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Abstract Trends toward the globalization of the manu-
facturing industry and the increasing demands for small-
batch, short-cycle, and highly customized products result
in complexities and fluctuations in both external and internal
manufacturing environments, which poses great challenges
to manufacturing enterprises. Fortunately, recent advances
in the Industrial Internet of Things (IloT) and the
widespread use of embedded processors and sensors in
factories enable collecting real-time manufacturing status
data and building cyber—physical systems for smart, flexi-
ble, and resilient manufacturing systems. In this context,
this paper investigates the mechanisms and methodology
of self-organization and self-adaption to tackle exceptions
and disturbances in discrete manufacturing processes.
Specifically, a general model of smart manufacturing
complex networks is constructed using scale-free networks
to interconnect heterogeneous manufacturing resources
represented by network vertices at multiple levels. More-
over, the capabilities of physical manufacturing resources
are encapsulated into virtual manufacturing services using
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cloud technology, which can be added to or removed from
the networks in a plug-and-play manner. Materials, infor-
mation, and financial assets are passed through interactive
links across the networks. Subsequently, analytical target
cascading is used to formulate the processes of self-orga-
nizing optimal configuration and self-adaptive collaborative
control for multilevel key manufacturing resources while
particle swarm optimization is used to solve local problems
on network vertices. Consequently, an industrial case
based on a Chinese engine factory demonstrates the feasi-
bility and efficiency of the proposed model and method
in handling typical exceptions. The simulation results
show that the proposed mechanism and method outper-
form the event-triggered rescheduling method, reducing
manufacturing cost, manufacturing time, waiting time, and
energy consumption, with reasonable computational time.
This work potentially enables managers and practitioners
to implement active perception, active response, self-orga-
nization, and self-adaption solutions in discrete manufac-
turing enterprises.

Keywords cyber—physical systems, Industrial Internet
of Things, smart manufacturing complex networks, self-
organization and self-adaption, analytical target cascad-
ing, collaborative optimization

1 Introduction

The manufacturing industry is the physical basis of the
national economy, the main body of industry, and the
main indicator of economic developments. According to
the gross domestic product (GDP) data from the National
Bureau of Statistics of China, GDP from manufacturing
made up around 32.5% of the total in 2021, ranking only
after the service sector. However, the accelerating global-
ization and the increasing demands for small-batch,
short-cycle, and highly customized products result in
complexities and fluctuations in both external and internal
manufacturing environments, which causes exceptions
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and disturbances in the manufacturing processes, such as
new job arrivals, order changes, and equipment failures.
Discrete manufacturing enterprises are especially facing
great challenges of control and management processes
such as variable process routes, flexible equipment
utilization, various types of materials, long manufacturing
processes, and complex part supporting relations. Never-
theless, challenges and opportunities coexist. Advanced
technologies such as Industrial Internet of Things (IIoT)
(Franco et al., 2021), edge-cloud computing (Hastbacka
et al., 2022), cyber—physical systems (CPSs) (Guo et al.,
2021b), 5G (Nguyen et al., 2021), big data analytics (Cui
et al., 2020), and artificial intelligence (Liu et al., 2022)
have driven technological innovations and the evolutions
of manufacturing paradigms from lean, agile manufactur-
ing (Qamar et al., 2018), cloud manufacturing (Wang
et al., 2018), and service-oriented manufacturing (Atmojo
et al., 2020; Wang et al., 2021b; Jiang et al., 2022) to
smart manufacturing (Zheng et al., 2018; Zhang et al.,
2020) and green manufacturing (Lazarou Tarraco et al.,
2021), which provides promising opportunities to solve
these challenges. Many countries and global manufacturers
have also proposed next-generation manufacturing strate-
gies such as Industry 4.0 (MacDougall, 2014) and Indus-
trial Internet (Evans and Annunziata, 2012) to facilitate
the research and development of innovative manufacturing
techniques.

Generally, discrete manufacturing systems integrated
with heterogeneous manufacturing resources including
machines, vehicles, and materials can be regarded as a
complex system with a collection of components. Self-
organization is frequently observed in active collectives
such as ant rafts and flocks of birds, in which a large
group of separate particles act in an organized manner
(Chvykov et al., 2021). To explore the self-organization
of discrete manufacturing systems, advanced technologies
can offer potential solutions. For example, with the help
of IIoT, edge-cloud computing, and communication
networks, real-time data can be sensed and captured to
model multilevel key manufacturing resources. Thus,
they can connect and interact with one another. By lever-
aging big data analytics and artificial intelligence for
decision making and optimization, the whole system can
operate stably and efficiently to generate and transport
high-quality products. To explore the flexibility and
adaptability of discrete manufacturing systems, schedul-
ing/rescheduling has been studied by academics and
experts, and widely used as a conventional solution to
deal with unpredictive dynamic uncertainties, such as
flexible job shop scheduling problem (FJSP) (Lv et al.,
2022), flexible job shop rescheduling problem (FJRP)
(An et al., 2022), and distributed job shop scheduling
problem (DJSP) (Sahman, 2021). However, scheduling
and rescheduling are complex and time consuming for
large-scale problems. Rescheduling is triggered by typical
events passively or periodically and causes system

nervousness. To improve the intelligence, flexibility, and
resilience of discrete manufacturing systems, the topic
of dynamic collaboration and networked control has
attracted increasing attention from academic and industry
communities (Si et al., 2020; Guo et al., 2021b; Wu and
Li, 2021). Predecessors have studied flexible manufactur-
ing systems (Chen et al., 2017), production logistics
synchronization (Qu et al., 2016), and smart manufacturing
paradigms (Kusiak, 2017) for solving system dynamics.
To achieve networked control, scholars have focused on
network modeling and synchronization (Wu et al., 2018),
supply—demand matching hypernetwork (Cheng et al.,
2020), and network reliability (Wang et al., 2019). As a
few works have explored self-organization and self-adap-
tion for discrete manufacturing systems, existing methods
are insufficient to address the emerging challenges and
problems in future IloT-based networked discrete manu-
facturing environments. These challenges are summarized
as follows.

(1) Advances in technologies including CPSs and IloT
and their industrial applications bring new changes to
contemporary manufacturing environments. Networked
control requires the high integration and collaboration
of heterogeneous manufacturing resources, such as
machines, vehicles, and materials. Passive response is
replaced by active response while the control of manufac-
turing processes is more collaborative and accurate. In
terms of decision making, assignment is replaced by
consultation. To deal with these new changes, the self-
organization and self-adaption mechanisms of discrete
manufacturing systems need to be investigated further
and precisely comprehended.

(2) To implement self-organization and self-adaption in
discrete manufacturing systems, new demands arise in the
modeling of smart manufacturing services on the shop
floor. To ensure real-time bidirectional interaction and
interoperability between top-level manufacturing systems
and lower-level key manufacturing resources, new
demands also arise in the perception of real-time manu-
facturing service status. Thus, a deeper integration of
manufacturing resources in the physical world and manu-
facturing services in cyber space is needed. Based on the
above, smart manufacturing services, with a higher level
of intelligence in communication, decision making, and
perceptible service status, can be flexibly connected to
discrete manufacturing systems.

(3) The self-organization and self-adaption of discrete
manufacturing systems require good performances of
manufacturing services including agile response, dynamic
collaboration, and self-adaptive elimination of exceptions
in operational processes. In the context of advanced
manufacturing paradigms, the demand for -efficient
manufacturing processes also needs the real-time interac-
tion and collaboration of heterogeneous manufacturing
resources. Therefore, the mechanisms and methodology
of self-organizing optimal configuration and self-adaptive
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collaborative control for multilevel key manufacturing
resources are needed to tackle typical exceptions and
disturbances in discrete manufacturing processes.

To address the above challenges, the mechanisms and
methodology of self-organization and self-adaption are
investigated for networked discrete manufacturing
systems. In the context of [loT-based complex manufac-
turing environments, real-time manufacturing status data
are collected and processed to build CPSs for smart, flex-
ible, and resilient manufacturing systems. In the physical
world, discrete manufacturing systems generally consist
of heterogeneous manufacturing resources such as
machines, vehicles, and materials. In cyber space, a
general model of smart manufacturing complex networks
(SMCNs) is developed using scale-free networks to inter-
connect heterogeneous manufacturing resources repre-
sented by network vertices at multiple levels. Moreover,
the capabilities of physical manufacturing resources are
encapsulated into virtual manufacturing services using
cloud technology, which can be added to or removed
from the networks in a plug-and-play manner. Materials,
information, and financial assets are passed through inter-
active links across the networks. Subsequently, analytical
target cascading (ATC) is used to formulate the processes
of self-organizing optimal configuration and self-adaptive
collaborative control for multilevel key manufacturing
resources while particle swarm optimization (PSO) is
used to solve local problems on network vertices. Conse-
quently, an industrial case based on a Chinese engine
factory demonstrates the feasibility and efficiency of the
proposed model and method in handling typical excep-
tions considering four key performance indicators (KPIs),
namely, manufacturing cost, manufacturing time, waiting
time, and energy consumption. This work potentially
enables managers and practitioners to implement active
perception, active response, self-organization, and self-
adaption solutions in discrete manufacturing enterprises.

The remainder of this paper is organized as follows. In
Section 2, a literature review of the related works and the
motivation are introduced. In Section 3, an overall archi-
tecture of SMCNs is constructed to integrate heterogeneous
manufacturing resources. In Section 4, the mechanisms
and methodology of self-organization and self-adaption
are proposed for SMCNs. In Section 5, an industrial case
based on a Chinese engine factory is presented to validate
the feasibility and efficiency of the proposed model and
method. In Section 6, the conclusions and future research
are discussed.

2 Related work and motivation

Three categories of literature are related to this paper:
1) enabling technologies including IloT, edge-cloud
computing, and CPSs; 2) existing scheduling and

rescheduling methods for exception handling; and 3) self-
organization and self-adaption in the manufacturing
industry. The contributions of these works are high-
lighted, and the motivation of this paper is presented.

2.1 1IIoT, edge-cloud computing, and CPSs

The Internet of Things (IoT) technology has been widely
used for the interconnection of smart devices and
management platforms. I1oT is a natural evolution of IoT,
which provides many promising opportunities to develop
smart manufacturing systems and industrial applications
(Liao et al., 2018). Using radio-frequency identification
(RFID) technology, automatic identification systems are
capable of sensing, identifying, tracking, and tracing
(Ding et al., 2017). In real-life scenarios, IoT and cloud
computing are deployed together more pervasively. Botta
et al. (2016) investigated and surveyed the integration of
[oT and cloud. Cloud computing enables ubiquitous
network access to storage and computing resources,
supporting information technology services and applica-
tions in an on-demand manner (Saikrishna et al., 2017).
Especially in the case of online services and applications,
cloud computing can provide fast, cost-effective resource
allocation solutions (Diaz et al., 2017; Guo et al., 2021a).
As the recent exponential growth of IoT services
becomes a burden to the traditional cloud platform, edge
computing is an emerging solution moving computing
resources close to data sources to satisfy real-time
demands (Pham et al., 2022). For example, edge-cloud
computing can host the emerging CPSs integrating physical
processes and digital computing systems. Many research
efforts have been made toward the implementation of
CPSs for smart manufacturing (Wang and Haghighi,
2016). Self-manageable, adaptive industrial CPSs are
realized using self-manageable agents, which can rapidly
respond to changes in production environments (Dai et al.,
2017). To integrate heterogeneous CPSs, Jirkovsky et al.
(2017) proposed a semantic heterogeneity reduction
method for data integration. CPSs and digital twins (DTs)
share the same essential concepts of an intensive
cyber—physical connection, real-time interaction, organi-
zation integration, and in-depth collaboration; thus, DTs
are considered necessary foundations and paths to realize
CPSs (Tao et al., 2019).

2.2 Existing scheduling/rescheduling methods for
exception handling

Flexibility is the ability to respond and adapt to environ-
mental changes. Academics and experts have studied
flexible job shop scheduling/rescheduling problems such
as FJSP, FJRP, and DJSP. Tirkyilmaz et al. (2020)
reviewed various heuristic methods for solving multi-
objective FJSP. To minimize makespan, energy consump-
tion, and instability, Caldeira et al. (2020) proposed a
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backtracking search algorithm for multiobjective FJSP
considering new job arrivals. In the case of dual resource-
constrained FISP, Wu et al. (2021) proposed a similarity-
based scheduling algorithm to reduce setup time. In
addition, adaptability has been studied for manufacturing
systems in a dynamic, non-deterministic environment. As
rescheduling serves for the adaption of initial schedules
to dynamic events, Lv et al. (2022) proposed rescheduling
decision mechanisms for new job arrivals and machine
breakdowns in energy efficient FISP. To reach a trade-off
between rescheduling frequency and the accumulation of
delays, Li et al. (2020) proposed a rescheduling method
combing machine learning techniques and optimization
algorithms. Wang et al. (2021a) proposed a dual Q-learning
method to enhance adaptability to environmental changes
in assembly job shops. During feature selection, Zhang
et al. (2021) proposed individual adaptation strategies to
utilize the information of features and individuals for
dynamic FJSP. Different from traditional scheduling with
a single decision maker in a centralized manner, Bukchin
and Hanany (2020) studied decentralized job shop
scheduling problems using non-cooperative game theory
to minimize flow time. In economic globalization, manu-
facturing enterprises require multiple-factory networks to
adapt to changing market demands and dynamic events.
In this context, Sahman (2021) proposed a discrete spotted
hyena optimizer for solving DJSP. By integrating recon-
figurable machines with the rescheduling module,
Mahmoodjanloo et al. (2022) proposed a self-adaptive
hybrid equilibrium optimizer for DJSP. However,
scheduling and rescheduling are complex and time
consuming for large-scale problems. Rescheduling is
triggered by typical events passively or periodically and
causes system nervousness.

2.3 Self-organization and self-adaption in the
manufacturing industry

Discrete manufacturing systems integrated with heteroge-
neous manufacturing resources are regarded as complex
systems with a collection of components. In the context
of large-scale systems, complex networks have attracted
much attention from the academia and industry in recent
years (Tang et al.,, 2014). Random networks (Aljadeff
et al., 2015), scale-free networks (Kleineberg, 2017),
small-world networks (Malkov and Yashunin, 2020),
clustered random networks (Hackett et al., 2011), and
core—periphery networks (Verma et al., 2016) have been
used to formulate the topological structures of complex
networks. For instance, the concept of global production
networks (GPNs) and a framework for designing and
operating GPNs have been proposed recently (Lanza
et al., 2019). In this work, uncertainty, complexity, sus-
tainability, and disruptive innovation are considered as
challenges for GPNs. In discrete manufacturing systems,
self-organization is a process where heterogeneous manu-
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facturing resources form stable structures with many
interactive links that pass materials and information by
vertices of networks (Chertow and Ehrenfeld, 2012). For
example, Zhang et al. (2018) proposed self-organizing
configuration mechanisms to strengthen integration
between production and logistics in job shops. Focused
on highly dynamic environments, Dias-Ferreira et al.
(2018) proposed a bio-inspired self-organizing architecture
for manufacturing systems to ensure performance levels
and simplify deployment and reconfiguration procedures.
As the cross-linking of embedded systems creates adap-
tive, self-organizing cyber—physical production systems
(CPPSs), Berger et al. (2021) classified CPPS entities
and illustrated their relations. To address unpredictive
dynamic uncertainties including external and internal
exceptions, self-adaption has been studied by academics
and experts. For instance, Guo et al. (2017) studied self-
adaptive collaboration for IoT-enabled production—logis-
tics systems using timed colored Petri nets. In the case of
anomaly detection with unknown patterns and dependen-
cies, Singer and Cohen (2021) proposed a framework for
self-adaptive smart control using adaptive machine learn-
ing models. To adapt to changes dynamically, Hsieh and
Lin (2016) proposed a viable self-adaption scheme to
reconfigure agents and services based on an architecture
of holonic multiagent systems. Moreover, a self-adaptive
collaborative control mode has been proposed for smart
production—logistics systems to enhance the capability of
intelligence, flexibility, and resilience (Guo et al., 2021b).
However, great challenges still exist in specific complex
manufacturing situations such as dynamic collaboration
and networked control. Therefore, the mechanisms and
methodology of self-organization and self-adaption is
worthy of study for discrete manufacturing processes to
handle dynamic events such as new job arrivals, order
changes, and equipment failures.

2.4 Motivation

To deal with unpredictive dynamic uncertainties including
external and internal exceptions in manufacturing envi-
ronments, scheduling/rescheduling has been widely used
as a conventional solution. However, existing scheduling/
rescheduling methods are complex and time consuming
for large-scale problems. Rescheduling is triggered by
typical events passively or periodically and causes system
nervousness. Fortunately, emerging advanced technologies
such as IIoT, edge-cloud computing, CPSs, and DTs can
be implemented in factories to collect and process the
real-time manufacturing status data of key manufacturing
resources for decision making and optimization. Never-
theless, the existing literature is insufficient to study the
collaboration of dynamic complex networks in discrete
manufacturing systems. Thus, this paper investigates the
mechanisms and methodology of self-organization and
self-adaption for networked discrete manufacturing
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systems. The main contributions of this paper include
three aspects: 1) A general model of SMCNss is developed
using scale-free networks to interconnect heterogeneous
manufacturing resources represented by network vertices
at multiple levels. Materials, information, and financial
assets are passed through interactive links across the
networks. 2) The capabilities of physical manufacturing
resources are encapsulated into virtual manufacturing
services using cloud technology, which can be added to
or removed from the networks in a plug-and-play manner.
3) Subsequently, ATC is used to formulate the processes
of self-organizing optimal configuration and self-adaptive
collaborative control for multilevel key manufacturing
resources while PSO is used to solve local problems on
network vertices.

3 Overall architecture of smart
manufacturing complex networks

Within the context of Industry 4.0, discrete manufacturing
enterprises seek to generate high-quality products with
low cost, less time, high efficiency, and long-term
sustainability. Recent advances in technologies such as
IIoT, edge-cloud computing, CPSs, and DTs have
provided promising opportunities to collect and process
real-time status data for modeling, monitoring, evaluation,
decision making, and optimization. By leveraging these
technologies, a three-layer system architecture of SMCNs
is proposed to connect and interact with heterogeneous
physical manufacturing resources and virtual computa-
tional resources. SMCNs represent a high level of organi-
zation and control in discrete manufacturing systems,
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offering tremendous potential for the improvement of
intelligence, flexibility, and resilience. In Fig. 1, the overall
architecture of SMCNs includes three layers, namely,
physical world, cyber space, and complex networks.

In the physical world of job shops, raw materials are
processed by a sequence of machines and then transported
by vehicles between production cells. Moreover, a decen-
tralized control and management system connects these
physical entities and represents their relationships. IIoT
technologies such as RFID and sensors are widely used to
capture the real-time status data of heterogeneous manu-
facturing infrastructures including machines, vehicles,
raw materials, and work in process (WIP). Embedded
processors and communication modules on key manufac-
turing resources such as machines and vehicles are used
to preprocess, aggregate, and transmit the collected data
to cyber space. Consequently, active perception is realized
by collecting and transmitting the real-time status data of
physical entities through sensors and wireless communi-
cation networks such as 5G, Wi-Fi, Bluetooth, ZigBee,
LoRa, and Sigfox.

In cyber space, the multisource, multidimensional, and
real-time manufacturing status information of heteroge-
neous physical manufacturing resources such as WIPs,
machines, and vehicles are stored as data cubes in the
data warehouse. As a way to realize CPSs, the DT tech-
nology is used to establish the mapping relationships of
physical entities and virtual representations. The capabili-
ties of physical entities are encapsulated into virtual
manufacturing services using cloud technology. DT
models synchronize the real-time status and dynamic
behaviors of physical entities with virtual models including
virtual WIPs, machines, and vehicles. Big data analytics
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Opverall architecture of smart manufacturing complex networks.
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is used to process and analyze large-scale real-time data
for data preprocessing, aggregation, and clustering analy-
sis. As a result, autonomous decision making on key
manufacturing resources is achieved by integrating DT
models and the extracted knowledge. The active response
of manufacturing services is formed when exceptions and
disturbances occur in discrete manufacturing processes.
In complex networks, network characteristics including
degree, diameter, density, and clustering coefficient are
analyzed. SMCNs consist of hubs with higher degrees
and vertices with lower degrees. For example, a job shop
system is a hub connected to production cells and vehi-
cles, and a production cell is also a hub connected to
machines. Thus, system and cell hubs have higher
degrees, but the machine and vehicle vertices at the
bottom have lower degrees. These hubs and vertices can
pass materials, information, and financial assets through
interactive links across the networks. Based on the power
flow of degree distribution, a general model of SMCNss is
constructed using scale-free networks to interconnect
heterogeneous manufacturing resources represented by
network vertices at multiple levels. To handle typical
exceptions and dynamics, ATC is used to formulate the
processes of self-organizing optimal configuration and
self-adaptive collaborative control for multilevel key
manufacturing resources while PSO is used to solve local
problems on network vertices. The performance of
SMCN:ss is evaluated using four KPIs, namely, manufac-
turing cost, manufacturing time, waiting time, and energy

consumption. Active discovery is realized by adding or
removing virtual manufacturing services in SMCNs in a
plug-and-play manner.

Figure 2 illustrates the mechanisms of self-organization
and self-adaption in SMCNSs. At the initial stage, a new
or change order arrives in the job shop, and then the order
is decomposed into a series of manufacturing tasks
including production tasks and logistics tasks. During the
manufacturing execution stage, a process flow is first
formed according to the requirements, and then SMCNs
configures a set of optimal manufacturing services to
finish these tasks in a self-organizing manner. When an
exception occurs, the self-organizing optimal configuration
for manufacturing services is executed again until all
tasks are finished. At the same time, the whole discrete
manufacturing system is divided into a three-layer ATC
hierarchy, namely, the system, cell, and equipment levels.
Then, the optimization targets are first input into the
system-level ATC element while the local problem at the
system level is solved using PSO. Subsequently, targets
are propagated to lower-level ATC elements until reaching
the bottom ATC elements. When the optimization results
of the local problem at a lower level cannot meet the
cascaded targets, responses are sent to the upper-level
ATC element for the redivision and propagation of
targets. Self-adaptive collaborative control is realized
using multiple-granularity solutions including the nodal,
local, and global networks to handle the corresponding
scale of exceptions. Moreover, self-adaptive collaboration
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Fig. 2 Mechanisms of self-organization and self-adaption.
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between production and logistics is achieved by machines
and vehicles requesting tasks actively instead of being
assigned tasks passively. For example, once a production
task is published on the cloud platform, all machines
actively request the production task. When a machine
begins processing or assembly and publishes a logistics
task, all vehicles actively request the logistics task and
the nearest vehicle with enough space is selected as the
optimal vehicle.

Overall, self-organization can form a stable network
structure with vertices passing materials, information, and
financial assets through interactive links across SMCNs.
Self-adaption can deal with typical exceptions and
dynamics such as new job arrivals, order changes, and
equipment failures. When a failure occurs, the virtual
representation in cyber space can perceive the real-time
status of the corresponding equipment in the physical
world, and the corresponding vertex is removed from
SMCN:ss. If the equipment maintenance or procurement is
completed, the virtual representation in cyber space can
synchronize its real-time status and behaviors of the
physical entity, and then the corresponding vertex is
added in SMCNs. As a consequence, the network topology
of SMCNs and the finite set of optional manufacturing
services are updated in a timely manner.

4 General model of smart manufacturing
complex networks

Mathematically, SMCNs can be formulated by scale-free
networks, which are defined as a graph G = (V, E) with a
finite nonempty set V' of vertices (nodes) and a set £ of
edges representing links between all connected vertices.
Figure 3 depicts the network topology of SMCNs, where
a few hubs have large degrees, and the great majority of
vertices have small degrees. Thus, the scale-free property
of SMCNs meets the power law of degree distribution.
SMCNs include four types of vertices, namely, systems,
cells, machines, and vehicles. In SMCNs, the major
system hubs have the highest degree, followed by the
cell hubs with lower degrees, and the machine and
vehicle vertices have the lowest degree. The vertex set
in Fig. 3 can be defined as V =SUCUMUVeh, where
S ={s, 8, ..., 85} represents a finite set of the system
hubs, C ={c,, ¢,, ..., ¢;;} represents a finite set of the cell
hubs, M = {m,, m,, ..., my} represents a finite set of the
machine vertices, and Veh = {v, v,, ..., v;,} represents a
finite set of the vehicle vertices. The edge set is defined
as EC{(, j)|i, jeV}, where the interactive links
between vertices represent the flows of materials,
information, and financial assets. Specifically, the infor-
mation flow is assumed to be bidirectional between
any connected vertices.

The scale-free property of SMCNs is described by the
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Fig.3 Network topology of smart manufacturing complex
networks.

power law of degree distribution, which can be formulated
as follows

P(k) ~ k7, M

where k denotes the degree, and y denotes the scaling
exponent. In terms of y with a fixed value, the number
of vertices with k& degree decreases when the degree k
increases.

Based on the feature of hierarchical structure in
SMCNs, ATC is used to formulate the processes of self-
organizing optimal configuration and self-adaptive
collaborative control for multilevel key manufacturing
resources. As a model-based collaborative optimization
method, ATC has been used for the design optimization
of hierarchical multilevel systems (Tosserams et al.,
2006). In the case of SMCNe, a three-layer ATC hierarchy
model is constructed including the system, cell, and
equipment levels. The ATC elements at each level are
coupled with target and response variables and connected
to their parent (dominator) and/or children ATC elements.
Figure 4 illustrates the information flow of the proposed
ATC model. The optimization targets are first input into
the system-level ATC element while the local problem at
the system level is solved using intelligent optimization
algorithms. Targets at the system-level ATC element are
then decomposed and propagated down to lower-level
ATC elements until terminal ATC elements. Responses
from lower-level ATC elements are used to rebalance and
adjust the target decomposition at upper-level ATC
elements iteratively. For instance, if the optimization
results of the local problem at lower levels cannot meet
the cascaded targets from the upper level, responses are
sent to the upper-level ATC element for the redivision
and propagation of targets. Thus, collaborative optimiza-
tion is realized by iteratively minimizing the deviations
between the targets from the parent ATC elements and
responses from the children ATC elements.
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Fig.4 Information flow of the proposed analytical target
cascading model (notes: ¢ represents for the targets, and r stands
for the responses).

Considering the actual needs of discrete manufacturing
enterprises for the cost, time, efficiency, and sustainabil-
ity, four KPIs are considered as optimization targets of
SMCNSs, namely, manufacturing cost, manufacturing
time, waiting time, and energy consumption. Waiting
time refers to the duration before manufacturing
resources are available. For example, the raw materials
wait in the input buffer of a machine until the current
processing is completed; after processing, WIPs wait in
the output buffer of a machine until a vehicle arrives and
loads them. During manufacturing execution, each
production task can only be processed on one machine
every time, and the production task being processed
cannot be interrupted. In the case of logistics, each logistics
task can only be transported by one vehicle every time.

For simplification, all variables in the proposed ATC
model are normalized to eliminate the effect of different
units and sizes, which is executed as follows

g;_gmin

= ; 2)
8max — &min

8
where g, denotes the /th normalized variable value, and
g, denotes the /th original variable value. g, and gu
denote the maximum and minimum of variable g, res-
pectively.

Therefore, the objective function of the proposed ATC
model is formulated as follows

min (wcc,. + T+ owW, + a)EE) 3)
i€S

where C;, T;, W;, E; denote the manufacturing cost,
manufacturing time, waiting time, and energy consump-
tion of the system-level ATC element i, respectively.
¢, o, Oy, g denote the weighting coefficients of the
manufacturing cost, manufacturing time, waiting time,

and energy consumption, respectively.
At the system-level ATC element i, C;, T;, W,, E; are

formulated as follows

Ci= Y C+ X aC, @)

Jjep,nC Jj€p;NVeh
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Ti= % T+ % ol )
Jjep,nC JjEp,NVeh
W= Y Wi+ ¥ aW, (©6)
Jjep;NC JjEp,NVeh
Ei= Y E+ 3 ok, ()
Jjep:nC JjEp.NVeh
roo=1, ®)
Jjep,NVeh

where ¢, denotes a finite set of children vertices to the
system-level ATC element i. a; denotes a Boolean variable
of lower-level ATC element j : @; =1 when vertex j is
selected and «; = 0 otherwise.

At the cell-level ATC element i, C;, T;, W,, E; are
formulated as follows

J€0;

J€o;
W= 2 oW, (11)

j€oi

Jegi
Sa =1, (13)

where ¢, denotes a finite set of children vertices to the
cell-level ATC element i. @; denotes a Boolean variable
of lower-level ATC element j : @; =1 when vertex j is
selected and «; = 0 otherwise.

At the equipment-level ATC element i, C,, T;, W,, E,
are formulated as follows

Ci = Z ﬂmx,v,,mcms,,,, (14)

ms; ,€MS; ' '
Ti = Z ﬂmx,h(SIms,h +mtms,,,)7 (15)

ms; ,€EMS; ' ' ’

Wi = Z ﬁms(,,W[ms,h’ (16)
ms; , €MS; ’ ’

Ei = Z ﬁms,./,ecms,ﬁa (17)
ms; ,€MS;
% B =1 (18)

ms;€MS;

where MS; denotes a finite set of manufacturing services
to the equipment-level ATC element i, and ms;, denotes
the hth manufacturing service of MS, mc,,,, St.,,
Mty s Whys,» €Cyy, denote the manufacturing cost, setup
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time, manufacturing time, waiting time, and energy con-
sumption of manufacturing service ms;,, respectively.
B, denotes a Boolean variable of manufacturing service
ms;;: Bus, = 1 when service ms;, is selected and S, =0
otherwise.

Collaborative optimization is realized by the rebalance
and adjustment between targets and responses for multi-
level ATC elements. To minimize the deviations between
optimization targets from the parent (dominator) ATC
element and responses from lower-level ATC elements,
the objective function of the local problem at each ATC
element is formulated as follows

minfoc(1€ ). wr(i =), ou(r =), (i ).
+]§ (sjc +8JT. +8}N +sf)
| (19)
subjectto 1 =C,rl =T, r' =W, rf=E, (20)
rJ_C/’rJT'_TJ’rj_ J’rj_Ej’ (21)
16 =1L <&, e g, 22)
-7} <&l jep, (23)
I -l <e), jeo, (24)
5= < e g, (25)
i, or 1, 120, jeg, (26)

where (tf i, 1, t,E) and (r,C rl, Y, rF) denote the target/
response variables of the ATC element i including manu-
facturing cost, manufacturing time, waiting time, and
energy consumption, respectively, and (sf, &}, &), sf)
denotes small positive thresholds.

Intelligent optimization algorithms can be used to solve
the local problems at ATC elements (network vertices).
For example, as a stochastic population-based optimization
technique, PSO has been used to tackle discrete optimiza-
tion problems (Rezaee Jordehi and Jasni, 2015). The PSO
method is initialized with a swarm of particles in a multi-
dimensional search space. Each particle represents a
candidate solution for the optimization problems charac-
terized by four attributes, namely, position x;, velocity vc,,
individual best position p;; found by the particle, and
global best position p, found by the whole swarm.
During the search, the velocity and position of each particle
in the nth iteration are updated using Eqgs. (27) and (28),
respectively.

@7

i

vel™ = ove! + cty rdl(p?d - xf) + ctzrdz(pgd - x'.“),

X=Xt (28)

where @ denotes the inertia weight, cf, and ct, are
constants, and rd, and rd, are random numbers with a
uniform distribution, rd,, rd, € [0, 1].

Additionally, twofold termination criteria are used to
ensure a feasible computational time of the proposed
ATC model, namely, the maximum number of iterations
and the relative error of objective function values. Once a
termination criterion is fulfilled, the iteration of rebalance
and adjustment between targets and responses is stopped.
The relative error of objective function values is given as
follows

f;n _ f;_n—l |
fn—l
where f!" denotes the objective function value of the local

problem at ATC element i in the nth iteration, and &
denotes a small positive threshold.

(29)

S &

5 Case study

To demonstrate the feasibility and efficiency of the
proposed model and method for handling typical excep-
tions, an industrial case is introduced based on a Chinese
engine factory. This factory is a discrete manufacturing
enterprise, owning multiple job shops for engine produc-
tion and assembly. Based on the investigation and real-
life scenarios of the collaborative enterprise, the proof-of-
concept prototype systems of the job shop is constructed,
as shown in Fig. 5. The physical infrastructure resources
include seven types of machines, three types of vehicles,
and an automated storage and retrieval system. Raw
materials and WIPs are processed on machines and trans-
ported by vehicles between production cells. The real-
time status information of equipment and the location
information of materials are collected using RFID
devices including RFID readers and tags as well as
infrared sensors. The control of machines and vehicles
and the data transmission and reception are executed by
the embedded STM32F103ZET6 processors with 512 kB
flash and 64 kB SRAM. An edge-cloud collaborative
system is constructed to integrate heterogeneous manu-
facturing resources with computational resources, where
equipment can publish manufacturing services based on
their capabilities and actively request manufacturing
tasks.

To scale up the proof-of-concept prototype systems, a
general model of SMCNss is constructed using scale-free
networks based on network topology in Fig. 3, which
includes 5 job shop systems, 11 production cells, 24
machines, and 12 vehicles. In SMCNs, network vertices
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Fig. 5 Proof-of-concept prototype systems.

represent heterogeneous manufacturing resources includ-
ing systems, cells, machines, and vehicles. Materials,
information, and financial assets are passed through inter-
active links across the networks. The real-time status
information of machine and vehicle vertices is given in
Table 1.

Typical exceptions and disturbances in discrete manu-
facturing processes can be classified into two cate-
gories: 1) external exceptions without any change in the
network topology of SMCNs such as new job arrivals and
order changes; and 2) internal exceptions changing the
network topology of SMCNs such as equipment failures,
maintenance, and procurement. For the former, the
proposed self-organization and self-adaption mechanisms
can be used directly to handle external exceptions. For
the latter, internal exceptions can be expressed as removing
and adding vertices in SMCNSs. For example, when a failure
occurs, the virtual representation in cyber space can
perceive the real-time status of the corresponding equip-
ment; thus, the corresponding vertex is removed from the
SMCN:ss. If the equipment maintenance or procurement is
completed, the virtual representation in cyber space can
synchronize its real-time status and behaviors of the
physical entity, and then the corresponding vertex is
added in SMCNs. The network topology of SMCNs and
the finite set of optional manufacturing services are
updated in a timely manner.

In this case study, the real-time information of machine
and vehicle vertices added from Cases 1-5 is given in
Table 2, whereas the real-time information of machine
and vehicle vertices removed from Cases 6—10 is given in
Table 3. Different types of the equipment belong to the
corresponding production cells as a result of the layout
of function in job shops. In SMCNs, the corresponding
vertices are connected or disconnected to certain parent

(dominator) vertices.

Computational experiments were conducted using R-
4.2.0 for Windows (64-bit) on a computer with an AMD
A10 processor and 8 GB RAM. In SMCN:ss, the optimiza-
tion targets (¢, ¢, ¢V, 1¥) were set to (0, 0, 0, 0), and the
weighting coefficients (wc, w1, oy, wg) were set to (0.3,
0.3, 0.2, 0.2). Generally, event-triggered rescheduling
methods have been widely used to handle exceptions in
discrete manufacturing environments (Cheng et al., 2021).
Three comparison experiments between event-triggered
rescheduling and the proposed self-organization and self-
adaption method were conducted based on the original
SMCNs, SMCNs adding vertices from Cases 1-5, and
SMCNs removing vertices from Cases 6—10. The results
of the comparison experiments are shown in Fig. 6. The
computational time was around 2 s, which demonstrates
the efficiency of the proposed method to be implemented
in real-life manufacturing environments.

For the event-triggered rescheduling method without
consideration of self-organization and self-adaption,
system stability is one of the most important KPIs to
prevent internal exceptions. In this context, the set of
optimal manufacturing services was {ms,,, 1, mS,, 2, MS,, 2,
TSy 15 TSy, 15 TS, 25 TSy, 25 TSy 25 NSy 15 WSy 15 WSy, 35
ms,, 1, MS,. 2, MS,, |, MS,, 1, MS,»}. The total manufacturing
cost was $899, whereas the total manufacturing time was
30765 s. The total waiting time was 14290 s, and the total
energy consumption was 520 kW. The value of the objec-
tive function was 9.41.

For the first simulation experiment based on the original
SMCNes, the set of optimal manufacturing services for the
proposed method was {ms,, 3, MS,, 1, WSy 25 MSpe 15 NS, 25
Sy 25 MSu.25 MSp 25 MSy, 15 MSy 1y MSy. 2y NS, 1, WS, |,
ms,. 3, mMs,.,, ms, ;. The total manufacturing cost was
$530, approximately 41% lower than that of the
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Table 1 Real-time information of machine and vehicle vertices

Vertex Parent vertex Manuf. service Manuf. cost ($) Setup time (s) Manuf. time (s) Waiting time (s) Energy cons. (kW)
m Cl MSmy 1 48 185 1436 1087 34
My, 2 62 208 1720 909 23
MSmy 3 35 137 1818 1187 31
my cl MSiy,1 93 234 2142 1102 42
MSmy,2 41 91 2170 1396 32
m3 2 MSm3,1 46 210 1574 822 54
MSpy2 43 172 2216 823 35
my 2 MSmy,1 52 156 1596 1022 31
M2 35 184 2278 1267 49
mio Cs MSmyg,1 78 98 1445 726 24
MSmy0,2 21 147 1210 993 30
miy cs MSmyy,1 71 153 2634 889 53
My 2 37 145 2355 1289 41
my| c10 MSmy; 1 23 218 975 790 26
MSmy, 2 45 226 1774 1324 23
mp2 c10 MSpmy,,1 92 185 2644 1261 33
MSmy, 2 69 144 2007 939 36
ma3 €10 MSmys,1 45 92 1915 1058 34
MSpy3,2 63 223 2603 968 30
mo4 cl MSmyy,1 99 174 1008 1432 55
MSyy,2 58 101 2090 1281 40
My 3 91 211 2469 1465 33
Vi 1 msy, | 15 61 498 127 2.8
msy, 2 7 64 494 179 2.9
V2 S1 msy, 1 9 80 388 112 23
msy, 2 6 76 373 202 2.5
V3 51 msy;.,1 5 65 351 175 1.9
msy; 2 8 74 436 112 2.4
V6 52 msye.1 13 87 383 134 2.5
MSyg 2 13 64 337 167 1.9
Vi 53 msy; .1 12 63 481 180 2.4
mSy; 2 11 90 453 100 1.5
msy; 3 9 74 455 100 2.0
vs 54 Mmsyg,1 14 88 315 134 1.8
MSyg 2 12 60 378 130 1.6
V9 54 Mmsyy,1 9 80 489 157 2.4
MSyy,2 8 67 444 168 1.9
V1o 54 msy,.1 9 69 431 235 2.6
mSy0,2 11 76 358 204 1.8
Vi1 S5 msy, .1 5 71 369 138 3.0
msy, ;2 14 60 428 131 2.9
V12 S5 msSyy,,1 13 64 469 175 2.0

msy;, 2 15 88 436 218 1.5
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Table 2 Real-time information of machine and vehicle vertices added from Cases 1-5

Case number  Vertex Parent vertex Manuf. service Manuf. cost (§)  Setup time (s) Manuf. time (s) Waiting time (s)  Energy cons. (kW)
Case 1 mas 1 MSmys,1 66 96 1531 558 35
MSmys,2 25 114 616 563 27
MSmys.3 61 132 860 302 22
Case 2 mae Cs MSmyg,1 27 100 1577 325 49
Mg, 62 119 852 448 28
Case 3 my7 c11 MSmy,1 61 99 1037 368 37
MSmy; 2 72 101 660 414 47
Case 4 Vi3 53 MSyy3.1 14 86 290 94 1.8
MSy32 10 69 280 96 1.7
Case 5 Vi4 S5 msy, 4,1 6 62 244 119 1.8
Msy;42 8 76 277 91 2.0

Table 3 Real-time information of machine and vehicle vertices

removed from Cases 6-10

the event-triggered rescheduling method. The total waiting
time was 11451 s, approximately 20% shorter than that

Case number Vertex Parent vertex Failure cause of the event-triggered rescheduling method. The total
Case 6 m1 o Equipment failure energy consumption was 417.6 kW.’ approximately ZQ%

, . lower than that of the event-triggered rescheduling
Case 7 mjo Cs Maintenance . K .

‘ method. The value of the objective function was 6.38.
m c . . .

Case 8 2 1 Maintenance For the second simulation experiment based on SMCNs
Case 9 ve 52 Equipment failure adding vertices from Cases 1-5, the set of optimal manu-
Case 10 V8 54 Maintenance

event-triggered rescheduling method. The total manufac-
turing time was 18744 s, about 39% shorter than that of

facturing services for the proposed method was {ms,,_,,
msnu,h msmﬁ,b msmg,la msmm,Za msm”,Za msmH,Z: msm17,2a msmlg,la
Myt My 1y MSy 1, M1, MSy 0, MSy o, M, 1} The
total manufacturing cost was $525, slightly lower than

= Event-triggered rescheduling = The proposed method

1000 899 899 35000

= Event-triggered rescheduling = The proposed method

30765
900 ; o
300 30000
700 25000
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500 = - 16150
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Fig. 6 Comparison experiment results of event-triggered rescheduling and the proposed method.

(d) Total energy consumption (kW)
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that of the original SMCNs. The total manufacturing time
was 16150 s, around 14% shorter than that of the original
SMCNs. The total waiting time was 9891 s, about 14%
shorter than that of the original SMCNSs. The total energy
consumption was 409.1 kW, about 2% lower than that of
the original SMCNs. The value of the objective function
was 5.87. As the newly added machine and vehicle
vertices in SMCNSs provided more manufacturing service
options and enlarged the optional service group for the
optimal configuration, the set of optimal manufacturing
services for manufacturing tasks was updated with lower
manufacturing cost, manufacturing time, waiting time,
and energy consumption.

For the third simulation experiment based on SMCNs
removing vertices from Cases 6—10, the set of optimal
manufacturing services for the proposed method was
{MS, 00 NS, 1y NSy 25 WSy 15 Sy 25 TSy 25 Sy 2y Sy 5,
MSyts MSp 1y MSy 0y TS, 1, WS, 1, NS, 3, TS, 5, MS, |}
The total manufacturing cost was $570, about 8% higher
than that of the original SMCNs. The total manufacturing
time was 21080 s, around 12% longer than that of the
original SMCNs. The total waiting time was 12262 s,
approximately 7% longer than that of the original
SMCNs. The total energy consumption was 437.9 kW,
about 5% higher than that of the original SMCNs. The
value of the objective function was 6.91. As machine and
vehicle vertices were removed from the SMCNs due to
various exceptions such as random failures and regular
maintenance, the set of optimal manufacturing services
for manufacturing tasks was updated with the remain-
ing manufacturing services. However, these removed
machine and vehicle vertices may contain manufacturing
service options with lower manufacturing cost, manufac-
turing time, waiting time, and energy consumption.

Based on the results of comparison experiments,
Table 4 illustrates the numerical analysis of SMCNs in
the three simulation experiments. Six types of network
characteristics were considered, namely, vertex number,
edge number, average degree, diameter, density, and
average clustering coefficient. Specifically, in the original
SMCNs, the number of vertices was 52, the number of
edges was 59, the average degree was 2.27, the diameter
was 6, the density was 0.04, and the average clustering
coefficient was 0.15. However, the number of both
vertices and edges in SMCNs adding vertices from Cases
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1-5 increased by 5. As the degrees of the added machine
and vehicle vertices were lower than the average degree
of the original SMCNs, the average degree and average
clustering coefficient of SMCNs adding vertices from
Cases 1-5 were lower than those of the original SMCNs.
On the contrary, the number of vertices and edges in
SMCNs removing vertices from cases 6—10 decreased to
47 and 54, respectively, while the average degree, density,
and average clustering coefficient of SMCNs removing
vertices from Cases 6—10 were higher than those of the
original SMCNs because the removed machine and vehicle
vertices had lower degrees than the average degree of the
original SMCN:ss.

In the context of IloT-based manufacturing environ-
ments, by leveraging advanced technologies such as
CPSs and DTs, the mapping relationships between virtual
vertices and the real-time status of physical entities are
established. Figure 7 illustrates the changing processes of
the network topology for SMCNs in the three simulation
experiments. The size of vertices and the thickness of
edges correspond to the degrees. Figure 7(a) shows the
network topology of the original SMCNs. When the
equipment maintenance or procurement was completed,
new corresponding vertices were added to the SMCNs.
Figure 7(b) shows the network topology of SMCNs
adding vertices from Cases 1-5, where machine vertices
Mys, My, My; and vehicle vertices vy, v,4 were added to
cell vertices ¢y, ¢s, ¢;; and system vertices s, S5, respec-
tively. When machines and vehicles were out of operation
due to equipment failures or maintenance, the corre-
sponding vertices were removed from the SMCNs.
Figure 7(c) shows the network topology of SMCNs
removing vertices from Cases 6-10, where machine
vertices m,, my,, M, and vehicle vertices vq, vg were
removed from cell vertices ¢y, ¢s, ¢, and system vertices
Sy, 84, respectively. Thus, the real-time status of physical
entities was reflected in the topology changes of SMCNSs.

Overall, the feasibility and efficiency of the proposed
model and method were validated based on an industrial
case of a Chinese engine factory. The simulation results
show the proposed method can effectively use the real-
time status information of physical manufacturing
resources to handle typical exceptions efficiently with
reductions in manufacturing cost, manufacturing time,
waiting time, and energy consumption. Despite its

Table 4 Numerical analysis of smart manufacturing complex networks in three simulation experiments

Network characteristics Original SMCNs

SMCNs adding vertices from Cases 1-5

SMCNs removing vertices from Cases 610

Vertex number 52
Edge number 59
Average degree 2.27
Diameter 6
Density 0.04
Average clustering coefficient 0.15

57 47
64 54
2.25 2.30
6 6
0.04 0.05
0.12 0.17
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(a) Original SMCNs

(b) SMCN s adding vertices from Cases 1-5

(c) SMCNs removing vertices from Cases 6—10

Fig. 7 Changing processes of the network topology for smart manufacturing complex networks.

advantages, sub second response time is required for high
production efficiency in real-life manufacturing environ-
ments. Therefore, this work potentially enables managers
and practitioners to implement active perception, active
response, self-organization, and self-adaption solutions in
discrete manufacturing enterprises.

6 Conclusions and future research

To deal with unpredictive dynamic uncertainties including
external and internal exceptions in manufacturing envi-
ronments, this paper studies the mechanisms and method-
ology of self-organization and self-adaption for SMCNs
to tackle exceptions and disturbances in discrete manu-
facturing processes. The main contributions of this paper
include three aspects: 1) A general model of SMCNSs is
developed using scale-free networks to interconnect

heterogeneous manufacturing resources represented by
network vertices at multiple levels. Materials, informa-
tion, and financial assets are passed through interactive
links across the networks. 2) The capabilities of physical
manufacturing resources are encapsulated into virtual
manufacturing services using cloud technology, which
can be added to or removed from the networks in a
plug-and-play manner. 3) Subsequently, ATC is used
to formulate the processes of self-organizing optimal
configuration and self-adaptive collaborative control for
multilevel key manufacturing resources, whereas PSO is
used to solve local problems on network vertices.

Recent advances in IloT and the widespread use of
embedded processors and sensors in factories enable
collecting real-time manufacturing status data and build-
ing CPSs for smart, flexible, and resilient manufacturing
systems. Self-organization can form a stable network
structure with vertices passing materials, information, and
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financial assets through interactive links across SMCN.
Self-adaption can deal with typical exceptions and
dynamics such as new job arrivals, order changes, and
equipment failures. When a failure occurs, the virtual
representation in cyber space can perceive the real-time
status of the corresponding equipment. Thus, the corre-
sponding vertex is removed from SMCNs. If the equip-
ment maintenance or procurement is completed, the
virtual representation can synchronize its real-time status
and behaviors of the physical entity, and then the corre-
sponding vertex is added in the SMCNs. To validate the
feasibility and efficiency of the proposed model and
method, an industrial case based on a Chinese engine
factory is presented to handle typical exceptions. The
simulation results show that the proposed mechanism
and method outperform the event-triggered rescheduling
method, reducing manufacturing cost, manufacturing
time, waiting time, and energy consumption with reason-
able computational time. This work potentially enables
managers and practitioners to implement active percep-
tion, active response, self-organization, and self-adaption
solutions in discrete manufacturing enterprises.

For future research, other types of complex network
models will be studied and developed for SMCNs. The
proposed model and method will be implemented in
real-life manufacturing environments.
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