu Z, Xiang H, Zhai G, Zhu M. Fabrication of visual textile temperature indicators based on reversible thermochromic fibers. Dyes Pigm. 2019;162:705.

    Article  CAS  Google Scholar 

  120. Huang G, Liu L, Wang R, Zhang J, Sun X, Peng H. Smart color-changing textile with high contrast based on a single-sided conductive fabric. J Mater Chem C. 2016;4:7589.

    Article  CAS  Google Scholar 

  121. Li Q, Li K, Fan H, Hou C, Li Y, Zhang Q, Wang H. Reduced graphene oxide functionalized stretchable and multicolor electrothermal chromatic fibers. J Mater Chem C. 2017;5:11448.

    Article  CAS  Google Scholar 

  122. Isapour G, Lattuada M. Bioinspired stimuli-responsive color-changing systems. Adv Mater. 2018;30:1707069.

    Article  CAS  Google Scholar 

  123. Liu ZF, Zhang QH, Wang HZ, Li YG. Structural colored fiber fabricated by a facile colloid self-assembly method in micro-space. Chem Commun. 2011;47:12801.

    Article  CAS  Google Scholar 

  124. Gong X, Hou C, Zhang Q, Li Y, Wang H. Solvatochromic structural color fabrics with favorable wearability properties. J Mater Chem C. 2019;7:4855.

    Article  CAS  Google Scholar 

  125. Shang SL, Liu ZF, Zhang QH, Wang HZ, Li YG. Facile fabrication of a magnetically induced structurally colored fiber and its strain-responsive properties. J Mater Chem C. 2015;3:11093.

    Article  CAS  Google Scholar 

  126. Kolle M, Lethbridge A, Kreysing M, Baumberg JJ, Aizenberg J, Vukusic P. Bio-inspired band-gap tunable elastic optical multilayer fibers. Adv Mater. 2013;25:2239.

    Article  CAS  Google Scholar 

  127. Mu J, Hou C, Wang H, Li Y, Zhang Q, Zhu M. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Sci Adv. 2015;1:e1500533.

    Article  Google Scholar 

  128. Shi Q, Hou C, Wang H, Zhang Q, Li Y. An electrically controllable all-solid-state Au@graphene oxide actuator. Chem Commun. 2016;52:5816.

    Article  CAS  Google Scholar 

  129. Ribeiro C, Costa CM, Correia DM, Nunes-Pereira J, Oliveira J, Martins P, Goncalves R, Cardoso VF, Lanceros-Mendez S. Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat Protoc. 2018;13:681.

    Article  CAS  Google Scholar 

  130. Chen J, Leung FK-C, Stuart MCA, Kajitani T, Fukushima T, van der Giessen E, Feringa BL. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat Chem. 2018;10:132.

    Article  CAS  Google Scholar 

  131. Song Y, Zhou S, Jin K, Qiao J, Li D, Xu C, Hu D, Di J, Li M, Zhang Z, Li Q. Hierarchical carbon nanotube composite yarn muscles. Nanoscale. 2018;10:4077.

    Article  CAS  Google Scholar 

  132. Chen Y, Millstein J, Liu Y, Chen GY, Chen X, Stucky A, Qu C, Fan J-B, Chang X, Soleimany A, Wang K, Zhong J, Liu J, Gilliland FD, Li Z, Zhang X, Zhong JF. Single-cell digital lysates generated by phase-switch microfluidic device reveal transcriptome perturbation of cell cycle. ACS Nano. 2018;12:4687.

    Article  CAS  Google Scholar 

  133. Kim K, Cho KH, Jung HS, Yang SY, Kim Y, Park JH, Jang H, Nam J-D, Koo JC, Moon H, Suk JW, Rodrigue H, Choi HR. Double helix twisted and coiled soft actuator from spandex and nylon. Adv Eng Mater. 2018;20:1800536.

    Article  CAS  Google Scholar 

  134. Shi Q, Li J, Hou C, Shao Y, Zhang Q, Li Y, Wang H. A remote controllable fiber-type near-infrared light-responsive actuator. Chem Commun. 2017;53:11118.

    Article  CAS  Google Scholar 

  135. Liu L, Onck PR. Topographical changes in photo-responsive liquid crystal films: a computational analysis. Soft Matter. 2018;14:2411.

    Article  CAS  Google Scholar 

  136. Gu Y, Alt EA, Wang H, Li X, Willard AP, Johnson JA. Photoswitching topology in polymer networks with metal-organic cages as crosslinks. Nature. 2018;560:65.

    Article  CAS  Google Scholar 

  137. Gupta P, Karothu DP, Ahmed E, Naumov P, Nath NK. Thermally twistable, photobendable, elastically deformable, and self-healable soft crystals. Angewandte Chemie-Int Ed. 2018;57:8498.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Commission of Shanghai Municipality [16JC1400700], the Program of Introducing Talents of Discipline to Universities [No.111-2-04], and the Innovative Research Team in University [IRT_16R13]. C. H. thanks the Natural Science Foundation of China [No. 51603037], DHU Distinguished Young Professor Program [LZB2019002], and Young Elite Scientists Sponsorship Program by CAST [2017QNRC001].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengyi Hou or Hongzhi Wang.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Sun, J., Hou, C. et al. Advanced Functional Fiber and Smart Textile. Adv. Fiber Mater. 1, 3–31 (2019). https://doi.org/10.1007/s42765-019-0002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-0002-z

Keywords

Navigation