Skip to main content

Advertisement

Log in

Pseudocapacitive Charge Storage in Thin Nanobelts

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

This article reports that extremely thin nanobelts (thickness ~ 10 nm) exhibit pseudocapacitive (PC) charge storage in the asymmetric supercapacitor (ASC) configuration, while show battery-type charge storage in their single electrodes. Two types of nanobelts, viz. NiO–Co3O4 hybrid and spinal-type NiCo2O4, developed by electrospinning technique are used in this work. The charge storage behaviour of the nanobelts is benchmarked against their binary metal oxide nanowires, i.e., NiO and Co3O4, as well as a hybrid of similar chemistry, CuO–Co3O4. The nanobelts have thickness of ~ 10 nm and width ~ 200 nm, whereas the nanowires have diameter of ~ 100 nm. Clear differences in charge storage behaviours are observed in NiO–Co3O4 hybrid nanobelts based ASCs compared to those fabricated using the other materials—the former showed capacitive behaviour whereas the others revealed battery-type discharge behaviour. Origin of pseudocapacitance in nanobelts based ASCs is shown to arise from their nanobelts morphology with thickness less than typical electron diffusion lengths (~ 20 nm). Among all the five type of devices fabricated, the NiO–Co3O4 hybrid ASCs exhibited the highest specific energy, specific power and cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ansaldo A, Bondavalli P, Bellani S, Del Rio-Castillo AE, Prato M, Pellegrini V, Pognon G, Bonaccorso F. High-power graphene-carbon nanotube hybrid supercapacitors. Chem Nano Mat. 2017;3:436–46.

    CAS  Google Scholar 

  2. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014;7:1597–614.

    Article  CAS  Google Scholar 

  3. Conway BE. Electrochemical supercapacitors, scientific fundamentals and technological applications. New York: Kluwer Academic/Plenum Publishers; 1999.

    Google Scholar 

  4. Dubal DP, Ayyad O, Ruiz V, Gomez-Romero P. Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev. 2015;44:1777–90.

    Article  CAS  Google Scholar 

  5. Liu D, Fu C, Zhang N, Zhou H, Kuang Y. Three-dimensional porous nitrogen doped graphene hydrogel for high energy density supercapacitors. Electrochim Acta. 2016;213:291–7.

    Article  CAS  Google Scholar 

  6. Long JW, Bélanger D, Brousse T, Sugimoto W, Sassin MB, Crosnier O. Asymmetric electrochemical capacitors—stretching the limits of aqueous electrolytes. MRS Bull. 2011;36:513–22.

    Article  CAS  Google Scholar 

  7. Harilal M, Krishnan SG, Yar A, Misnon II, Reddy MV, Yusoff MM, Ojur Dennis J, Jose R. Pseudocapacitive charge storage in single-step-synthesized CoO–MnO2–MnCo2O4 hybrid nanowires in aqueous alkaline electrolytes. J Phys Chem C. 2017;121:21171–83.

    Article  CAS  Google Scholar 

  8. Patil UM, Sohn JS, Kulkarni SB, Park HG, Jung Y, Gurav KV, Kim JH, Jun SC. A facile synthesis of hierarchical α-MnO2 nanofibers on 3D-graphene foam for supercapacitor application. Mater Lett. 2014;119:135–9.

    Article  CAS  Google Scholar 

  9. Jiang Y, Wang P, Zang X, Yang Y, Kozinda A, Lin L. Uniformly embedded metal oxide nanoparticles in vertically aligned carbon nanotube forests as pseudocapacitor electrodes for enhanced energy storage. Nano Lett. 2013;13:3524–30.

    Article  CAS  Google Scholar 

  10. Brousse T, Belanger D, Long JW. To be or not to be pseudocapacitive? J Electrochem Soc. 2015;162:A5185–9.

    Article  CAS  Google Scholar 

  11. Bello A, Fashedemi OO, Barzegar F, Madito MJ, Momodu DY, Masikhwa TM, Dangbegnon JK, Manyala N. J Alloy Compd. 2016;681:293–300.

    Article  CAS  Google Scholar 

  12. Chen P, Chen H, Qiu J, Zhou C. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 2010;3:594–603.

    Article  CAS  Google Scholar 

  13. Brousse T, Long JW, Bélanger D. Meeting abstracts, the electrochemical society. 2017, p. 605.

  14. Sun J, Wu C, Sun X, Hu H, Zhi C, Hou L, Yuan C. Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J Mater Chem A. 2017;5:9443–64.

    Article  CAS  Google Scholar 

  15. Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL, Grey CP, Dunn B, Simon P. High performance asymmetric supercapacitors using electrospun copper oxide nanowires anode. Nature Energy. 2016;1:16070.

    Article  CAS  Google Scholar 

  16. Vidyadharan B, Misnon II, Ismail J, Yusoff MM, Jose R. J Alloy Compd. 2015;633:22–30.

    Article  CAS  Google Scholar 

  17. Harilal M, Krishnan SG, Pal B, Reddy MV, AbRahim MH, Yusoff MM, Jose R. Environment-modulated crystallization of Cu2O and CuO nanowires by electrospinning and their charge storage properties. Langmuir. 2018;34:1873–82.

    Article  CAS  Google Scholar 

  18. Harilal M, Krishnan SG, Vijayan BL, Reddy MV, Adams S, Barron AR, Yusoff MM, Jose R. Continuous nanobelts of nickel oxide–cobalt oxide hybrid with improved capacitive charge storage properties. Mater Des. 2017;122:376–84.

    Article  CAS  Google Scholar 

  19. Harilal M, Vidyadharan B, Misnon II, Anilkumar GM, Lowe A, Ismail J, Yusoff MM, Jose R. One-dimensional assembly of conductive and capacitive metal oxide electrodes for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces. 2017;9:10730–42.

    Article  CAS  Google Scholar 

  20. Misnon II, Zain NKM, Aziz RA, Vidyadharan B, Jose R. Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochim Acta. 2015;174:78–86.

    Article  CAS  Google Scholar 

  21. Misnon II, Zain NKM, Jose R. Conversion of oil palm kernel shell biomass to activated carbon for supercapacitor electrode application. Waste Biomass Valoriz. 2019;10:1731–40.

    Article  CAS  Google Scholar 

  22. Zheng FL, Li GR, Ou YN, Wang ZL, Su CY, Tong YX. Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chem Commun. 2010;46:5021–3.

    Article  CAS  Google Scholar 

  23. Welenc MP, Karczewski J, Koziorowska JS, Łapiński M, Sadowski W, Kościelska B. The influence of nanostructure size on V2O5 electrochemical properties as cathode materials for lithium ion batteries. RSC Adv. 2016;6:55689–97.

    Article  Google Scholar 

  24. Mondal AK, Su D, Chen S, Xie X, Wang G. Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl Mater Interfaces. 2014;6:14827–35.

    Article  CAS  Google Scholar 

  25. Li L, Peng S, Cheah Y, Teh P, Wang J, Wee G, Ko Y, Wong C, Srinivasan M. Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. Chem A Eur J. 2013;19:5892–8.

    Article  CAS  Google Scholar 

  26. Krishnan SG, Harilal M, Pal B, Misnon II, Karuppiah C, Yang C-C, Jose R. Improving the symmetry of asymmetric supercapacitors using battery-type positive electrodes and activated carbon negative electrodes by mass and charge balance. J Electroanal Chem. 2017;805:126–32.

    Article  CAS  Google Scholar 

  27. Bakr ZH, Wali Q, Ismail J, Elumalai NK, Uddin A, Jose R. Synergistic combination of electronic and electrical properties of SnO2 and TiO2 in a single SnO2–TiO2 composite nanofiber for dye-sensitized solar cells. Electrochim Acta. 2018;263:524–32.

    Article  CAS  Google Scholar 

  28. Mahmud MA, Elumalai NK, Pal B, Jose R, Upama MB, Wang D, Gonçales VR, Xu C, Haque F, Uddin A. Electrospun 3D composite nano-flowers for high performance triple-cation perovskite solar cells. Electrochim Acta. 2018;289:459–73.

    Article  CAS  Google Scholar 

  29. Pal B, Bakr ZH, Krishnan SG, Yusoff MM, Jose R. Large scale synthesis of 3D nanoflowers of SnO2/TiO2 composite via electrospinning with synergistic properties. Mater Lett. 2018;225:117–21.

    Article  CAS  Google Scholar 

  30. Bakr ZH, Wali Q, Yang S, Yousefsadeh M, Padmasree KP, Ismail J, AbRahim MH, Yusoff MM, Jose R. Characteristics of ZnO–SnO2 composite nanofibers as a photoanode in dye-sensitized solar cells. Industr Eng Chem Res. 2019;58:643–53.

    Article  CAS  Google Scholar 

  31. Khalid S, Cao C, Wang L, Zhu Y. Self-template synthesis of yolk-shelled NiCo2O4 spheres for enhanced hybrid supercapacitors. Sci Rep. 2016;6:22699.

    Article  CAS  Google Scholar 

  32. Wang L, Jiao X, Liu P, Ouyang Y, Xia X, Lei W, Hao Q. Appl Surf Sci. 2018;427:174–81.

    Article  CAS  Google Scholar 

  33. Xu K, Yang J, Hu J. Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors. J Colloid Interface Sci. 2018;511:456–62.

    Article  CAS  Google Scholar 

  34. Gao H, Wu Q, Hu Y, Zheng JP, Amine K, Chen Z. Revealing the rate-limiting li-ion diffusion pathway in Ultrathick electrodes for li-ion batteries. J Phys Chem Lett. 2018;9:5100–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Research and Innovation Department of University Malaysia Pahang (http://ump.edu.my) under the Flagship Leap 3 Program (RDU172201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Jose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunwar, R., Harilal, M., Krishnan, S.G. et al. Pseudocapacitive Charge Storage in Thin Nanobelts. Adv. Fiber Mater. 1, 205–213 (2019). https://doi.org/10.1007/s42765-019-00015-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-00015-w

Keywords

Navigation