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Abstract Recently, firms have begun to handle the
design, manufacturing, and maintenance of capital goods
through a consolidated mechanism called the integrated
product-service system. This new paradigm enables firms
to deliver high-reliability products while lowering the
ownership cost. Hence, holistic optimization models must
be proposed for jointly allocating reliability, maintenance,
and spare parts inventory across the entire value chain. In
the existing literature, these decisions are often made frag-
mentally, thus resulting in local optimality. This study
reviews the extant works pertaining to reliability-redun-
dancy allocation, preventative maintenance, and spare
parts logistics models. We discuss the challenges and
opportunities of consolidating these decisions under an
integrated reliability-maintenance-inventory framework for
attaining superior system availability. Specific interest is
focused on the new product introduction phase in which
firms face a variety of uncertainties, including installed
base, usage, reliability, and trade policy. The goal is to call
for tackling the integrated reliability-maintenance-inventory
allocation model under a nonstationary operating condition.
Finally, we place the integrated allocation model in the
semiconductor equipment industry and show how the firm
deploys reliability initiatives and after-sale support logistics
to ensure the fleet uptime for its global customers.
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1 Introduction

In the last decade, firms in both private and public sectors
started to handle product design, manufacturing, and after-
sales supports under an integrated product-service system
(PSS). This new paradigm is driven primarily by
customers who aspire for high system reliability and
availability with low ownership cost (Kumar et al., 2007;
Guajardo et al., 2012; Lin et al., 2016). High system
availability is essential to daily business operations where
zero downtime is extremely desirable, such as in energy
generation, automobile assembly, healthcare delivery,
transportation, communication network, financial
services, and homeland security. For instance, an airline
may incur costs of up to $50000 per hour if a plane is
grounded due to an unplanned repair (Ghobbar and
Friend, 2003). Downtime costs of computer systems of a
large e-commerce company or brokerage firm could be as
high as $1 million per hour (Patterson, 2002).

In fact, the after-sales service associated with mainte-
nance, repair, and parts supply represents a lucrative
income to original equipment manufacturer (OEM).
Cohen et al. (2006) showed that such service could
contribute as much as 40%—-50% of the firm’s profit. For
instance, in the aviation industry, a total fleet of 39175
aircraft are projected to be in operation in 2029, up more
than 42% from 27492 in 2019 (Cooper et al., 2019). The
after-sales market that supports it is expected to rise to
$116 billion by 2029, up from $81.9 billion in 2019. The
global operation and maintenance market of wind industry
will grow from $30.21 billion in 2021 to $52.74 billion in
2028 (Fortune, 2021). Similar situations are observed in
other industries, such as automobile, semiconductor, and
defense sectors (Thurlow, 2013).

Three approaches are often used to achieve the reliability
and availability goal of a system. These methods are reli-
ability-redundancy allocation (RRA), preventative main-
tenance (PM), and spare parts logistics (SPL) (Elsayed,
2021). In RRA, the product’s mean-time-between-
replacements (MTBR) and mean-time-between-failures
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(MTBF) are improved by using advanced design, durable
materials, or standby units. However, a trade-off must be
made among reliability, weight, volume, cost, and design
time. An early review on RRA models was made by Kuo
and Wan (2007) and more recent ones by Coit and Zio
(2019) and Si et al. (2020).

In a broad sense, PM can be classified into time-based
and condition-based strategies. In time-based mainte-
nance, systems or components are routinely checked and
replaced if they reach a predefined age or fail randomly
(Dursun et al., 2022). For instance, an age-based PM
model has been developed to minimize the long-term cost
considering imperfect repair in dynamic operating envi-
ronments based on Markov process (Shen et al., 2019).
Flexible age replacement policies have also been
proposed to address the over- and under-maintenance
issue (Jin and Yamamoto, 2017; Zhao et al., 2017; Jiang,
2019). An early survey on the PM research was done by
Nicolai and Dekker (2008), and a more recent one was
conducted by Alaswad and Xiang (2017). In condition-
based maintenance (CBM), the equipment or component
health status is monitored using in-situ sensors. The
remaining useful life (RUL) is then estimated through a
diagnostic and prognostic program, which is typically
built upon statistical inferences, such as Bayes’ theory
(Zhao et al., 2018), or machine learning algorithms, such
as neural networks (Peng et al., 2010; Hu et al., 2022).
The replacement action is triggered once the RUL
approaches, but not exceeds, a pre-defined degradation
threshold. An early review on CBM was made by Peng
et al. (2010), and two recent ones were made by Li
et al. (2020) and Hu et al. (2022).

SPL belongs to the service supply chain domain. It
aims to reduce the mean downtime (MDT) of a system by
promptly providing spare parts for proactive or failure
replacement, thus ensuring the system’s uptime or avail-
ability. In SPL, the decision variables are the location of
inventories and the amounts of spare parts to be stocked.
Following the seminal work of Sherbrooke (1968), various
SPL models have been proposed by considering the oper-
ational practices or constraints, including multi-indenture
repair (Muckstadt, 1973), parts transshipment (Lee, 1987),
multi-echelon location and repair (Alfredsson, 1997), and
variable usage (Lau and Song, 2008). Typical performance
measures include fill rate, backorders, parts availability,
and inventory cost. The main challenge in managing
spare parts inventory is the intermittent or sporadic
demands generated from field systems. Hence, forecasting
the spares demand is a key to the effective management
of the spares inventory. An early survey on SPL models
was made by Kennedy et al. (2002), and more recent
ones can be found in Basten and van Houtum (2014) and
Hu et al. (2018).

Although various models were proposed to increase
system reliability and availability, the majority have
focused on one specific period of the product lifetime.

For instance, RRA is limited to the product design and
manufacturing phase, while PM and SPL concentrate on
the after-sales market. There lacks a holistic framework
in which reliability, maintenance, and spares inventory
are jointly coordinated over the product lifetime. Thus,
the absence of such framework motivates us to revamp
the existing research agenda and propose an integrated
PSS solution with which system availability and lifetime
cost are optimized simultaneously. To that end, we
present three research questions: 1) how to allocate relia-
bility, maintenance, and spares inventory concurrently
under a variable installed base; 2) how to forecast the
spare parts demand during the introduction of a new
product with uncertain reliability and operation condi-
tions; and 3) what are best industry practices in deploying
the integrated PSS solution in service oriented manufac-
turing to ensure the fleet uptime in the global market.

The remainder of the paper is organized as follows.
Section 2 revisits the state of the art in the interface
among RRA, PM, and SPL models. Section 3 discusses
the challenges and research opportunities of tackling inte-
grated reliability-maintenance-inventory problem. Sec-
tion 4 elaborates on spares demand forecasting methods,
including explanatory models using installed base data.
In Section 5, we present a case study for connecting the
PSS model with industry best practices. Section 6
discusses the research and application of PSS in the
defense or public sector. Lastly, Section 7 summarizes
the paper.

2 The state of the art

2.1 A framework of integrated product-service system

Figure 1 shows a typical product-service integration
framework comprising product design, manufacturing,
and after-sales support. This type of service oriented
manufacturing network is widely used for supporting
durable goods or capital equipment with a typical lifetime
of 10-30 years, such as wind turbines, aircraft engines,
semiconductor equipment, and power generators. After a
new product is released, the installed base or the fleet size
increases due to market expansion, thus rendering the
spares demand, maintenance service, and repair center
being operated in a nonstationary condition. An OEM can
adopt three approaches to attaining the reliability and
availability goal of a new product: RRA, PM, and SPL. If
a failed system or component can be repaired and reused,
SPL is also referred to as a repairable inventory model.
The RRA problems are often formulated to maximize
the system reliability or its availability under monetary,
physical, and repair resource constraints. Some resear-
chers also opt to minimize the system cost or the design
resources subject to system reliability and availability
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goals. Most RRA problems are revealed as NP-hard
issues (Chern, 1992). Various solution techniques have
been proposed, including branch and bound (Kuo et al.,
1987), genetic algorithm (Coit and Smith, 1996), multi-
objective (Coit et al., 2004), Pareto optimality (Abouei
Ardakan and Rezvan, 2018), Tabu search (Kulturel-
Konak et al., 2003), artificial bee colony (Yeh and Hsieh,
2011), and importance measures (Si et al., 2019; 2020).

The advent of the PSS drives the necessity and needs of
coordinating RRA, PM, and SPL under a holistic frame-
work. In fact, this paradigm change is also driven by the
emergence and implementation of performance-based
contracting (PBC) in the after-sales market. In PBC, the
service provider is compensated for the system reliability
outcome, not the materials and labors transacted. PBC is
becoming a new service delivery mechanism in the capital
goods industry, especially in commercial airline, wind
generation, and defense industry (Smith, 2004; Guajardo
et al., 2012; Rees and van den Heuvel, 2012; Qin et al.,
2021). For instance, the maintenance, repair, and overhaul
(MRO) of the aviation industry is a capital- and labor-
intensive service. An airline usually has to bear all the
costs under traditional time- or material-based contracting.
The MRO providers under PBC, however, are compen-
sated for the achieved aircraft reliability or availability,
not the actual labor and spare parts transacted. Hence, the
OEM is motivated to consolidate product design, mainte-
nance, spares, and repair under one umbrella to lower the
product lifetime cost with performance warranty.

The sections below review the state of the art pertaining
to three categories of joint allocation models: 1) joint
decision on reliability, redundancy and maintenance,
2) joint allocation of reliability, redundancy and spares
inventory, and 3) joint planning for maintenance and
spares inventory. Notably, many good reviews have been
made on RRA (Kuo and Wan, 2007; Coit and Zio, 2019;
Si et al., 2020), PM (Alaswad and Xiang, 2017) and SPL
(Basten and van Houtum, 2014). Our review differs from

Integrated product and service offering during new product introduction.

theirs as we focus on the interface among RRA, PM, and
SPL with the goal of introducing reliability-maintenance-
inventory optimization problem.

2.2 Joint decision on reliability, redundancy, and
maintenance

In literature, joint optimization has been made between
reliability design and maintenance policy because both
decisions mutually interact and influence the system
availability and cost. Levitin and Lisnianski (1999)
jointly optimized component redundancy and replacement
policy for a multi-state system to achieve the desired
level of system reliability. A genetic algorithm is used to
minimize the aggregate cost comprising capital invest-
ment, maintenance overhead, and random failures. Liu
et al. (2013) solved a type of redundancy-maintenance
optimization problem for multi-state systems with imper-
fect repair. The objective was to achieve the desired
system availability through the coordination of component
redundancy and replacement time by minimizing the
expected cost rate. Nourelfath et al. (2012) solved a similar
redundancy-maintenance optimization problem with the
assumption that the repair was perfect. Moghaddass et al.
(2012) compared the trade-off between redundant config-
uration and maintenance policy for a repairable multi-
state system. A continuous-time Markov process model is
proposed to maximize the system profitability per unit
time subject to system availability and maintenance initi-
ation threshold. Bei et al. (2017) formulated a two-stage,
scenario-based stochastic optimization model to allocate
the component type, redundancy level, and maintenance
time of a series-parallel system. Subject to uncertain
future stress exposures, the first stage is to select the
component type and redundancy, and the second-stage
determines the replacement time with the goal of mini-
mizing the system cost.
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2.3 Joint allocation on reliability, redundancy, and spares
inventory

The joint reliability, redundancy, and spares allocation
models can be classified into two categories: Static
installed base versus variable installed base. Under a
static system fleet, Louit et al. (2011) presented a number
of reliability-based spares inventory models to determine
the optimal stocking policy for both nonrepairable and
repairable components. Three different criteria are exam-
ined: Reliability of the stock, parts availability, and cost.
Oner et al. (2013) proposed an on-site, cold-standby
component redundancy strategy to reduce the equipment
downtime. Three performance measures are examined,
namely, inventory cost, parts availability, and expected
backorders. Selguk and Agrali (2013) compared the trade-
off between component reliability investment and base-
stock spares inventory to minimize the cost of a multi-
item system fleet. Xie et al. (2014) formulated a continu-
ous-time Markov chain model to maximize the system
availability through joint allocation of active redundant
components and a base-stock inventory. Sleptchenko and
van der Heijden (2016) solved a similar but more general
problem in which the redundant system consists of multiple
parts and spares types instead of a single part type. Zhao
et al. (2019) concurrently allocated component redun-
dancy, spares inventory, and repairmen with the intent of
maximizing the availability of a cold-standby system.

The spares demand from a variable installed base turns
out to be a nonstationary process with time-varying mean
and variance, thus making the inventory control more
difficult. Jin and Tian (2012) took an early step to jointly
allocate component reliability and spares inventory to
minimize the lifetime cost of a system fleet with Poisson
growth. Later, Jin et al. (2017) included component
redundancy, along with reliability and spares inventory,
to minimize the system lifetime cost for a growing
installed base. Other interesting works and related
reviews on reliability-inventory planning under the vari-
able installed base can be found in Dekker et al. (2013)
and Selviaridis and Wynstra (2015). In most reliability-
inventory allocation models, the aggregate spare parts
demand of the fleet is often assumed as a Poisson process
with a constant rate. This assumption is built upon the so-
called superimposed renewal process theory. It states that
as the fleet size becomes sufficiently large, the inter-
arrival time between two consecutive failures is exponen-
tial regardless of the lifetime distribution of systems (Cox
and Smith, 1954; Wang, 2012). However, this assumption
could be violated in a small installed base (e.g., during
new product introduction). Therefore, solving the relia-
bility-inventory allocation problem with nonhomoge-
neous Poisson spares demand would be more realistic,
yet challenging.
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2.4 Joint planning for maintenance and spares inventory

This research stream is known as maintenance service
logistics. It aims to achieve high system availability by
coordinating maintenance, repair, and parts provisioning
at minimum cost. One research stream concentrates on
consumable parts with a relatively large order quantity
but less costly. The works by Zohrul Kabir and Al-
Olayan (1996), Vaughan (2005), and van Horenbeek et al.
(2013) belong to this stream, where parts replacement
times and inventory re-ordering policy are jointly coordi-
nated to minimize the total cost subject to random fail-
ures. Wang and Zhu (2021) investigated a joint optimiza-
tion of periodic condition-based replacement and spares
inventory problem for a nonrepairable k-out-of-n: F
system in which the degradation of components follows
the Wiener process and the gamma process, respectively.
Later, Zhu et al. (2022) applied a similar model to the
onshore wind turbine fleet maintenance by scheduling the
shortest travel route to the failed turbines. Zhang et al.
(2021) also optimized the preventive block replacement
interval and spares inventory considering Wiener reliabil-
ity degradation. Their model differs from others in that
spare parts in storage are subject to shock failure, in addi-
tion to slow deterioration.

Another research stream takes into account parts repair
and renewing cost because failed items can be restored,
refurbished, and reused. For instance, de Smidt-
Destombes et al. (2009) jointly optimized the maintenance
initiation, spare parts, and repair capacity to minimize the
asset ownership cost for a k-out-of-n redundant system.
Jin et al. (2015) formulated a principal-agent game model
to minimize the annualized system cost for a fleet of
k-out-of-n redundant systems. The model seeks the optimal
maintenance time, spares inventory, and parts repair and
renewing capacity. Basten and Ryan (2019) studied the
impact of delay in performing planned maintenance on
the optimal spares inventory policy. Attempts are also
made to coordinate parts replacement time and the spares
stocking policy under condition-based maintenance. For
the mathematical convenience, uncapacitated repair facil-
ity is often assumed in maintenance logistics models.
Given that repair capacity influences the stocking policy,
Diaz and Fu (1997) and Sleptchenko et al. (2003) showed
that capacitated treatment is more realistic than uncapaci-
tated repair in this type of problem. For more studies on
joint maintenance and spares inventory planning, readers
are referred to the works of Wang et al. (2009a), Chen
et al. (2013), and Olde Keizer et al. (2017).

3 Research challenges and opportunities

During the introduction of a new product, achieving
system reliability and availability goal is rather difficult
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due to several reasons: 1) the installed base increases, and
more spare parts and repairs are required, 2) system relia-
bility continues to grow, but intermingled with up-and-
down cycles, 3) spare parts demands are intermittent
coupled with no-fault-found returns, and 4) training on
the operations and diagnostics of new systems are insuffi-
cient. Three research topics are proposed as potential
studies in the future, which are elaborated in Sections 3.1,
3.2, and 4, respectively.

* Developing joint reliability-maintenance-inventory
allocation models.

* Optimizing spare parts logistics considering variable
installed base and uncertain reliability.

* Forecasting spare parts demand considering installed
base information.

3.1 Joint reliability-maintenance-inventory allocation
model

Figure 2(a) shows the traditional approach to reliability
resource allocation in the design, manufacturing, and
after-market of capital goods. As the decisions on RRA,
PM, and SPL are performed sequentially and fragmen-
tally, the process may end up with suboptimal allocations.
In fact, component reliability allocation made in the
design stage will have a major influence on the mainte-
nance cost and operational effectiveness of the system
throughout its life (Carrel, 2000). To achieve the lifetime
optimality, an integrated reliability-maintenance-inventory
optimization model shall be proposed. Although various
allocation models have been reviewed in Sections 2.2-2.4,
an integrated PSS framework in which RRA, PM, and
SPL are jointly coordinated remains lacking.

The integrated PSS framework proposed in Fig. 2(b)
has two advantages over the sequential allocation
approach. First, it allows for achieving a holistic resource
optimization instead of segmented or local decision.
Second, it can potentially lower product ownership cost,
thus generating a win—win outcome between OEM and
customers. For instance, higher product reliability

a
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requires a larger amount of upfront investment. However,
a smaller amount of failures will occur during operation,
thus reducing the cost of maintenance, sparing, and
repairs. Let 4 be the availability of a single-component
system, then we have (Jin et al., 2015; 2021)

A JTR(ndt
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M

where R(?) is the component reliability, F(¢) is the cumu-
lative distribution function with F(f) = 1—R(¢), 7 is the
preventive replacement time, #; is the hands-on part
replacement time, £, is the part repair turn-around time, £,
is the part renewing turn-around time, s is the base stock
inventory level, and D is the random parts demand. Based
on Eq. (1), the availability of a k-out-of-n redundant
system is given by

Ay =3 A1 =AY, )

=\

Equations (1) and (2) represent a first-of-its-kind for
modeling repairable system availability in which RRA,
PM, and SPL are seamlessly integrated. Namely, compo-
nent reliability R(f), redundancy level n, maintenance
time 7, base stock inventory s, repair capacity #;, and
renewing capacity #, are incorporated into a unified
framework.

3.2 Spare parts logistics under variable installed base

After the capital equipment is installed at customer site,
the spares inventory plays a vital role in sustaining its
operation by providing good items for failure replace-
ment. The demand for spare parts usually is intermittent
and sporadic due to the stochastic nature of failures,
uncertain system usage, and variable fleet size. During
the new product introduction, more failure replacements
are generated from the fleet as the installed base contin-
ues growing. As a result, the spares inventory faces a

(b) Bridging Reliability Engineering and Operations
Management

Joint allocation of RRA, PM, and SPL

-
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1) Unified system availability 2) Superimposed renewal
3) Nonstationary spares demand 4) Adaptive parts stocking
-~ =
Objectives of the PPS Model:
Minimize: lifetime cost, inventory resources, downtime
Maximize: reliability, system availability, fill rate, uptime

Fig. 2 (a) Sequential and segmented decision, and (b) Integrated product-service system.
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nonstationary demand stream with time-varying mean
and variance.

Figure 3 shows a growth profile of the installed base
for a type of capital equipment starting from the initial
shipment. This example is taken from the semiconductor
test equipment sector. For confidentiality reasons, the
data in Fig. 3 are normalized, but the trends are retained.
From ¢ = 1 to t = 130, a total of 1100 systems were
installed in field. The installation rate is not linear due
to the stochasticity of the market size. The rate between
t =1 and ¢ = 80 is lower than that for r = 81 to ¢ = 130.
In the meantime, the system reliability manifested as
MTBF is improved from about 300 at = 1 to 1800 at
t = 130. In fact, the reliability growth is highly uncertain,
and multiple up-and-down cycles are observed.

Figure 4 graphically shows how the mean (E) and the
variance (Var) of the lead time spares demand increase
with the installed base. Lead time is the duration from
when a replenishment order is placed to when the part
arrives at the inventory. On the one hand, as the fleet size
grows over time, the inventory needs to provide more
spare items to meet the increasing failures. On the other
hand, each installed system will likely reduce the spare
parts demand because of reliability growth as shown in
Fig. 3. Most spares inventory models assume the demand

is a Poisson or stationary process. Obviously, spares
inventory models based on stationary demand becomes
less effective in handling the time-varying demand during
the new product introduction phase. Though some
researchers have focused on optimizing the stocking
policy considering the nonstationary demand (Song and
Zipkin, 1993; Ettl et al., 2000; Graves and Willems,
2008), the primary interests of these studies are in
production-inventory systems. Spare parts provisioning
differs from production-inventory system in that the
demand in the former heavily depends on the product
reliability, maintenance policy, equipment utilization, and
fleet size.

4 Spares demand forecast using installed
base information

A prerequisite to the effective management of spares
inventory is the forecasting of intermittent parts demands.
Many factors contribute to the demand intermittency,
such as product discard (Ritchie and Wilcox, 1977; Lu
and Wang, 2015), random system load (Wang et al.,
2009b), operating temperature and humidity (Ghodrati
and Kumar, 2005; Ghodrati et al., 2012; Nouri
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Fig. 3 Reliability growth and fleet expansion of a new product.
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Fig. 4 Lead time spares demand under an increasing installed base.
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Qarahasanlou et al., 2019), working materials (Barabadi
et al., 2014), uncertain lifetime (Hong and Meeker, 2013;
Kontrec and Pani¢, 2017), system usage (Jin and Wang,
2012), and maintenance policy (Wang and Syntetos,
2011; Si et al., 2017). Interested readers can refer to the
related topics within these works.

During the new product introduction, the installed base
usually changes and increases, resulting in more failures
and replacement requests. Hence, our priority of the
forecasting model is focused on this period. First, we
briefly review the history of the reactive spares demand
forecasting method. Then, explanatory forecasting mod-
els incorporating reliability and installed base data are
elaborated. Recently, van der Auweraer et al. (2019)
provided a comprehensive review of the forecasting
models considering installed base information. Our re-
view differs from it because we present two superim-
posed renewal models: 1) forecasting the spares demand
during the introduction of a new product with exponential
lifetime; and 2) characterizing lead time spares demand
of a new system fleet with Poisson expansion.

4.1 Reactive spares demand forecasting methods

In the 1970s, Croston (1972) proposed a seminal method
to forecast the intermittent spares demand. Instead of
predicting the mean demand per period, the author
divided the demand into two separate terms: Demand
occurrence and demand size. Two separate estimates are
made: One for the demand inter-arrival time and the other
for the spares quantity per demand occurrence. Since then,
different variations of Croston’s method have been devel-
oped, including Schultz (1987), Johnston and Boylan
(1996), Syntetos (2001), Syntetos and Boylan (2001;
2005), Snyder (2002), Levén and Segerstedt (2004),
Teunter et al. (2011), and more recently by Pennings et al.
(2017).

Other reactive approaches to forecasting intermittent
demand include machine learning, bootstrapping, and
expert judgment. Machine learning algorithms, such as
neural networks, are good at predicting nonlinear, inter-
mittent demand data owing to the nonlinearity feature of
the model (e.g., Kourentzes (2013)). Bootstrapping essen-

tially is a nonparametric method that allows for the resam-
pling of underlying random demand, rendering distribu-
tional assumptions unnecessary (Willemain et al., 2004). If
a wealth of experience or expertise knowledge is available,
an analytical model intermingled with expert judgment
oftentimes results in an improved forecast result for certain
part types (Wang and Petropoulos, 2016).

All these aforementioned methods belong to the reactive
forecasting technique and have one major drawback.
They primarily rely on historical data and passively
predict the upcoming demand without explicitly consid-
ering uncertain future factors. However, future demand
may fluctuate and vary considerably due to factors such
as reliability growth, installed base, and system usage. It
may not be sufficient to obtain an accurate forecasting
result based on past information. Wang and Syntetos
(2011) suggested that critical factors influencing the
future demand generation, such as maintenance strategy,
shall be incorporated into the forecasting procedure as
well. Dekker et al. (2013) emphasized that spare parts
management requires a level of reliability and installed
base data for future forecasting, which cannot be met by
reactive forecasting methods.

4.2 Explanatory spares forecasting with installed base data

The installed base is a key driver behind the generation of
the intermittent spares demand, which has been discussed
in Section 3.2. Figure 5 shows the installed base of a
product lifecycle can be divided into three phases:
Increasing, steady-state, and retirement or end-of-life.
The fleet size increases during the product introduction
phase, reaches a steady-state level once the market is
saturated, and then decreases during the end-of-life phase.
Below explanatory forecasting models are discussed
corresponding to these phases.

4.2.1 Spares forecasting for increasing installed base

Fortuin (1984) investigated the future spares demand as
the installed base increases during the introduction of a
new product. Assuming a constant product failure rate «,

A
Introduction phase Steady state phase Retirement phase
4 e e ———————— |
Installed base
2
§ Spares demand
Q /\
New sales
0 / 4 f Time

Fig. 5 New sales, installed base, and spares demand (Inderfurth and Mukherjee, 2008).
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the author presented a deterministic forecasting model as
follows

Z(t) = a/jo[n(x) dx, 3)

where Z(f) is the cumulative spares demand of an
installed base in [0, 7], and n(?) is the fleet size at time ¢.
The author further derived a closed form solution for Z()
assuming a linear and deterministic growth function of
n(t).

Realizing new sales are often random and uncertain
because of market volatility. Jin and Liao (2009)
proposed a spares forecasting model that synthesizes
stochastic new installation and superimposed renewal
theory. Renewal theory has important applications in reli-
ability analysis and maintenance planning, and reviews
on this topic are available in Cox and Smith (1954) and
Wu (2019). Assume the first product is installed at time 0.
Let N(f) be the random variable representing the number
of new products installed in (0, ¢]. Thus, a total of (N(¢) +
1) products are installed by time ¢. Then, the aggregate
spares demand of the fleet in [0, #], denoted as Z(), can
be expressed as

Z(I)ZM(I)+1§)M(t—W,.), fort >0, 4)

where M(f) is the renewal function for the product
installed at =0, and W; is a random variable representing
the installation time of the ith product. Thus, M (t— W,)
is the number of failures or renewals of the ith product
in [W;, f]. Essentially, Z(¢) is a superimposed renewal
process formed by (N(7) + 1) systems. Evidently, Z(¢) is a
random variable due to the stochastic nature of M(¢), W,
and N(f). When the product lifetime is exponential and
the fleet growth follows the Poisson counting process, the
mean and the variance of Z(¢) have been derived (Jin and
Liao, 2009) and given as follows

E[Z(1)] = at + %a/ltz, 5)

1 1
Var[Z ()] = at + za/ltz + §“2’”3’ (6)

where A is new product installation rate. Since Egs. (5)
and (6) are quadratic and cubic functions of time, respec-
tively, the spares demand stream is a nonstationary
process driven by a time-varying installed base. On the
basis of Egs. (5) and (6), a joint optimization problem of
component reliability and adaptive stocking policy is
solved under a Poisson expanding fleet (Jin and Tian,
2012).

The spare parts demand during the inventory replenish
lead time is of particular interest to the OEM. Let D(¢) be
the lead time spares demand in [#, ¢+ ], and / be the lead
time duration. Then, we have D(t) =Z(t+1)—Z(t). The

mean and variance of D(f) are obtained as follows (Jin
etal., 2017)

1
EBID®]=a(+an)l+sadl, forO<I<t, ()

1 1
Var[D(H)] = (1 + )1+ (Ea/l+ a/zzlt) P+ 502/113,
forO<I<t. )

Since Egs. (7) and (8) effectively capture the nonsta-
tionary behavior of spares demand during the lead time,
they can serve as the theoretical basis for planning spares
inventory during the new product introduction.

Jalil et al. (2011) examined where to place the spare
parts inventories throughout a service supply chain
network. An aggregate forecast is performed for an entire
region by summing up the historical spare parts demand
observed at individual locations. Next, an extrapolation
method, such as simple exponential smoothing, is used to
derive an aggregate demand forecast for the entire region.
The size of the current product fleet is then used to allocate
and divide the aggregated forecasted spares demand
geographically.

The method of Liu and Tang (2016) developed a spares
inventory model for cost minimization under a growing
installed base. Their work differs from the previous studies
in that the failure processes of components or subsystems
in the same system are mutually dependent. In addition,
the possibility of reliability improvement or deterioration
over time is also discussed in their work.

Qin et al. (2021) investigated a repairable inventory
service network considering multi-fleet expansions in
geographically dispersed locations. The repair center and
the central warehouse face a nonstationary spares demand
comprising failure streams from several locations or
fleets. Their work made a good effect in extending the
single-site fleet expansion model to multi-location prob-
lems.

4.2.2 Spares forecasting for decreasing installed base

In the end-of-life phase, no new sales occur in the future,
and the installed products could be discarded due to end
of use. This line of research has been treated as the case
of a discontinued product (Ritchie and Wilcox, 1977;
Hong et al., 2008; Chou et al., 2015; 2016; Kim et al.,
2017). The end-of-life scenario often occurs in practice,
as the service period of a durable product is typically
much longer than the production period. In that case, the
installed base is decreasing over time. Teunter and
Fortuin (1999) proposed “remove-down-to” levels for
spare parts and then derived an optimal last order quantity
in the final lot production. Chou et al. (2015; 2016) high-
lighted the importance of including the decline information
of the installed base, as the part production costs during
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the end-of-life phase may be much larger than in the
mature phase because of the limited economy of scale
and scope. Moreover, overstocking is very costly as
unsold parts will become obsolete.

4.2.3 Spares forecasting for both increasing and decreasing
installed base

Yamashina (1989) related service parts demand to the
shipment pattern of new products by implicitly assuming
that each manufactured product is also installed in the
field, together with the product life characteristics (i.e.,
when it is discarded) and the part reliability characteristics
(i.e., failure rate). The installed base information includes
product installation data over time, such as when they are
added to the fleet and which and where products retire
and leave the fleet. Thus, the entire product life cycle is
addressed. However, the author only presented an
approximation solution, and indicated the difficulty of
calculating the demand forecast analytically when the
future product sales are a stochastic process.

Minner (2011) modeled the evolution of the installed
base considering the new product sales and the end-of-
use of product retirement. The author determines the
probability distribution, instead of a point forecast, for
the one-period-ahead demand by means of recursion.

Stormi et al. (2018) introduced a forecasting model for
industrial service sales, which considers the characteristics
of the installed base and predicts the number of active
customers and their yearly volume. The case study indi-
cates that the installed base driven model outperforms
the reactive forecasting approaches suitable for similar
data. Nevertheless, they pointed that a reliable forecasting
requires comprehensive, up-to-date information about the
actual installed base.

4.3 Spare parts forecast considering trade policy and
additive manufacturing

Spare parts supply and forecast are also correlated with a
nation’s trade policy, political stability, and supply chain
resilience. Rahmawati et al. (2019) studied the impact of
import tariff on aircraft spare parts in the Indonesian
aviation MRO industry. Their study showed that the
import duty exemption increases domestic MRO services
from 30 percent to 49 percent in 2013-2017 because of
the availability of low-cost spare parts. Belhadi et al.
(2021) investigated supply chain resilience in the manu-
facturing and service operations of automobile and airline
sectors during the COVID-19 pandemic. Both sectors
perceive that real-time information sharing plays a critical
role in overcoming the supply uncertainties posed by the
pandemic. The use of digital technologies also accelerates
the cooperation among supply chain stakeholders. Hence,
the future spares forecasting model can also incorporate
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the uncertainties in trade policy and high-impact event
such as pandemic issues.

Additive manufacturing (AM) or 3D printing can
potentially increase spares supply dynamics with its fast
progress in precision, speed, affordability, and materials
range. Several studies, such as Pérés and Noyes (2000),
Holmstrom et al. (2010), Liu et al. (2014), and Khajavi
et al. (2014), have specifically discussed the AM tech-
nologies in the spares inventory dynamics. For instance,
Holmstrém et al. (2010) compared the cost and lead time
between centralized and decentralized AM deployments
in a spares supply network. Li et al. (2017) investigated
the impact of AM on the spares supply chain in three
scenarios: Conventional supply chain, centralized AM-
based supply mode, and distributed AM-based supply
mode. Their study showed that utilizing AM is superior
to the traditional supply mode because of reducing variable
cost and carbon emissions. They also noticed that the AM-
based supply chain becomes less cost-effective unless the
initial capital of equipment is further reduced.

5 A case study in semiconductor equipment
industry

We take the automated test equipment (ATE) to illustrate
the potential applications of the integrated PSS model.
ATE is a high-end, capital-intensive electronics system
that costs between $1 million and $3 million. They are
widely used for wafer probing and device testing in
the backend of semiconductor manufacturing process.
According to Market Watch (2021), the global ATE
market was valued at $4.3 billion in 2020 and will grow
with a rate of 2.88% from 2020 to 2027.

To facilitate the maintenance and repair, an ATE
system is typically configured by 20-40 swappable
printed circuit boards called line replaceable units
(LRUs). Figure 6 graphically illustrates the ATE configu-
ration: Four high speed digital (HSD) boards, two direct-
current (DC) boards, two analog boards, one radio
frequency (RF) board, and one support board. The cost of
an LRU varies between $50000 and $150000 depending
on the performance and function of the board. Upon fail-
ure, the faulty LRU is replaced with a good part, and the
system can resume the production immediately.

[ Device | [ Device |
Device Interface Board

Tester
computer

HSD Board
HSD Board
HSD Board
HSD Board
DC Board
DC Board
Analog Board
RF Board

Analog Board
Support Board

Fig. 6 An ATE system with reduced configuration.
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Fig. 7 Distributed ATE manufacturing and service operations (Jin, 2019).

As shown in Fig. 7, the design, manufacturing, installa-
tion, and support of a global ATE fleet are carried out in
a distributed supply chain network. For instance, the
design of a new ATE is undertaken by engineers in
Boston, MA and San Jose, CA, USA. The software appli-
cation for ATE is outsourced to India. The LRU production
is made by subcontractors in Charlotte, NC, USA and
then shipped to a factory in Shanghai, China where the
entire system is assembled. Repair centers are located in
the Philippines and Costa Rica, respectively, where the
renewal, revision, and repair of field returns are
performed in 24/7 mode. All repaired items are shipped
by air to the central warehouse located in Memphis, TN,
USA, from where spare parts are further distributed to the
regional inventory in Asia, Europe, and North America.
This manufacturing and service supply chain enables the
firm to leverage global resources to deliver high-quality,
low-cost ATE systems.

The applications of the integrated PSS in the
distributed manufacturing and service supply chain
consist of four research tasks as follows:

* First, we need to predict the number of new ATE
installations on the basis of the market overlook as well
as the competitive edge against similar products. Given
some initial installation data, a future installed base can
be estimated by relying on both future market and past
shipment. In addition, smart logistics technologies, such
as digital twins, Internet of Things, information technol-
ogy, and artificial intelligence, enable a more efficient
tracking of the location and usage of existing and new
systems (Feng and Ye, 2021).

* Second, under a nonstationary operating condition,
we concurrently allocate reliability, maintenance, spares
inventory, and repair capacity to lower the ATE lifetime
cost while assuring system operational availability given
in Egs. (1) and (2). Mixed integer non-linear programming
is a viable approach to solve the reliability-maintenance-
inventory optimization problem. Spares demand forecast-
ing can be performed using explanatory methods incorpo-

rating installed base information, such as Egs. (5)—(8).
The results can be compared with reactive methods, such
as time series, Markov chain Monte Carlo, deep neural
network, support vector machine, and random forest.

* Third, as the product enters the retirement stage, the
joint reliability-maintenance-inventory allocation model
shall be refined by considering reliability degradation,
repair discard, cannibalization (Salman et al., 2007), re-
use or remanufacturing (Ferguson and Browne, 2001),
and parts substitution (Achamrah et al., 2022). The last
three options also provide the solution to address the
spares supply issue for systems under mass varieties and
small batch production.

* Fourth, comparing the integrated reliability-mainte-
nance-inventory decisions between constant failure rate
and time-varying failure rate products is another interest-
ing topic to investigate. A constant failure rate is often
adopted after the market enters the steady state phase.
However, the failure rate is non-constant and likely
increases when the product enters the retirement phase.

6 Reliability and operations management
in defense industry

In the US defense sector, the PSS concept is referred to
as integrated product support (IPS) (DAU, 2019). It is a
management technique that integrates all acquisition
activities starting with requirements definition through
prototyping, production, deployment, and operations to
optimize the design, manufacturing, business, and
supportability processes. Under performance-based logis-
tics, IPS benefits from adopting an integrated reliability-
maintenance-inventory optimization to minimize the total
ownership cost with superior operational effectiveness
(Carrel, 2000; Kumar et al., 2007). Typical operational
effectiveness indexes include system availability, depend-
ability, and capacity.

In the Chinese reliability community, Yang (1995) first
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proposed the concept of reliability systems engineering
(RSE) in 1990s. RSE investigates the correlations
between the reliability and lifetime of a product in the
content of its operational environment, failure occurrence,
and evolution, as well as the methods to detect, mitigate,
prevent, and eliminate these failures. To that end, a variety
of techniques are adopted to improve reliability, extend
lifetime, and enhance operational effectiveness on the
basis of reliability growth strategies, such as accelerated
life testing, failure mode, effect and criticality analysis,
corrective actions, and proactive maintenance. RSE is
shown to be quite effective and has been successfully
adopted in the Chinese military and defense industries
(Shi, 2007). The essence of the RSE is to emphasize the
necessity and benefit of synthesizing reliability, maintain-
ability, and supportability to attain superior operational
effectiveness while lowering the system lifetime cost.
Both reliability and availability are the fundamental
measures to assess the operational effectiveness. They are
also the key factors influencing the lifecycle cost of a
product. New advancements in RSE theory have been
achieved and reported since its inception (Kang and
Wang, 2005; 2007; Qian et al., 2020). A detailed review
on the origin and evolution of the RSE methodology is
also available in a recent study by Wang (2021).

7 Conclusions

This paper discusses the challenges and opportunities of
merging reliability engineering and operations manage-
ment to achieve superior system availability under uncer-
tainty. First, we discuss the existing studies on reliability-
redundancy allocation, preventive maintenance, spare
parts logistics, and their mutual interactions. Second, we
present a new class of a reliability-maintenance-inventory
allocation problem in the context of product-service inte-
gration. Specific effort is focused on the new product
introduction phase when the system installed base is
growing but highly uncertain. Third, the generation of
spare parts demand is a complex process that depends on
product reliability, installed base, usage, operation con-
dition, maintenance, and trade policy, among others.
Explanatory forecasting models generally outperform
reactive prediction methods because the former can
accommodate future failure sources. For exponential fail-
ure with Poisson fleet expansion, the mean and variance
of the nonstationary spares demand process can be
derived analytically using superimposed renewal theory.
The analytical model allows for the design of adaptive
inventory policy and the provisioning of spare parts to
cope with the growing installed base. Finally, a case
study on semiconductor test equipment is presented to
show how the integrated reliability-maintenance-inventory
model can be applied to a distributed manufacturing and

service supply chain. The product-service integration also
plays a critical role in public sectors manifested as inte-
grated support, performance based logistics, and RSE in
the defense industry. The reliability challenges today
could nevertheless be the research opportunities of
tomorrow. Hence, this study calls for new research
agenda revolving around three aspects: 1) modeling and
optimizing reliability-maintenance-inventory allocation
problems in nonstationary conditions, 2) managing spare
parts logistics under variable fleet size, and 3) forecasting
spare parts demand considering installed base informa-
tion.
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